
Applying High Performance Computing
to Analyzing by Probabilistic Model Checking

Mobile Cellular Networks with Spectrum Renting∗

Wolfgang Schreiner and Nikolaj Popov
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner@risc.jku.at, Nikolaj.Popov@risc.jku.at

Tamás Bérczes and János Sztrik
Department of Informatics Systems and Networks, Faculty of Informatics

University of Debrecen, Debrecen, Hungary
sztrik.janos@inf.unideb.hu, berczes.tamas@inf.unideb.hu

Gábor Kusper
Eszterházy Károly College, Eger, Hungary

gkusper@aries.ektf.hu

July 25, 2013

Abstract

We report on the use of high performance computing in order to analyze with the proba-
bilistic model checker PRISM mobile cellular networks, in particular the system described
in the paper “A New Finite-Source Queueing Model for Mobile Cellular Networks Apply-
ing Spectrum Renting” by Tien v. Do et al. That paper proposes a new finite-source retrial
queueing model to consider spectrum renting in mobile cellular networks; numerical re-
sults are there produced with the MOSEL-2 tool. Our results show that the model can be
also appropriately described and analyzed in PRISM, but that modeling becomes compar-
atively more cumbersome due to the lack of zero-time/infinite-rate transitions in PRISM.
By using a massively parallel non-uniform memory architecture (NUMA), we are able to
considerably speed up the analysis of large scale models.

∗Supported by the European project FIRST — Future Internet Research, Services and Technology, Research of
Future Internet from Theory to Applications (TÁMOP-4.4.2.C) and by the project 85öu8 of the Stiftung Aktion
Österreich-Ungarn.

1

mailto:Wolfgang.Schreiner@risc.jku.at
mailto:Nikolaj.Popov@risc.jku.at
mailto:sztrik.janos@inf.unideb.hu
mailto:berczes.tamas@inf.unideb.hu
mailto:gkusper@aries.ektf.hu

Contents

1. Introduction 3

2. The Model 3

3. The Parallel Execution Framework 4

4. The Analysis 6

5. Conclusions 6

A. The PRISM Model and Properties 9

B. The Parallel Execution Script 13

C. The PRISM Java Configuration 14

D. The Parallel Execution Framework 14

E. The Data Combination Script 22

F. The Figure Generation Script 22

2

1. Introduction

We report in this paper on the use of high performance computing resources in order to ana-
lyze mobile cellular networks by probabilistic model checking. Our focus is the mobile cellular
network system that was introduced in [2] and analyzed there with the help of the performance
modeling tool MOSEL-2 [1]. In this model, a number of sources (cell phone subscribers) com-
pete for access to a number of servers (channels). Sources produce requests at rate λ which a
free server processes at rate µ . However, the number of available channels is not fixed: if the
number of free channels gets to small, the cell phone operator may rent additional frequency
blocks from another operator, partition these blocks into channels, and use the new channels for
its own subscribers; these blocks may be released, if sufficiently many channels have become
free again.

Our own work is based on the probabilistic model checker PRISM [3, 4] which is actively
developed and has been used for numerous purposes, among them the performance analysis of
computing systems. Based on a prior analysis of the various possibilities to analyze execution
times in PRISM [5], we have in [6] reported on initial results of modeling and analyzing the
system sketched above in PRISM. In this paper, we present a corrected model and show how
high performance computing resources, specifically a massively parallel non-uniform memory
architecture (NUMA), can be used to speed up the analysis of such models.

The remainder of this paper is structured as follows: in Section 2, we discuss the revised
PRISM model of the system; in Section 3, we present the parallel execution framework that
we have devised for performing the analysis; in Section 4 we show the data derived from the
analysis and the times required to produce them on a NUMA architecture; Section 5 presents
our conclusions and open issues for further work.

2. The Model

In [6], we have already discussed in great detail a PRISM model for the system presented in [2].
However, as was detected by one of the authors (Tamas Berczes) of [2], this PRISM model was
incorrect in the way it handled the release from a subscriber from the orbit; while the original
MOSEL model gave her immediate access to a channel (if a free channel was available) or placed
her in the queue (if no free channel was available), the PRISM model put her back into the set of
sources from which she had to issue a new request to get access to a channel. Furthermore, the
PRISM model handled the transition from the queue to the server by a transition with “infinite”
(very high) rate which was considered as awkward.

Both issues ultimately boiled down to the following problem: MOSEL supports zero-time
(infinite-rate) transitions from a state b to other states c1, . . . ,cn where the transitions are guarded
by appropriate conditions to proceed to the the desired target state. This state b may be the target
of several non-zero-rate transitions from other states a1, . . . ,am, i.e., after a certain delay from
any of these states the choice to proceed to c1, . . . ,cn can be made. In PRISM, however, there are
no such zero-time (infinite-rate) state transitions; a PRISM model mimicking a MOSEL model
has to include m · n transitions from each source state a1, . . . ,am to each target state c1, . . . ,cn

without the convenience of a common intermediate state b.

