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Abstract

In previous work we presented an algorithmic procedure for analysing the space complexity of mon-

itor specifications written in a fragment of predicate logic. These monitor specifications were developed

for runtime monitoring of event streams. Our procedure provides accurate results for a large fragment

of the possible specifications, but overestimates the space complexity of precisely those specifications

which are more likely to be found in real world applications. Experiments hinted at a relationship

between the extent our procedure over-approximates the space requirements of a specification and the

quantifier structure of the specification. In this paper we provide a formalization of this relationship as

approximation ratios, and are able to pinpoint “good” constructions, that is specifications using less

memory. These results are first steps towards categorizing specifications based on memory efficiency.

1 Introduction

This work is part of an ongoing project to analyse the space complexity [1, 2, 3, 4] of the Log-
icGuard stream monitor specification language [13], which is based on a fragment of predicate
logic. In this language, specifications are formulas that quantify over positions in a stream of
events, that is the stream being monitored. LogicGuard was developed in an industrial collab-
oration for the runtime monitoring of networks for security violations [10]. At the heart of our
previous analysis were a few core assumptions which allowed the development of a simplified
operational semantics, but which also introduced, in some cases, significant over-approximation.
Though, previously published experimental results [1, 3] point to the existence of specifications
which are reasonably over-approximated, within a factor of two of the true value.

We continue our analysis by categorizing the types of quantifiers which are well approx-
imated by our method and those which are poorly approximated. Both of these quantifier
configurations are concerned with the relationship between nested variables and dominating
monitor transformation, a transformation introduced in [4] which results in a monitor bound-
ing the space complexity of the pre-transformation monitor. This transformation has been an
essential component of many of our previous results [1, 2, 3, 4].

∗The project “LogicGuard II: The Optimized Checking of Time-Quantified Logic Formulas with Applications
in Computer Security” is sponsored by the FFG BRIDGE program, project No. 846003.
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In this paper, we formally define the relationship between the pre- and post-transformation
monitors, that is what changes occur to the quantifier intervals during the transformation.
These results can be extended to specifications with more than two nested quantifiers, and
ultimately to any specification. We show that our method provides a worst case O(k)-
approximation where parameter k is determined by a relationship between quantifier intervals,
and by O(k)-approximation we denote the ratio between the computed space complexity and
actual space complexity. In practice more than three nested quantifiers are rare; thus, for
the most commonly occuring cases a precise definition of k is possible. Interestingly, the ap-
proximation ratio is inversely related to the monitoring efficiency, thus “poorly” approximated
specifications give rise to efficient monitors.

Finding memory efficient classes of specifications has also been an important goal for many
prominent monitor specification languages, because the systems running the monitors will usu-
ally have very limited resources. For example, LOLA specifications can be represented as
weighted directed graphs which are known to be memory efficient when the graph does not
have positive cycles [5]. Problematically, positive cycles are related to interdependency of ex-
pressions, a property which can be useful for complex scenarios. It is known that there are
memory efficient LOLA expressions which have positive cycles [5] thus begging for deeper anal-
ysis. We are not aware of any work classifying such expressions. There is a relationship between
the LogicGuard quantifiers addressed in this work and positive cycles which is due to be ad-
dressed in future work. Other results concerning efficient fragments focus on restricting the
fragment of LTL (the most commonly used specification language [11]) being considered. For
instance, the hardware design language PSL [7] based on LTL restricts the use of disjunction to
avoid exponential blow up. In [8], the class of “locally checkable” properties (a subclass of the
“locally testable” properties introduced in [12]) is defined. In [6] a procedure for synthesizing
monitor circuits from LTL specifications is defined that restricts the exponential blow-up to
those parts of a formula that involve unbounded-future operators. Unlike their results, which
define space efficiency by the size of non-deterministic automaton, we base our analysis on the
size of the runtime representation of the formulas during the execution of the monitors.

The rest of this paper is as follows: In Section 2 we introduce the background material and
previous results. In Section 3 we present the approximation ratios and state their correctness.
In Section 4 we discuss our results and future work. Appendices A & B contain the proofs of
the main theorems found in Section 3.

2 Background & Previous Results

In this section we discuss the specification language, our abstraction of the language, and previ-
ous results. We leave out details concerning the operational semantics of the specification lan-
guage and conversion of monitor specifications to their runtime representation, all of which has
been discussed elsewhere [9, 13]. Instead, we present an abstraction of the operational seman-
tics which is a slight generalization of the abstraction introduced in [2, 3]. This generalization
is necessary, because we need to compare the evaluation of dominating and non-dominating
monitor specifications. Previous work only considered dominating monitor specifications and
thus we developed an abstraction which took only those specifications into account [2, 3].

