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Abstract

We report on the use of HPC resources for the performance analysis of the mobile cel-
lular network model described in “A New Finite-Source Queueing Model for Mobile Cel-
lular Networks Applying Spectrum Renting” by Tien v. Do et al. That paper proposed a
new finite-source retrial queueing model with spectrum renting that was analyzed with the
MOSEL-2 tool. Our results show how this model can be also appropriately described and
analyzed with the probabilistic model checker PRISM, although at some cost considering
the formulation of the model; in particular, we are able to accurately reproduce most of the
analytical results presented in that paper and thus validate the previously presented results.
However, we also outline some discrepancies with may hint to deficiencies of the origi-
nal analysis. Moreover, by applying a parallel computing framework developed for this
purpose, we are able to considerably speed up studies performed with the PRISM tool.

∗Supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. This project has been supported by the Euro-
pean Union, co-financed by the European Social Fund.
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1. Introduction

We report in this paper on the application of high performance computing (HPC) resources for
the performance analysis of mobile networks. We use the mobile cellular network system that
was introduced in [2] where a number of sources (cell phone subscribers) compete for access
to a number of servers (channels). Sources produce requests at rate λ ; a free server processes
these requests at rate µ . However, the number of available channels varies: if it gets to small, the
cell phone operator may rent additional frequency blocks from another operator, partition these
blocks into channels, and add these new channels to its own pool. If sufficiently many channels
have become free again, the rented blocks may be released.

In [2], this model was originally analyzed with the help of the performance modeling tool
MOSEL-2 [1] which is however not supported any more. Our own results are derived with
the help of the probabilistic model checker PRISM [3, 4] which is actively developed and has
been used for numerous purposes, among them the performance analysis of computing systems.
In [5], we have developed an initial version of the model in PRISM which was subsequently
refined and corrected in [6]. Furthermore, we have in [6] described a parallel computing frame-
work that we applied to analyze the PRISM model with the use of HPC resources, i.e., we have
speed up the analysis of our model by running experiments on a massively parallel non-uniform
memory architecture (NUMA).

However, in [5, 6] only a small number of experiments were performed, some of which de-
rived different results than were originally reported in [2]. This paper complements our work
by presenting all experiments that were also described in [2] and illustrating for the whole set
of experiments the speedup that can be achieved by their execution in our parallel computing
framework.

The remainder of this paper is structured as follows: to make this paper self-reliant, we sum-
marize in Section 2 the previously introduced model and the parallel execution framework. In
Section 3, we present our new results and contrast them to those reported in [2]. Section 4
presents our conclusions and open issues for further work.

This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Ex-
cellence Program – Elaborating and operating an inland student and researcher personal support
system”. The project was subsidized by the European Union and co-financed by the European
Social Fund.

2. The Model

Appendix B presents the PRISM model that was introduced in [5]: it applies the concept of
spectrum renting for mobile cellular networks introduced in [2]. However, that paper also shows
results for a corresponding model (that is not described in detail there) without spectrum renting.
In order to repeat the corresponding experiments, we give in Appendix A a version of our PRISM
model from which spectrum renting has been stripped but which is otherwise identical.

The experiments of this paper were performed with the execution script listed in Appendix C;
it applies the parallel execution framework (command parallel) introduced in [5]. The ex-
periments were performed on an SGI Altix UltraViolet 1000 supercomputer installed at the
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P tp (s) Tp (s) Sp

1 3813 3788 3792 3798 1.0
2 1949 1950 1944 1948 1.9
4 1028 1025 1018 1024 3.7
8 559 561 560 560 6.8
16 334 328 329 330 11.5
32 252 252 244 249 15.3
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Figure 1: Execution Times and Speedups

Johannes Kepler University Linz. This machine is equipped with 256 Intel Xeon E78837 pro-
cessors with 8 cores each which are distributed among 128 nodes with 2 processors (i.e. 16
cores) each; the system thus supports computations with up to 2048 cores. Access to this ma-
chine is possible via interactive login; by default every user may execute threads on 4 processors
with 32 cores and 256 GB memory. Since PRISM is implemented in Java, we applied the ex-
ecution script prism-java described in [5] which calls java with memory allocation and
optimization optimized for execution on a NUMA system.