3

The first issue of our previous paper (the discrepancy between the MOSEL model and the
PRISM model) was the result of trying to avoid the combinatorial explosion of transitions arising
from the MOSEL model by using another state as such an intermediate state b, namely one where
an element from the orbit was placed into the queue; the second issue was the result of trying
to avoid the combinatorial explosion of transitions by mimicking a zero time MOSEL transition
by a corresponding PRISM transition with very high rate.

Appendix A presents an adapted PRISM model where the two issues have been corrected
at the price of a substantial increase in the number of transitions. This admittedly makes the
model somewhat less transparent than the original one; in particular, two transitions (“success2”,
and “retrial2”) are synchronized between three modules (rather than two) corresponding to a
simultaneous step performed by three components of the system.

We still leave the “infinite-rate” transition “interrupt”, which immediately returns from an
attempt to allocate a block, if it is detected that the allocation is not needed any more; as stated
by Tamas Berczes, this transition has also a somewhat dubious status in the MOSEL model and
should be probably replaced by a transition with a finite rate.

The other open questions raised in [6] could be satisfactorily answered:

• The question concerning the zero time transition in the Queue component was already dis-
cussed above. The question of a guard condition which was supposed to be missing was
based on a misunderstanding of the MOSEL code semantics, since a previous guard con-
dition in a zero-time transition makes such a condition in the MOSEL code unnecessary
(thanks to Tamas Berces for pointing this out).

• The PRISM bug which prevented model generation for K≥ 60 can be circumvented by the
command line option -nocompact respectively by deselecting the option “Use compact
schemes” in the graphical user interface (thanks to David Parker for pointing this out).

In the following section, we will discuss how our new PRISM model can be efficiently ana-
lyzed in a high performance computing environment.

3. The Parallel Execution Framework

The computing center of the University of Debrecen, whose project is funding the work pre-
sented in this paper, hosts a Silicon Graphics International (SGI) Altix ICE8400EX supercom-
puter with 256 Intel Xeon X5680 processors with 6 cores each; the system thus supports com-
putations with up to 1536 cores. The SGI Altix is a non-uniform memory (NUMA) architecture
where all cores have access to the same virtual shared memory; however the time for memory
access considerably varies with the physical location of the memory. A thread can access mem-
ory within the current node (each node holds 2 processors, i.e., 12 cores) very fast but access
to memory on another node requires communication via the internal Infiniband network and is
thus an order of magnitude slower. Access to that machine is given via the Open Grid Scheduler
batch queueing system.

However, since this machine was very heavily utilized, we performed the experiments re-
ported in this paper on another machine of very similar type, an SGI Altix UltraViolet 1000

4

supercomputer installed at the Johannes Kepler University Linz. This machine is equipped with
256 Intel Xeon E78837 processors with 8 cores each which are distributed among 128 nodes
with 2 processors (i.e. 16 cores) each; the system thus supports computations with up to 2048
cores. Access to this machine is possible via interactive login; by default every user may execute
threads on 4 processors with 32 cores and 256 GB memory.

The PRISM model checker is implemented in Java (with core libraries implemented in C);
we use for our experiments the Oracle Java Platform, specifically the most recent version Java
SE 7u25. Since this platform makes use of parallel threads for garbage collection, it is for good
performance crucial that all memory and all threads of the Java process are allocated on the same
node. For this purpose, we define the following script prism-java (see also Appendix C)
and set the environment variable PRISM_JAVA (which tells PRISM the location of the Java
executable) to the path of this script:

#!/bin/sh
t=‘date +%N‘
n=‘expr $t % 4‘
numactl --cpunodebind=+$n --membind=+$n java \

-XX:+UseParallelOldGC -XX:ParallelGCThreads=4 -XX:+AggressiveOpts $*

The script calculates a random number n ∈ [0,3] and applies the numactl command to bind
all threads and all memory of the Java program to the (n+1)-th processor which is available to
the current user. The additional Java option -XX:+UseNUMA to switch on a NUMA-enhanced
version of garbage collection can unfortunately not be used because it lets the Java Virtual Ma-
chine crash with a segmentation violation (an apparent bug in the Java platform).

In order to perform our experiments, we need to call PRISM numerous times with different
arguments. Rather than using some job scheduling system, we control the rate of command
execution by a C program parallel which we have written for this purpose. This program
(whose source code is given in Appendix D1) reads an arbitrary number of command lines from
the standard input, executes these commands by a given number of processes, and prints out
status information for every command whose execution has terminated.

We then can perform experiments by a shell script that echos all commands that have to
be performed for an experiment to the standard input of the parallel command; the script
terminates when all commands have been executed. Appendix B shows an example of such a
script whose core is essentially as follows:

(
for PROPERTY in Pblock mO mTO mB mQ mTQ mC mAS ; do
for RHO in $(seq 0.6 0.5 4.6) ; do
for T1 in $(seq 1 1 4) ; do
echo "prism Spectrum.prism Spectrum.props -prop $PROPERTY \
-const rho=$RHO,t1=$T1 \
-exportresults Results/$PROPERTY-$T1-$RHO \
> Logfiles/$PROPERTY-$T1-$RHO"

done
done

1The source code can be downloaded from http://www.risc.jku.at/people/schreine/parallel/
parallel.tgz.