2.1 The LogicGuard Specification Language

The LogicGuard specification language [13] is used for defining monitors over event streams. An
important feature of the language is the construction of a higher level stream from a lower level
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input stream. These streams can be configured to monitor the input for a particular property.
The results of this paper mainly concern the core specification language, but to give an idea
of the expressive power of the full specification language we present the following example of a
specification in the full language:

type tcp; type message; ...

stream<tcp> IP;

stream<message> S = stream<IP> x satisfying start(@x) :

value[seq,@x,combine]<IP> y

with x < _ satisfying same(@x,@y) until end(@y) :

@y ;

monitor<S> M = monitor<S> x satisfying trigger(@x) :

exists<S> y with x < _ <=# x+T:

match(@x,@y);

In this specification we declare the abstract types tcp and message as well as external func-
tions and predicates operating on objects of these types. The stream IP of TCP/IP datagrams
is declared that is connected by the runtime system to the network interface. This stream is
what we refer to as an external stream. From this stream, a “virtual” stream S of “messages”
is derived; each message is created by sequentially combining every datagram at position x on
IP (whose value is denoted by @x) that satisfies a predicate start by application of a function
combine with every subsequent datagram at position y that is related to the first one by a
predicate same until a termination condition end is satisfied. The stream S is monitored by a
monitor M that checks whether for every message on S that satisfies a trigger predicate, within
T time units a second message appears satisfying the match predicate on input S.

The core specification language is a substantially simplified version of this language that
is used to analyse the complexity of monitoring with respect to the number of past messages
and the number of only partially evaluated formula instances that have to be preserved in
memory for the monitoring of the specification. To use our space complexity work within the
LogicGuard system [13] we implemented a translator from the full language to the core language
(the translation is not semantics-preserving but generates a specification for which monitoring
is at least as complex as the monitoring of the original one). If some elements cannot be directly
translated user settings provide guidance to direct the translation process.

2.2 The Core Specification Language

M ::= ∀0≤V : F.
F ::= @V | ¬F | F ∧ F | F & F

| ∀V ∈[B,B] : F.
B ::= 0 | ∞ | V | B ±N.
V ::= x | y | z | . . .
N ::= 0 | 1 | 2 | . . .

Figure 1: The core language syntax

The core specification language is described in detail in [4]. Its syntax is depicted in Fig. 1
where the typed variables M,F, . . . denote elements of the syntactic domains M,F, . . . of mon-
itors, formulas, etc. A monitor M has the form ∀0≤V : F for some variable V and formula
F ; it processes an infinite stream of truth values > (true) or ⊥ (false) by evaluating F for
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V = 0, V = 1, . . . The predicate @V denotes the value in the stream at position V , ¬F denotes
the negation of F , F1 ∧ F2 denotes parallel conjunction (both F1 and F2 are evaluated simul-
taneously), F1 & F2 denotes sequential conjunction (evaluation of F2 is delayed until the value
of F1 becomes available), ∀V ∈[B1,B2] : F denotes quantification over the interval [B1, B2].

2.3 Dominating Formula Transformation

A concept introduced in [4], the dominating monitor/formula, allows us to restrict our analysis
to quantified formulas whose variable intervals only depend on the outermost monitor variable,
i.e. the size of every interval is the same for every value of the monitor variable.

Definition 1 (Dominating Monitor/Formula Transformation). Let A = V →part. N be the
domain of assignments that map variables to natural numbers. Then the dominating monitor
transformation D : M → M respectively formula transformation D′ : F × A × A → F are
defined as follows:

D(∀0≤V : F ) = ∀0≤V : D′(F, [V 7→ 0], [V 7→ 0])

D′(@V, al, ah) = @V

D′(¬F, al, ah) = ¬D′(F, al, ah)

D′(F1 & F2, al, ah) = D′(F1, al, ah) & D′(F2, al, ah)

D′(F1 ∧ F2, al, ah) = D′(F1, al, ah) ∧ D′(F2, al, ah)

D′(∀V ∈[B1,B2] : F, al, ah) = ∀V ∈[hL(B1),hH(B2)] : D′(F, a′l, a
′
h)

In the last equation we have a′l = al[V 7→ hL(B1)], a′h = ah[V 7→ hH(B2)], hL(B1) =
min {{B1 }al , {B1 }ah}, hH(B2) = max {{B2 }al , {B2 }ah} where {B }a denotes the result
n of the evaluation of bound expression B for assignment a; actually, if B contains the monitor
variable x, the result is of the form x+ n (we omit the formal details, see the example below).