5

http://www.risc.jku.at/people/schreine/parallel/parallel.tgz
http://www.risc.jku.at/people/schreine/parallel/parallel.tgz

P tp (s) Tp (s) Sp

1 1796 1808 1836 1813 1.0
2 937 940 954 944 1.9
4 491 498 524 504 3.6
8 267 294 299 287 6.3
16 155 158 169 161 11.3
32 120 140 144 135 13.4

Figure 1: Analysis Times and Speedups

done
) | parallel $PROC

This script executes PRISM with PROC processes to analyze every property PROPERTY for
all parameters RHO and T 1 and writes the result of every analysis to a separate file; we have
used this script to perform the analysis which is going to be presented in the following section.

4. The Analysis

With the help of the parallel execution framework presented in the previous section, we have
performed several experiments whose results are illustrated in Figure 2 (the same experiments
were performed in [6] for model size K = 60, here they are performed for K = 100). This
figure (which was created with the help of the scripts listed in Appendix E and F) corresponds to
Figure 3 of [2]; the results for Pblock, mO, mTO, mQ and mT Q seem identical, but the results
in mAS, mB, and mC are different, especially for small ρ: in particular, we derive a smaller
number of used channels (active calls, property mC) than reported in [2]. The reasons for this
discrepancy are still unclear.

As for the time needed for executing the analysis, Figure 1 lists the times (in seconds) for
performing all the 256 checks illustrated in Figure 2 with P processes, 1≤P≤ 32 (the maximum
number of processor cores available to us for this experiment). The analysis was performed
three times (for a slightly different model), leading to three values for the execution time tp

with average execution time Tp; the absolute speedup for this average is reported as Sp. We see
that significant speedups up to a maximum of 13.4 can be achieved; for P = 32, improvements
are still visible but will (for this experiment) certainly become marginal for a larger number of
processes.

5. Conclusions

We have shown in this report how a non-trivial mobile cellular network can be modeled and
analyzed in PRISM and how this analysis can be efficiently performed on a modern high perfor-
mance computing system of the NUMA type by shell scripting with the help of a small parallel
execution framework. One may wonder why we have described the overall framework in much

6

t1=1
t1=2
t1=3
t1=4

0.0001

0.001

0.01

0.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Pb
lo

ck

ρ

t1=1
t1=2
t1=3
t1=4

0.0001

0.001

0.01

0.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

m
Q

ρ

t1=1
t1=2
t1=3
t1=4

0.0001

0.001

0.01

0.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

m
O

ρ

t1=1
t1=2
t1=3
t1=4

0.0001

0.001

0.01

0.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

m
T

Q

ρ

t1=1
t1=2
t1=3
t1=4

0.0001

0.001

0.01

0.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

m
TO

ρ

t1=1
t1=2
t1=3
t1=4

5

6

7

8

9

10

0.5 1 1.5 2 2.5 3 3.5 4 4.5

m
A

S

ρ

t1=1
t1=2
t1=3
t1=4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5

m
B

ρ

t1=1
t1=2
t1=3
t1=4

15

20

25

30

35

40

45

50

55

0.5 1 1.5 2 2.5 3 3.5 4 4.5

m
C

ρ

Figure 2: Performance Measures

7

more detail (including all source and scripting code) than is usual for a scientific paper. The
reason is that, while the technicalities are in principle not very difficult, it takes considerable
time to have them properly elaborated; we would like to spare in the future others (including
ourselves) from this work and let them save valuable time for more fundamental research.

As for the contents of the analysis, we were able to correct some mistakes and problems
that arose in a previous presentation of the model. We realized that a crucial difference between
MOSEL-2 and PRISM (the existence respectively lack of zero-time/infinite-rate transitions) may
cause the PRISM model to become more unhandy than originally thought; more efforts have to
be invested to elaborate how to express in PRISM the desired models in a more economical way.

Furthermore, we are now able to reproduce some of the previously reported results but there
still remain some discrepancies to be resolved. Once this has been achieved we will focus on
further novel models for which no preceding modeling and analysis is available.

Acknowledgments

The author thanks David Parker for help with PRISM and in particular Tamas Berczes for help-
ing to correct the previous version of the PRISM model.

References

[1] K. Begain, G. Bolch, and Herold H. Practical Performance Modeling Application of the
MOSEL Language. Kluwer Academic Publisher, 2012.

[2] Tien v. Do, Patrick Wüchner, Tamas Berczes, Janos Sztrik, and Hermann de Meer. “A
New Finite-Source Queueing Model for Mobile Cellular Networks Applying Spectrum
Renting”. In: Asia-Pacific Journal of Operational Research (2013). To appear.

[3] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of Probabilistic
Real-time Systems”. In: Proc. 23rd International Conference on Computer Aided Verifi-
cation (CAV’11). Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806. Lecture Notes in
Computer Science. Springer, 2011, pp. 585–591.

[4] David A. Parker, ed. PRISM — Probabilistic Symbolic Model Checker. Department of
Computer Science, University of Oxford, UK. 2013. URL: http://www.prismmodelchecker.
org.