Example 1. Consider the following monitor M :

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y,x+3] : ¬@z & @z) & G(x, y))

G(x, y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y,w] : ¬@x & @m))

The dominating form D(M) of M is the following:

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[x+1,x+3] : ¬@z & @z) & G(x, y))

G(x, y) = ∀w∈[x+2,x+7] : (¬@y & (∀m∈[x+1,x+7] : ¬@x & @m))

Notice that additional instances are needed for the evaluation of D(M).

Fig. 2 illustrates the dominating monitor transformation: The left side shows the intervals
of the inner quantifier for each value of y in the outer quantifier interval; notice that the values
increase with respect to the value of y. The right-hand side represents the interval structure of
the dominating monitor; the values of the inner quantifier’s interval are constant, invariant of
the value of y. Essentially the future most position is fixed in the dominating monitor, where
as, in the original monitor, the future most position is dependent on y.

The relationship, in terms of the maximum size of instance sets, between a monitor M and
its dominating form D(M) is summarized in the following theorem.
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∀0≤x : ∀y∈[x+a, x+b] : ∀z∈[y+c, y+d] : F (x, y, z)

y = a a + c · · · a + d min{a, b}+ c · · · max{a, b}+ d

y = a + 1 a + 1 + c · · · a + 1 + d
...

. . . min{a, b}+ c · · · max{a, b}+ d

y = b b + c · · · b + d min{a, b}+ c · · · max{a, b}+ d

x = 0

∀0≤x : ∀y∈[x+a, x+b] : ∀z∈[x+min{a,b}+c, x+max{a,b}+d] : F (x, y, z)

x =
0

Figure 2: Illustration of the dominating monitor transformation.

Theorem 1 ([1, 3]). Let M ∈ M. Then for all p, n, S, S′ ∈ N and s ∈ {>,⊥}ω such that
T (M) (p,s,n S and T (D(M)) (p,s,n S

′, we have S ≤ S′.

By T (M) (p,s,n S we mean that S is the number of instances created by the runtime
representation of M , T (M), during the first n steps of the evaluation on a stream s starting
at stream position p. Essentially, Thm. 1 states that the number of instances constructed by a
monitor specification during evaluation is bounded from above by the dominating form of the
monitor specification. More details can be found in [1, 2, 3].

2.4 Quantifier Trees & Vectors

The algorithm introduced in [3] and the analytic expressions of [1, 2] are based on a translation
of monitor formulas into what we refer to as quantifier trees, and in the case of [2], the more
restricted quantifier vectors. Not all details concerning these abstract objects are needed for
the results of this paper. We will focus on the important concepts which directly apply to this
paper and we refer the reader to [1, 2] for further details.

Definition 2 (Quantifier Trees). A quantifier tree is inductively defined to be either ∅ or a
tuple of the form (y, b1, b2, Q) where y ∈ V , b1, b2 ∈ B, and Q is a set of quantifier trees.
Let QT be the set of all quantifier trees. We define (y, b1, b2, Q)1 = y,(y, b1, b2, Q)2 = b1,
(y, b1, b2, Q)3 = b2, and (y, b1, b2, Q)4 = Q.

Definition 3 (Quantifier Tree Transformation). We define the quantifier tree transformation
QT : M→ QT, respectively QT : F→ QT, recursively as follows:

QT (∀0≤V : F ) = (V, 0, 0,QT (F )) QT (F&G) = QT (F ) ∪QT (G)
QT (F ∧G) = QT (F ) ∪QT (G) QT (¬F ) = QT (F )
QT (∀V ∈[B1,B2] : F ) = (V,B1, B2,QT (F )) QT (@V ) = ∅
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(x, 0, 0, {A})

(y, x+ 1, x+ 5, {B,C})

(z, y, x+ 3, ∅) (w, x+ 2, y + 2, {D})

(m, y,w, ∅)

A

B C

D

(x, 0, 0, {A})

(y, x+ 1, x+ 5, {B,C})

(z, x+ 1, x+ 3, ∅) (w, x+ 2, x+ 7, {D})

(m,x+ 1, x+ 7, ∅)

A

B C

D

Figure 3: Quantifier trees for the monitor of Ex. 1.

We do not distinguish between sequential and parallel conjunction in quantifier trees because
their effect on memory is dependent on the stream they are evaluated over, thus, we just take
the worst case scenario of parallel conjunction. Fig. 3 depicts the quantifier tree QT (M) on
the left side and QT (D(M)) on the right side, where M is the monitor from Ex. 1. Note
that QT (D(M)) consists of two quantifier vectors: (y, x + 1, x + 5, {(z, x+ 1, x+ 3, ∅)}) and
(y, x+ 1, x+ 5, {(w, x+ 2, x+ 7, {(m,x+ 1, x+ 7, ∅)})}).