[5] Wolfgang Schreiner. Experiments with Measuring Time in PRISM 4.0. Technical Report.
Johannes Kepler University Linz, Austria: Research Institute for Symbolic Computation
(RISC), Mar. 2013. URL: http://www.risc.jku.at/publications/download/
risc_4684/main.pdf.

[6] Wolfgang Schreiner. Initial Results on Modeling in PRISM Mobile Cellular Networks with
Spectrum Renting. Technical Report. Johannes Kepler University Linz, Austria: Research
Institute for Symbolic Computation (RISC), Mar. 2013. URL: http://www.risc.
jku.at/publications/download/risc_4705/main.pdf.

8

http://www.prismmodelchecker.org
http://www.prismmodelchecker.org
http://www.risc.jku.at/publications/download/risc_4684/main.pdf
http://www.risc.jku.at/publications/download/risc_4684/main.pdf
http://www.risc.jku.at/publications/download/risc_4705/main.pdf
http://www.risc.jku.at/publications/download/risc_4705/main.pdf

A. The PRISM Model and Properties

// --
// Spectrum.prism
// A model for mobile cellular networks applying spectrum renting.
//
// The model is described in
//
// Tien v. Do, Patrick Wüchner, Tamas Berczes, Janos Sztrik,
// Hermann de Meer: A New Finite-Source Queueing Model for
// Mobile Cellular Networks Applying Spectrum Renting,
// September 2012.
//
// Use for fastest checking the "Sparse" engine and the "Gauss-Seidel" solver;
// for larger K, it may be necessary to increase the CUDD maximum memory size
// to more than 1 GB, otherwise model construction fails.
//
// Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
// Copyright (C) 2013, Research Institute for Symbolic Computation
// Johannes Kepler University, Linz, Austria, http://www.risc.jku.at
// --

// continuous time markov chain (ctmc) model
ctmc

// --
// system parameters
// --

// renting tresholds
const int t1; // block renting treshold
const int t2 = 6; // block release treshold

// bounds
const int K = 100; // population size
const int r = 8; // number of servers/channels per block
const int m = 5; // maximum number of blocks that can be rented
const int n = 2*r; // minimum number of servers/channels
const int M = n+r*m; // maximum number of simultaneous calls

// rates
const double rho; // normalized traffic intensity
const double mu = 1/53.22; // service rate
const double lambda = rho*n*mu/K; // call generation rate
const double nu = 1; // retrial rate
const double eta = 1/300; // rate of queueing users getting impatient
const double lam_r = 1/5; // block renting rate
const double nu_r = 1/7; // block rental retrial rate
const double mu_r = 1; // block release reate

// probabilities
const double p_b = 0.1; // prob. that user gives up (-> sources)
const double p_q = 0.5; // prob. that user presses button (-> queue)
const double p_o = 1-p_b-p_q; // prob. that user retries later (-> orbit)

9

const double p_io = 0.8; // prob. that impatient user retries later (-> orbit)
const double p_is = 1-p_io; // prob. that impantient user gives up (-> sources)
const double p_r = 0.8; // block rental success probability
const double p_f = 1-p_r; // block rental failure probability

// --
// system model
// note that the order of the modules influences model checking time
// heuristically, this seems to be the best one
// --

// number of currently available servers/channels
formula servAvail = n+blocks*r;

// blocks are rented at rate lam_r and released at rate mu_r
// renting is successful with probability p_r and fails with probability p_f
// retrying a failed attempt is performed at rate nu_r
module Blocks

blocks: [0..m] init 0;
trial: [0..1] init 0;
[success1] trial = 0 & servAvail-servers <= t1 & blocks < m & queue = 0 ->

lam_r*p_r: (blocks’ = blocks+1);
[success2] trial = 0 & servAvail-servers <= t1 & blocks < m ->

lam_r*p_r: (blocks’ = blocks+1);
[failure] trial = 0 & servAvail-servers <= t1 & blocks < m ->

lam_r*p_f: (trial’ = 1);
[retrial1] trial = 1 & servAvail-servers <= t1 & blocks < m & queue = 0 ->

nu_r*p_r : (trial’ = 0) & (blocks’ = blocks+1) ;
[retrial2] trial = 1 & servAvail-servers <= t1 & blocks < m ->

nu_r*p_r : (trial’ = 0) & (blocks’ = blocks+1) ;
[interrupt] trial = 1 & servAvail-servers > t1 ->

9999 : (trial’ = 0); // "immediately"
[release] servAvail-servers >= t2+r & blocks > 0 ->

mu_r : (blocks’ = blocks-1);
endmodule

// available servers accept requests
module Servers

servers: [0..M] init 0;
[sservers] servers < servAvail -> (servers’ = servers+1);
[oservers] servers < servAvail -> (servers’ = servers+1);
[success2] servers < M -> (servers’ = servers+1);
[retrial2] servers < M -> (servers’ = servers+1);
[ssources1] servers > 0 & queue = 0 ->

servers*mu : (servers’ = servers-1);
[ssources2] servers > 0 ->

servers*mu : true ;
endmodule

// generate requests at rate sources*lambda
module Sources

sources: [0..K] init K;
[sservers] sources > 0 ->

sources*lambda : (sources’ = sources-1);

10

[sorbit] sources > 0 & servers = servAvail ->
sources*lambda*p_o : (sources’ = sources-1);

[squeue] sources > 0 & servers = servAvail ->
sources*lambda*p_q : (sources’ = sources-1);

[ssources1] sources < K -> (sources’ = sources+1);
[ssources2] sources < K -> (sources’ = sources+1);
[qsources] sources < K -> (sources’ = sources+1);
[osources] sources < K -> (sources’ = sources+1);

endmodule

// if no server is available, requests are redirected
// with probability p_o to the orbit
formula orbit = K-(sources+servers+queue); // make variable virtual
module Orbit

// orbit: [0..K-n] init 0;
[sorbit] orbit < K-n -> true;
[qorbit] orbit < K-n -> true;
[oservers] orbit > 0 -> orbit*nu : true;
[oqueue] orbit > 0 & servers = servAvail -> orbit*nu*p_q : true;
[osources] orbit > 0 & servers = servAvail -> orbit*nu*p_b : true;

endmodule

// if no server is available, requests are redirected
// with probability p_q to the queue
module Queue

queue: [0..K-n] init 0;
[squeue] queue < K-n -> (queue’ = queue+1);
[oqueue] queue < K-n -> (queue’ = queue+1);
[qorbit] queue > 0 & servers = servAvail ->

queue*eta*p_io : (queue’ = queue-1);
[qsources] queue > 0 & servers = servAvail ->

queue*eta*p_is : (queue’ = queue-1);
[ssources2] queue > 0 -> (queue’ = queue-1);
[success2] queue > 0 -> (queue’ = queue-1);
[retrial2] queue > 0 -> (queue’ = queue-1);

endmodule

// --
// system rewards
// --

// mean number of active requests
rewards "mM"

true : max(0, orbit)+queue+servers;
endrewards

// mean number of calls in orbit
rewards "mO"

true : max(0, orbit);
endrewards

// mean number of calls in queue
rewards "mQ"

true: queue;

11

endrewards

// mean number of active calls
rewards "mC"

true: servers;
endrewards

// mean number of active blocks
rewards "mB"

true: blocks;
endrewards

// --
// Spectrum.props
// --

// mean number of active requests
"mM" : R{"mM"}=? [S] ;

// mean number of active sources
"mK" : K-"mM" ;

// mean throughput (served and unserved)
"m1" : "mK"*lambda ;

// mean number of active calls
"mC" : R{"mC"}=? [S] ;

// mean goodput
"m1good" : "mC"*mu ;

// probability that arriving customer gets served
"Pgood" : "m1good"/"m1" ;

// mean response time (served and unserved)
"mT" : "mM"/"m1" ;

// mean number of rented blocks
"mB" : R{"mB"}=? [S] ;

// mean number of available servers
"mS" : n+"mB"*r ;

// mean number of idle servers
"mAS" : "mS"-"mC" ;

// utilization of available servers
"Sutil" : "mC"/"mS" ;

// blocking probability
"Pblock" : S=? [servers = servAvail] ;

const int B;

12

// probability that B blocks are partially utilized
"Pb" : S=? [n+r*(B-1) < servers & servers <= n+r*B] ;

// mean queue length
"mQ" : R{"mQ"}=? [S] ;

// mean time spent in queue
"mTQ" : "mQ" / "m1" ;

// mean orbit length
"mO" : R{"mO"}=? [S] ;

// mean time spent in orbit
"mTO" : "mO" / "m1" ;

B. The Parallel Execution Script

#
Perform in parallel on PROC processors the PRISM analysis of
various properties with numerous parameter combinations.
#
#!/bin/sh

the number of processes to be used
PROC=32

the program locations
export PRISM_JAVA="prism-java"
PRISM="prism"
PARALLEL="./parallel"
TIME="time"

the input/output locations
MODELFILE="Spectrum.prism"
PROPSFILE="Spectrum.props"
RESULTDIR="Results"
LOGDIR="Logfiles"
LOGFILE="LOGFILE"

the checker settings
PRISMOPTIONS="-sparse -gaussseidel -nocompact"

(

the properties to be checked and the parameters for the experiment
for PROPERTY in Pblock mO mTO mB mQ mTQ mC mAS ; do

for RHO in $(seq 0.6 0.5 4.6) ; do
for T1 in $(seq 1 1 4) ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1 \
-exportresults $RESULTDIR/$PROPERTY-$T1-$RHO \

13

> $LOGDIR/$PROPERTY-$T1-$RHO"
done

done
done

execute the experiments in parallel with PROC processes
) | $TIME -p $PARALLEL $PROC > $LOGDIR/$LOGFILE 2>&1

C. The PRISM Java Configuration

#
prism-java
Execute on a Non-Uniform Memory Architecture (NUMA) all threads of a Java
program on the same random node with all memory allocated on that node.
#
Assumes that we have four nodes (processors) available.
#
#!/bin/sh
t=‘date +%N‘
n=‘expr $t % 4‘
numactl --cpunodebind=+$n --membind=+$n java \