Definition 4 (Sub-quantifier Tree). Let q, q′ ∈ QT. We call q′ a sub-quantifier tree of q if
q = (y, b1, b2, Q) and one of the following holds: q′ = q, or q′ ∈ Q, or there exists q′′ ∈ Q such
that q′ is a sub-quantifier tree of q′′. We call a sub-quantifier tree q′ of q proper if q′ 6= q. We
will use the notation q.ν to denote a sub-quantifier tree ν of q.

Definition 5 (Quantifier Vectors). A quantifier vector is inductively defined to be either ∅ or a
tuple of the form (y, b1, b2, Q) where y ∈ V , b1, b2 ∈ B, and Q is a set of quantifier vectors s.t.
|Q| ≤ 1 . Let QV be the set of all quantifier vectors. We define the length |v| of a quantifier
vector v as |v| = 0 if v = ∅, |v| = 1 if v = (y, b1, b2, ∅), and |v| = 1 + |q| if v = (y, b1, b2, Q) and
q ∈ Q.

In previous work we ignored nested variables [1, 2]. By nested variables we mean a bound
variable whose value is dependent on the value of another free or bound variable in the spec-
ification. Ignoring such cases allowed us to ignore every variable in the specification but the
stream variable. However, to deal with non-dominating monitors we need an evaluation proce-
dure which can handle nested variables. We solve this issue by adding term substitution to the
evaluation procedure.

Definition 6. A term t is an element of B \ {∞} (see Fig. 2). We define T = B \ {∞} as the
set of all terms.

Sometimes we will write a term as t(y), meaning that y may be free in t.

Definition 7 (Quantifier Tree substitution). Let q ∈ QT, a, c1, c2 ∈ Z, x1, · · ·xn, y1, y2, y ∈
V, and b1, b2, t1, · · · tn ∈ T , where q = (y, b1(y1), b2(y2), Q). We define qσ, where σ =
{x1 ← t1, · · · , xn ← tn}, as follows: (y, b1(y1), b2(y2), Q)σ = (y, b1(y1)σ, b2(y2)σ,

⋃
q∈Q′ qσ),

where for j = 1, 2 we have:

bj(yj)σ =

{
bj(ti) xi = yj , for some 1 ≤ i ≤ n
bj(yj) otherwise
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Essentially, we are using a standard variable substitution method. We assume all quantifier
trees we will be dealing with are proper, that is have a root node of the following form Q =
(x, 0, 0, Q′) and for every Q.ν and Q.µ, such that Q.ν 6= Q.µ, (Q.ν)1 6= (Q.µ)1. This assumption
allows us to define an initial set for our evaluation method.

Definition 8. Let Q ∈ QT be proper and let a ∈ N ∪ {0}. We define the initial instance set
I(a,Q) of Q at a, as I(a,Q) =

⋃
q∈Q′ q {x← a}.

Essentially the instance set is a forest of quantifier trees. Now we can construct the instance
set at a particular point for any quantifier tree.

Definition 9 (Evaluation of Quantifier Trees). Let Q ∈ QT, a, b ∈ N ∪ {0}, such that b ≤ a
and I is the initial instance set of Q at b. We define the evaluation E(a, I) at I as follows:

E(a, I) =
⋃
q ∈ I

q = (y, b1, b2, Q
′)

(ACC(a, q) ∪REM(a, q))

ACC(a, q) =


⋃min{a,b2}

i=b1
E(a,

⋃
q′∈Q′ q′ {y ← i}) b1 ≤ a ∧ b1 ≤ b2

∅ otherwise

REM(a, q) =


{(y, a+ 1, b2, Q

′)} b1 ≤ a ≤ b2

{(y, b1, b2, Q′)} a ≤ b1

∅ otherwise

In Definition 9 we break the process of evaluating a set of quantifier trees into two parts.
The first part is denoted by ACC(a, q), which is the ACCumulation of instances. This step
generates a new evaluation function for each instance generated from unrolling the quantifier.
The second part is denoted by REM(a, q), which is the REMaining part of the quantifier
interval which could not be evaluated at a. As we have done in previous work [1, 2], we can
use our definition of evaluation to define the size of the runtime representation, or in other
words, the number of instances kept in memory. Though, in previous work computing the
maximum upper bound of a quantifier interval in a monitor specification was easy to define due
to the dominating formula transformation. To define the maximum upper bound for the above
evaluation procedure, we need to find the first value i such that E(i, I(0, Q)) = ∅, i.e. the point
when everything evaluates. Obviously, if E(i, I(0, Q)) = ∅, then E(i+ 1, I(0, Q)) = ∅ as well.

Definition 10 (Storage Complexity). Let m ∈ M, and a ∈ N ∪ {0}, such that a =
(min0≤iE(i, I(0, QT (m))) = ∅). Then the storage complexity of m, i.e. |m|sc is defined as
follows:

|m|sc =

a−1∑
i=0

|E(i, I(0, QT (m)))|

7
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3 Approximation Bounds

In this section we first introduce approximation ratios for monitor specifications which can be
represented as proper quantifier vectors of length three, and then we generalize these results to
arbitrary quantifier trees. Note that we only consider variable nestings for the upper bound of
the innermost quantifier. We ignore the lower bounds, because variable lower bounds do little
to influence how far into the future a monitor needs to look, rather they effect how long one has
to wait till evaluation can take place. However, when considering quantifier vectors of length
greater than three, the number of instances only depends on the complexity of the sub-trees,
but is independent of the quantifier itself.

3.1 Approximations for Length Three Quantifier Vectors

We derive our first approximation ratios by comparing the number of instances generated by
the quantifier vector with nested variables and the resulting quantifier vector of the dominating
formula transformation. Note that we need to deal with an abstract representation of the
quantifier vector’s dominating form because we do not know the precise values of the upper
and lower bounds.

Theorem 2. Let m ∈M, a1, b1, a2, b2 ∈ Z, and x, y, z ∈ V such that

QT (m) = (x, 0, 0, (y, x+ a1, x+ b1, (z, x+ a2, y + b2, ∅))),

and d = mini∈[a1,b1] {0 < b2 + i}. If b1 < b2 + d, then 2 · |m|sc ≥ |D(m)|sc.

Proof. The full proof can be found in Appendix A. Essentially, we proceed by considering all
possible numeric orderings of a1, b1, a2 and b2. We evaluate m and D(m) for each ordering
using Definition 9. Then we compare the results and show that 2 · |m|sc ≥ |D(m)|sc .

The bound provided by Theorem 2 is quite coarse and experimental results point to a
tighter bound of 3

2 · |m|sc ≥ |D(m)|sc in the general case. As the difference between b1 and
b2 grows, experimental results show that |m|sc ≈ |D(m)|sc . Proving these points is technical
and provides little gain. What is important is that this class of monitor specifications has a
constant approximation ratio and thus shows the runtime representation size of the dominating
formula is a good approximation of the runtime representation size of the original formula.

Theorem 3. Let m ∈M, a1, b1, a2, b2 ∈ Z, and x, y, z ∈ V such that

QT (m) = (x, 0, 0, (y, x+ a1, x+ b1, (z, x+ a2, y + b2, ∅)))

and
D(QT (m)) = (x, 0, 0, (y, x+ a1, x+ b1, (z, x+ a2, x+ max {a1, b1}+ b2, ∅))).

Let 0 < b1,a1 ≤ b1, d = mini∈[a1,b1] {0 < b2 + i}, and a2 ≤ b2 + d. If b1 = k + b2 + d for k ≥ 0,
then O(k) · |m|sc ≥ |D(m)|sc.

Proof. The full proof can be found in Appendix B and is similar to the proof of Theorem 2.

The previous two theorems give us a very good idea of how well or how poorly a monitor
specification will behave based on the relationship between b1 and b2, the quantifier upper
bounds. In the next subsection we generalize these results for any quantifier tree. To make this
generalization we need a clear definition of an O(r)-approximation of the storage complexity.
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Definition 11. Let m ∈ M and f : N → N. We say that |QT (D(m))|sc is an O(f(k))-
approximation of |QT (m)|sc if O(f(k)) · |QT (m)|sc ≥ |QT (D(m))|sc.

For Theorem 2, the statement 2 · |m|sc ≥ |D(m)|sc can be thought of as a special case of
O(1) · |m|sc ≥ |D(m)|sc .

To get a better idea of what Theorems 2 & 3 are stating let us consider the following two
pairs of formula which where used for the experimental results of [3].

m1 = ∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,y+1] : @z (1a)

D(m1) = ∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,x+81] : @z (1b)

m2 = ∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,y+40] : @z (2a)

D(m2) = ∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,x+80] : @z (2b)

Notice that (1b) and (2b) are the dominating formulas of (1a) and (2a). Also the bounds of
(1a) fall into the class of Theorem 3 and the bounds of (2a) fall into the class of Theorems 2.
Now using the theorems we can make the following calculations:

O(n) = c · 80 ≥ |D(m1)|sc
|m1|sc = 3401

161 = 21.12 2 ≥ |D(m2)|sc
|m2|sc = 2500

1680 ≈ 1.488

Thus, we see that c ≥ 1
4 + ε. We show the convergence of Theorem 2 (left) and divergence of

Theorem 3 (right) in Fig. 4 using the following two specification schema:

∀0≤x : ∀y∈[x,x+100] : ∀z∈[x,y+100+10·n] : @z (3a)