-XX:+UseParallelOldGC -XX:ParallelGCThreads=4 -XX:+AggressiveOpts $*

D. The Parallel Execution Framework

// --
// parallel.c
// A program that reads command lines and executes them by a given number
// of processes in parallel.
//
// Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
// Copyright (C) 2013, Research Institute for Symbolic Computation (RISC)
// Johannes Kepler University, Linz, Austria, http://www.risc.jku.at
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// ---

#define _POSIX_C_SOURCE 199309L

#include <stdio.h>

14

#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <pthread.h>

// --
// the data
// --

// a task description to be processed by a thread
typedef struct
{

pthread_t thread; // the thread executing the task
pthread_mutex_t mutex; // the mutex associated to the thread
pthread_cond_t cond; // the condition associated to the thread
int counter; // a unique identifier for the task
char* command; // the command to be executed
uint64_t time; // the time for executing the command in ns
bool ready; // indication that thread is ready to accept task

} task_t;

// the result delivered by a task
static task_t *taskResult;
static pthread_mutex_t resultMutex;
static pthread_cond_t fullCond;
static pthread_cond_t emptyCond;

// a command to be executed
typedef struct command_t
{

char* line;
struct command_t* next;

} command_t;

// the queue of commands to be executed
static command_t* commandsHead;
static command_t* commandsTail;
static int commandsNumber;
static pthread_cond_t commandsCond;
static pthread_mutex_t commandsMutex;

// a buffer for reading lines of text
static char* buffer;
static int bufferLength;
static int bufferPos;

// true if eof encountered
static bool eof;

// initialize the data
static void initialize(void)
{

15

pthread_mutex_init(&resultMutex, NULL);
pthread_cond_init(&fullCond, NULL);
pthread_cond_init(&emptyCond, NULL);
commandsHead = NULL;
commandsTail = NULL;
commandsNumber = 0;
pthread_cond_init(&commandsCond, NULL);
pthread_mutex_init(&commandsMutex, NULL);
bufferLength = 512;
bufferPos = 0;
buffer = (char*)malloc(bufferLength*sizeof(char));
eof = false;

}

// finalize the data
static void finalize()
{

free(buffer);
}

// --
// the main program
// --

static void* read(void *arg);
static void* execute(void *command);
static char* getLine(void);
static uint64_t timespecDiff(struct timespec *timeA_p,

struct timespec *timeB_p);

static void usage(void)
{

printf(
"Usage: parallel <PROC>\n"
" PROC ... the number of parallel processes (>=1)\n\n"
" This command reads from its standard input (also from a pipe)\n"
" arbitrarily (also infinitely) many command lines and executes\n"
" them by the denoted number of processes in parallel.\n\n"
" Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>\n"
" Copyright (C) 2013, Research Institute for Symbolic Computation (RISC)\n"
" Johannes Kepler University, Linz, Austria, http://www.risc.jku.at\n\n"
" This program is free software under the terms of the\n"
" GNU General Public License (GPL) version 3 or later.\n\n"
" The source code of this program can be downloaded from\n"
" http://www.risc.jku.at/people/schreine/parallel/parallel.tgz\n");

exit(-1);
}

// the main function which manages the tasks
int main(int argc, char** argv)
{

// process arguments
if (argc != 2) usage();
int taskLength = atoi(argv[1]);

16

if (taskLength < 1) usage();

// initialize data
initialize();

// create thread for handling input (terminates if there is no more input)
pthread_t rthread;
int result = pthread_create(&rthread, NULL, read, NULL);
if (result != 0)
{

printf("could not create read thread (%d)\n", result);
exit(-1);

}

// create worker threads
task_t* tasks = (task_t*)malloc(taskLength*sizeof(task_t));
int taskNumber = 0;
int taskCounter = 0;
int openNumber = 0;
bool done = false;
int i;
for (i=0; i<taskLength; i++)
{

pthread_mutex_init(&tasks[i].mutex, NULL);
pthread_cond_init(&tasks[i].cond, NULL);
char* command = getLine();
done = command == NULL;
if (done) break;
tasks[i].counter = taskCounter;
tasks[i].command = command;
tasks[i].ready = false;
taskCounter++; taskNumber++; openNumber++;
result = pthread_create(&tasks[i].thread, NULL, execute, tasks+i);
if (result != 0)
{
printf("could not create worker thread (%d)\n", result);
exit(-1);

}
}

// process tasks
while (openNumber > 0)
{

// wait for any result
pthread_mutex_lock(&resultMutex);
while (taskResult == NULL)
pthread_cond_wait(&fullCond, &resultMutex);

task_t* tresult = taskResult;
taskResult = NULL;
pthread_cond_signal(&emptyCond);
pthread_mutex_unlock(&resultMutex);
openNumber--;

// print result information

17

printf("\n");
printf("task: %d\n", tresult->counter);
printf("command: %s\n", tresult->command);
printf("time (ms): %lu\n", tresult->time/1000000);
printf("executing: %d\n", openNumber);
printf("queued: %d\n", commandsNumber);
free(tresult->command);
tresult->command = NULL;