∀0≤x : ∀y∈[x,x+100+10·n] : ∀z∈[x,y+100] : @z (3b)

where n ∈ [0, 200]. The two lines in Fig. 4 (left) represent the cases when 3
2 = |D(m)|sc

|m|sc and

1 = |D(m)|sc
|m|sc . We know that |D(m)|sc

|m|sc can never be less than 1 nor greater than 2. However,

experimentally, it has never shown to be more than 3
2 . The curve of Fig. 4 (left) illustrates what

happens as the distance between b1 and b2 increases whilst b1 remains smaller than b2, that

is the ratio |D(m)|sc
|m|sc converges to 1. In the case of Fig. 4 (right), the opposite happens, as the

distance between b1 and b2 increases and b2 ≤ b1, there is a divergence and the ratio |D(m)|sc
|m|sc

goes to infinity. This divergence occurs as a linear growth in terms of the distance between b1
and b2. Importantly, this divergence does not imply that the space requirements of the monitor
gets worse for large distances between b1 and b2, but rather that D(m) provides less and less
information concerning the space requirements of m. The convergence of Fig. 4 (left) implies
that D(m) provides more information concerning the space requirements of m.

3.2 Aproximations for Quantifier Trees

In this section we use the previous section’s results to derive approximations for quantifier trees.
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Figure 4: Approximation ratios for the specification schema of Equation (3a) & (3b).

Lemma 1. Let m ∈ M, a1, b1, a2, b2 ∈ Z, x, y, z ∈ V , and Q,Q′ ⊂ QT such that q ∈ Q iff
D(q) ∈ Q′ and |Q′|sc is a O(kr1)-approximation, where r ∈ {0, 1}. If

D(QT (m)) = (x, 0, 0, (y, x+ a1, x+ b1, (z, x+ a2, x+ max {a1, b1}+ b2, ∅)))

is an O(kr
′

2 )-approximation, where r′ ∈ {0, 1}, of QT (m) = (x, 0, 0, (y, x + a1, x + b1, (z, x +
a2, y + b2, ∅))), then

D(QT (m)) = (x, 0, 0, (y, x+ a1, x+ b1, (z, x+ a2, x+ max {a1, b1}+ b2, Q
′)))

is at most an O(max {k1, k2}max{r,r′})-approximation of QT (m) = (x, 0, 0, (y, x + a1, x +
b1, (z, x+ a2, y + b2, Q))).

Proof. This lemma is complex to state and a bit unintuitive but the proof is pretty straight
forward. One just needs to consider the fact that the variable substitutions provide a linear
change in the size of a quantifier’s interval. Thus, a sequence of nested quantifier can be reduced
to two nested quantifiers with a linear shift in one of the two quantifiers upper bounds. Thus,
the linear approximation might be worse, but it stays a linear approximation.

We can illustrate Lemma 1 using the following three specification schema for n ∈ [0, 200]:

∀0≤x : ∀y∈[x,x+1] : ∀z∈[x,y+1+n] : ∀w∈[x,z+1+2·n] : @w (4a)

∀0≤x : ∀y∈[x,x+1+n] : ∀z∈[x,y+1+2·n] : ∀w∈[x,z+1] : @w (4b)

∀0≤x : ∀y∈[x,x+1+2·n] : ∀z∈[x,y+1+n] : ∀w∈[x,z+1] : @w (4c)

Equation (4a) is O(1)-approximated by the dominating formula while both Equation (4b) and
Equation (4c) are O(n)-approximated by the dominating formula, but by different linear func-
tions. The relationship between the upper bounds of the inner most quantifiers of Equation
(4b) is defined by Theorem 2 and the relationship between the upper bounds of the outer quan-
tifiers is defined by Theorem 3. However for Equation (4c) the relationship of both the inner
and outer bounds is defined by Theorem 3. For (4a) the relationship of both the inner and
outer bounds is defined by Theorem 2. In Fig. 5, we provide a graphical representation of the
relationship between the three schemata and the value n.

First, we need to formalize a relationship between the sub-trees of a quantifier tree.

10
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Figure 5: Approximation ratios for the specification schema of Equations (4a), (4b), & (4c).

Definition 12. Let q ∈ QT. We say that q.ν is related to q.ν.µ, where q.ν.µ 6= q.ν, if
(q.ν.µ)3 = y + b2, where y ∈ V and b2 ∈ Z, and (q.ν)1 = y. We define the set of pairs SRq as
follows: (q′, q′′) ∈ SRq if ∃ q.ν = q′ and q′.µ = q′′ such that q′ 6= q′.µ and q′ is related to q′′.

Definition 13. Let q ∈ QT. We say that a set S ⊆ SRq is a relation chain of q if the undirected
graph (V, S), where V = {q | ∃r ∈ QT((q, r) ∈ S ∨ (r, q) ∈ S)} , is a connected path.

Definition 14. Let q ∈ QT. We define the the class index of q.ν and q.ν.µ, Ci(q.ν, q.ν.mu),
where q.ν.µ 6= q.ν, (q.ν)3 = y+ b1, and (q.ν.µ)3 = y+ b2, as Ci(q.ν, q.ν.mu) = max {b1 − b2, 2}.
We define the class index of q, Ci(q), as Ci(q) = max(q′,q′′)∈SRq

{Ci(q
′, q′′)}.

Now we can describe the worst-case approximation of a quantifier tree by its dominating
formula.

Theorem 4. Let m ∈ M and S the longest relation chain of QT (m). Then |QT (D(m))|sc is
at most an O(n)-approximation of |QT (m)|sc, where n is dependent on Ci(QT (m)).

Proof. The characterisation index Ci(QT (m)) tells us if we are in the class of Theorem 2 or
Theorem 3. More precisely, the longest relation chain of QT (m), S tells us the number of times
we need to apply Lemma 1, and thus, whether we have a linear or constant approximation of
the runtime representation. The result follows from these statements.

The surprising thing about Theorem 4 is that a poorer approximation implies a smaller
runtime representation. Even more so, the better the dominating formula is at approximating
the space requirements, the worse a monitor will behave in terms of space. Thus, the best
monitors in terms of space are the ones with maximal characterisation index and maximizal
relation chain size. These results can be used by those writing monitor specifications in the
LogicGuard language as a guideline towards an efficient construction.

4 Conclusion

We analysed the effects of the assumptions made in previous work [1, 2, 3, 4]. The goal was
to study how much our assumptions influence the resulting bounds [1, 2] and how close to the
true space requirements our resulting bounds are. We performed this analysis by defining a
more precise evaluation method than the ones introduced in [2]. This allowed us to compare the
evaluation of a coarse abstraction of a monitor specification to the evaluation of an abstraction

11



Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner

closely resembling the original specification. This analysis resulted in approximation ratios
dependent on the relationship between quantifiers in the monitor specification and provides us
with a method to classify efficient and inefficient monitor specifications. Thus, we can provide
guidelines for efficiently writing monitor specifications using the LogicGuard Language. It
is an open problem as to whether these are the only guidelines for writing memory efficient
specifications or if other properties influence memory as well. Also, we would like to investigate
possible optimizations based on this work which can be applied to existing specifications.
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A Proof of Thm. 2

First let us consider the case when b1 < a1. If a1 < 0 then |m|sc = |D(m)|sc = 0 and the
inequality obviously holds. By Def. 9, we violate the condition of the second union in LOW
and HIGH and Rem evaluates to empty. If a1 > 0, we have to wait till we reach the future
position a1 to evaluate the formula. Thus, |m|sc = |D(m)|sc = a1 and it is obvious that the
inequality holds. By Def. 9, we violate the condition of the second union in LOW and HIGH,
but Rem cannot be evaluated till a1 is reached. Thus, we see the theorem holds in the case of
b1 < a1.

When a1 < b1 the next case is when b2 < a2. If it is also the that b2 + b1 < a2 then we
are back to the previous case and it is trivial to show that the inequality holds. Essentially,
without going into details, the difference between m and D(m) does not show up in this case,
because a2 is the largest position in the second interval.

Otherwise, there exists some c ∈ [a1, b1] such that a2 ≤ c + b2. It is possible that c = a1.
We get the following two quantifier trees:

Q′f = (x, 0, 0, (y, x+ c, x+ b1, (z, x+ a2, y + b2, ∅)))

Q′D(f) = (x, 0, 0, (y, x+ c, x+ b1, (z, x+ a2, x+ b1 + b2, ∅))).

Now let us consider the case can b1 + b2 ≤ 0. Again, everything will be evaluated right away
and the inequality trivially holds. Simply, This implies the interval is negative. Next let us
consider when b1 ≤ 0, but 0 < b1 + b2. To remove trivial cases again, let us consider the first
position d ∈ [c, b1] such that 0 < d + b2. Again it is possible that d = a1. It is quite obvious
that E(b1 + b2, I(0, QT (m))) = ∅. Using this fact we can construct the storage complexities as
follows:

|m|sc =

a2−1∑
i=0

Ei(QT (m)) +

b2+d−1∑
i=a2

Ei(QT (m)) +

b1+b2−1∑
i=b2+d

Ei(QT (m))

|D(m)|sc =

a2−1∑
i=0

Ei(QT (D(m))) +

b2+d−1∑
i=a2

Ei(QT (D(m))) +

b1+b2−1∑
i=b2+d

Ei(QT (D(m)))

where Ei(qt) = |E(i, I(0, qt))|. Essentially, prior to b2 +d the two formulas evaluate identically.
Thus, the first two summations can be replaced by a constant c. Thus we derive,

|m|sc = c+

b1+b2−1∑
i=d

Ei(QT (m)) |D(m)|sc = c+

b1+b2−1∑
i=d

Ei(QT (D(m)))

Now we have to deal with the interval [b2 + d, b1 + b2 − 1]. It is easy to see that for i ∈
[b2 + d, b1 + b2 − 1],

Ei−1(QT (m)) = Ei(QT (D(m))) + 1 Ei−1(QT (D(m))) = Ei(QT (D(m))).