// get new task
if (done) continue;
char* command = getLine();
done = command == NULL;
if (done) continue;

// let thread execute the new task
pthread_mutex_lock(&tresult->mutex);
tresult->counter = taskCounter;
tresult->command = command;
tresult->ready = false;
pthread_cond_signal(&tresult->cond);
pthread_mutex_unlock(&tresult->mutex);
taskCounter++; openNumber++;

}

// terminate threads
for (i=0; i<taskNumber; i++)
{

result = pthread_cancel(tasks[i].thread);
if (result != 0)
{
printf("could not cancel thread (%d)\n", result);
exit(-1);

}
result = pthread_join(tasks[i].thread, NULL);
if (result != 0)
{
printf("could not join canceled thread (%d)\n", result);
exit(-1);

}
}
result = pthread_join(rthread, NULL);
if (result != 0)
{

printf("could not join reader thread (%d)\n", result);
exit(-1);

}

// finalize data
finalize();
return 0;

}

// forever execute assigned commands

18

static void* execute(void *arg)
{

task_t* task = (task_t*)arg;
while(true)
{

// execute the assigned command
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
int result = system(task->command);
clock_gettime(CLOCK_MONOTONIC, &end);
task->time = timespecDiff(&end, &start);
if (result == -1)
{
printf("could not execute: %s\n", task->command);
exit(-1);

}

// deliver result
pthread_mutex_lock(&resultMutex);
while (taskResult != NULL)
pthread_cond_wait(&emptyCond, &resultMutex);

taskResult = task;
pthread_cond_signal(&fullCond);
pthread_mutex_unlock(&resultMutex);

// get next assignment
pthread_mutex_lock(&task->mutex);
task->ready = true;
do
pthread_cond_wait(&task->cond, &task->mutex);

while (task->ready);
pthread_mutex_unlock(&task->mutex);

}
}

// --
// time handling
// --

// compute the difference of times in nanoseconds
static uint64_t timespecDiff(struct timespec *timeA_p, struct timespec *timeB_p)
{

return (timeA_p->tv_sec * 1000000000 + timeA_p->tv_nsec) -
(timeB_p->tv_sec * 1000000000 + timeB_p->tv_nsec);

}

// --
// input handling
// --

static char* readLine(void);
static void addLine(char* line);
static void noMoreLine(void);

19

// read input into command buffer
static void* read(void *arg __attribute__((unused)))
{

while (true)
{

char* line = readLine();
if (line == NULL) break;
addLine(line);

}
noMoreLine();
return NULL;

}

// add line to commands queue
static void addLine(char* line)
{

command_t* command = (command_t*)malloc(sizeof(command_t));
command->line = line;
command->next = NULL;
pthread_mutex_lock(&commandsMutex);
if (commandsTail == NULL)

commandsHead = command;
else

commandsTail->next = command;
commandsTail = command;
commandsNumber++;
pthread_cond_signal(&commandsCond);
pthread_mutex_unlock(&commandsMutex);

}

// indicate that there is no more line
static void noMoreLine(void)
{

pthread_mutex_lock(&commandsMutex);
pthread_cond_signal(&commandsCond);
pthread_mutex_unlock(&commandsMutex);

}

// get line from commands array
static char* getLine(void)
{

pthread_mutex_lock(&commandsMutex);
while (commandsHead == NULL)
{

if (eof)
{
pthread_mutex_unlock(&commandsMutex);
return NULL;

}
pthread_cond_wait(&commandsCond, &commandsMutex);

}
char* result = commandsHead->line;
command_t* head = commandsHead;
commandsHead = commandsHead->next;

20

free(head);
if (commandsHead == NULL) commandsTail = NULL;
commandsNumber--;
pthread_mutex_unlock(&commandsMutex);
return result;

}

static void addChar(char ch);

// read line from standard input and return it
static char* readLine(void)
{

if (eof) return NULL;
while (true)
{

int ch = getchar();
if (ch == EOF)
{
eof = true;
if (bufferPos == 0) return NULL;
break;

}
if (ch == ’\n’) break;
addChar((char)ch);

}
char *line = (char*)malloc((bufferPos+1)*sizeof(char));
memcpy(line, buffer, bufferPos*sizeof(char));
line[bufferPos] = 0;
bufferPos = 0;
return line;

}

// add character to buffer
static void addChar(char ch)
{

if (bufferPos == bufferLength)
{

int bufferLength0 = 2*bufferLength;
char *buffer0 = (char*)malloc(bufferLength0*sizeof(char));
memcpy(buffer0, buffer, bufferLength*sizeof(char));
free(buffer);
buffer = buffer0;
bufferLength = bufferLength0;

}
buffer[bufferPos] = ch;
bufferPos++;