We know that |E(|d − 1|, I(0,QT (m)))| = |E(|d − 1|, I(0,QT (D(m))))| = b1 − d because
b1 + b2 − 1− (b2 + d) + 1 = (b1 − d). These equations result in the sums

b1−d∑
i=1

i =
(b1 − d) · (b1 − d+ 1)

2

|b1−d|∑
i=1

|b1 − d| = (b1 − d)2

13



Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner

respectively. Plugging everything into the inequality from the theorem statement we get

2 ·
(
c+

(b1 − d) · (b1 − d+ 1)

2

)
≥ c+ (b1 − d)2

which reduces to c
(b1−d) + 1 ≥ 0 implying that the inequality holds.

If b1 > 0 there are two cases to consider but we only consider the case b1 < d + b2. Prior
to position d+ b2 the evaluation is the same for m and D(m). Thus, the storage complexity of
the the two formulas can be written as follows:

|m|sc = c+

b1+b2−1∑
i=b2+d

Ei(QT (m)) |D(m)|sc = c+

b1+b2−1∑
i=b2+d

Ei(QT (D(m)))

as in the previous case. It is easy to see that this case behaves exactly like the previous case
because again for i ∈ [b2 + d, b1 + b2 − 1],

Ei−1(QT (m)) = Ei(QT (m)) + 1 Ei−1(QT (D(m))) = Ei(QT (D(m))).

Thus, we can use the same argument from the previous case to show that the inequality holds.

B Proof of Thm. 3

Again, everything that happens prior to position d + b2, as shown in Theorem 2 is pretty
much irrelevant and can be summed up as a constant c. We know by our assumption that
b1 >= d+b2 that for i ∈ [d+ b2, b1 − 1], |E(i−1, I(0,QT (m)))| = |E(i, I(0,QT (m)))|, However,
|E(i − 1, I(0,QT (D(m))))| + 1 = |E(i, I(0,QT (D(m))))|. Also we know that |E(d + b2 −
1, I(0,QT (m)))| = |E(d+ b2− 1, I(0,QT (D(m))))| = b2 because the first unrolling happens at
d. This results in the following two sums (we assume b1 = (k + b2 + d)):

b1−1∑
i=d+b2

b2 =

b1−1∑
i=d+b2

b2 = b2 · (b1 − b2 − d) = k · b2

b1−1∑
i=d+b2

b2 + i =

b1−1−d−b2∑
i=0

i =

b2 · (b1 − b2 − d) +
(b1 − b2 − d− 1) · (b1 − b2 − d)

2
= k · b2 +

(k − 1) · k
2

For i ∈ [b1, b1 + b2 − 1], we |E(i − 1, I(0,QT (m)))| = |E(i, I(0,QT (m)))| + 1 and |E(i −
1, I(0,QT (D(m))))| = |E(i, I(0,QT (D(m)))). This results in the following two sums ( we
assume b1 = (k + b2 + d)):

b1+b2−1∑
i=b1

|E(i, I(0,QT (m)))| =
b2∑
i=0

i =
(b2 + 1) · b2

2

b1+b2−1∑
i=b1

|E(i, I(0,QT (D(m))))| =
b1+b2−1∑

i=b1

(b1 − d) + 1 = b2 · (k + b2 + 1)

The following derivation shows that the theorem holds:
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O(k)

(
c+ k · b2 +

(b2 + 1) · b2
2

)
≥ c+ k · b2 +

(k − 1) · k
2

+ b2 · (k + b2 + 1)

O(k)c+O(k)k · b2 +O(k)((b2 + 1) · b2) ≥ c+ k · b2 +
(k − 1) · k

2
+ b2 · (k + b2 + 1)

O(k)c+O(k)k · b2 +O(k)((b2 + 1) · b2) ≥ (k − 1) · k
2

O(k2)b2 ≥
(k − 1) · k

2
=⇒ O(k2)b2

(k−1)·k
2

≥ 1 =⇒ O(1)b2 ≥ 1

Note that c, b1, and b2 are linear in k.
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