}

// --
// end of file
// --

21

E. The Data Combination Script

#!/bin/sh

the input/output locations
RESULTDIR="Results"

combine the individual results for each property
for PROPERTY in Pblock mO mTO mB mQ mTQ mC mAS ; do

rm -f $RESULTDIR/$PROPERTY
for RHO in $(seq 0.6 0.5 4.6) ; do

echo -n "$RHO " >> $RESULTDIR/$PROPERTY
for T1 in $(seq 1 1 4) ; do
VALUE=‘tail -1 $RESULTDIR/$PROPERTY-$T1-$RHO‘
echo -n "$VALUE " >> $RESULTDIR/$PROPERTY

done
echo >> $RESULTDIR/$PROPERTY

done
done

F. The Figure Generation Script

file locations
PROPERTY="Pblock"
RESULTDIR="./Results"
FIGUREDIR="./Figures"

for PROPERTY in Pblock mO mTO mQ mTQ ; do

gnuplot << EOF

figure parameters
set terminal fig textspecial
set output "$FIGUREDIR/$PROPERTY.fig"
set xlabel ’ρ’
set ylabel "$PROPERTY"
set logscale y
set tics out
set xtics (0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5)
set ytics (0.0001,0.001,0.01,0.1)
set key right bottom Left reverse sample 0

plotting command
plot [0.5:4.7] [0.0001:0.1]\

"$RESULTDIR/$PROPERTY" using (\$1):(\$2) title "t1=1" with linesp ls 1, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$3) title "t1=2" with linesp ls 2, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$4) title "t1=3" with linesp ls 3, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$5) title "t1=4" with linesp ls 4

EOF

fig2dev -m 0.5 -L pdftex -p $PROPERTY $FIGUREDIR/$PROPERTY.fig $FIGUREDIR/$PROPERTY.pdf

22

fig2dev -m 0.5 -L pdftex_t -p $PROPERTY $FIGUREDIR/$PROPERTY.fig $FIGUREDIR/$PROPERTY.pdf_t

done

PROPERTY=mB

gnuplot << EOF

figure parameters
set terminal fig textspecial
set output "$FIGUREDIR/$PROPERTY.fig"
set xlabel ’ρ’
set ylabel "$PROPERTY"
set tics out
set xtics (0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5)
set ytics (0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5)
set key right bottom Left reverse sample 0

plotting command
plot [0.5:4.7] [0.5:4.7]\

"$RESULTDIR/$PROPERTY" using (\$1):(\$2) title "t1=1" with linesp ls 1, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$3) title "t1=2" with linesp ls 2, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$4) title "t1=3" with linesp ls 3, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$5) title "t1=4" with linesp ls 4

EOF

fig2dev -m 0.5 -L pdftex -p $PROPERTY $FIGUREDIR/$PROPERTY.fig $FIGUREDIR/$PROPERTY.pdf
fig2dev -m 0.5 -L pdftex_t -p $PROPERTY $FIGUREDIR/$PROPERTY.fig $FIGUREDIR/$PROPERTY.pdf_t

PROPERTY=mAS

gnuplot << EOF

figure parameters
set terminal fig textspecial
set output "$FIGUREDIR/$PROPERTY.fig"
set xlabel ’ρ’
set ylabel "$PROPERTY"
set tics out
set xtics (0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5)
set key right bottom Left reverse sample 0

plotting command
plot [0.5:4.7] [5:10]\

"$RESULTDIR/$PROPERTY" using (\$1):(\$2) title "t1=1" with linesp ls 1, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$3) title "t1=2" with linesp ls 2, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$4) title "t1=3" with linesp ls 3, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$5) title "t1=4" with linesp ls 4

EOF

fig2dev -m 0.5 -L pdftex -p $PROPERTY $FIGUREDIR/$PROPERTY.fig $FIGUREDIR/$PROPERTY.pdf
fig2dev -m 0.5 -L pdftex_t -p $PROPERTY $FIGUREDIR/$PROPERTY.fig $FIGUREDIR/$PROPERTY.pdf_t

23

PROPERTY=mC

gnuplot << EOF

figure parameters
set terminal fig textspecial
set output "$FIGUREDIR/$PROPERTY.fig"
set xlabel ’ρ’
set ylabel "$PROPERTY"
set tics out
set xtics (0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5)
set key right bottom Left reverse sample 0

plotting command
plot [0.5:4.7] [15:55]\

"$RESULTDIR/$PROPERTY" using (\$1):(\$2) title "t1=1" with linesp ls 1, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$3) title "t1=2" with linesp ls 2, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$4) title "t1=3" with linesp ls 3, \
"$RESULTDIR/$PROPERTY" using (\$1):(\$5) title "t1=4" with linesp ls 4

EOF

fig2dev -m 0.5 -L pdftex -p $PROPERTY $FIGUREDIR/$PROPERTY.fig $FIGUREDIR/$PROPERTY.pdf
fig2dev -m 0.5 -L pdftex_t -p $PROPERTY $FIGUREDIR/$PROPERTY.fig $FIGUREDIR/$PROPERTY.pdf_t

24

	Introduction
	The Model
	The Parallel Execution Framework
	The Analysis
	Conclusions
	The PRISM Model and Properties
	The Parallel Execution Script
	The PRISM Java Configuration
	The Parallel Execution Framework
	The Data Combination Script
	The Figure Generation Script