3. The Analysis

With the help of our parallel execution framework, we have performed for our PRISM model all
the experiments that were also reported in [2]; the results are depicted in Figures 2 to 10 (with
references to the corresponding figures presented in [2]). The experiments shown in Figure 2
(corresponding to Figure 2 in [2]) are performed in the model without spectrum renting (see
Appendix A); all other ones are performed in the model with spectrum renting (see Appendix B);
in the later case appropriate variants of the model were used as required by the different sets of
parameters with varying respectively fixed values.

From the 29 experiments (comprising in total 920 PRISM runs to produce the various data
points of each experiment), 25 show results that are virtually identical to those presented in [2].
This correspondence strongly validates both the original MOSEL-2 model and our PRISM
model. However, there are also four notable discrepancies:

• As already stated in [6], in Figure 3 (corresponding to Figure 3 of [2]) the two bottom dia-
grams show in our model (especially for low traffic intensity ρ0) a lower mean number of
rented blocks mB and a lower mean number of busy channels mC than originally reported
(while the overall shape of the curves are similar).

• Figures 9 and 10 (corresponding to Figures 9 and 10 of [2]) reporting on the impact of
retrials on the average profit rate (APR) and on the average number of busy channels (mC)
show for the first parameter set ρ0 = 0.4, pio = 0.8 the same results as originally reported;
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Figure 2: Performance Measures When There Is No Renting (cf. Fig. 2 from [2])

however for the two other parameter sets our experiments report significantly lower fig-
ures, i.e., the three lines are much farther apart than in [2].

Since in all other cases the results are identical to the other reports and we have both carefully
checked our model and the deviating experiments, the possibility remains that the errors are
in the originally reported experiments. We have therefore asked one of the authors of [2] to
re-check these experiments.

As for the time needed for executing the analysis, Figure 1 lists the times (in seconds) for
performing all the 920 PRISM runs illustrated in Figures 2–10 with P processes, 1 ≤ P ≤ 32
(the maximum number of processor cores available to us for this experiment). The analysis
was performed five times from which we have excluded the fastest and the slowest run. This
leads to three values for the execution time tp with average execution time Tp; the speedup for
this average is reported as Sp. We see that significant speedups up to a maximum of 15.3 can
be achieved; for P = 32, improvements are still visible but will (for this experiment) certainly
become marginal for a larger number of processes.
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Figure 3: Performance Measures for t2 = 6 (cf. Fig. 3 from [2])
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Figure 4: Further Performance Measures for t2 = 6 (cf. Fig. 4 from [2])
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Figure 5: Performance Measures for ρ0 = 0.6 (cf. Fig. 5 from [2])
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Figure 6: APR vs. t1 and d for ρ0 = 0.6 (cf. Fig. 6 from [2])
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Figure 7: APR vs. t1 and d for ρ0 = 4.6 (cf. Fig. 7 from [2])
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Figure 8: APR vs. ρ0 and d (cf. Fig. 8 from [2])
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Figure 9: Impact of retrials on APR (cf. Fig. 9 from [2])
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Figure 10: Impact of retrials on the average number of busy channels (cf. Fig. 9 from [2])

4. Conclusions

We have shown in this report how the PRISM analysis of a non-trivial mobile cellular network
can be efficiently performed on a modern high performance computing system and how by this
analysis the results performed with the older (and not any more supported) MOSEL-2 tool can be
essentially validated. However, as already reported in [6], a crucial difference between MOSEL-
2 and PRISM (the existence respectively lack of zero-time/infinite-rate transitions) makes the
PRISM model somewhat more unhandy than originally thought; more efforts are needed in in
PRISM to express the desired models in an economical way.

Furthermore, while most of the originally reported results (25 of 29 experiments) could be
validated, still some discrepancies (in 4 experiments) have to be resolved. While the error may
well be in the PRISM model or its analysis, it might as well be true that there are errors in the
originally reported results (we have asked one author of the original paper for a re-examination
of these experiments). This demonstrates that the performance analysis of computing systems
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by analyzing system models alone cannot give full confidence in the correctness of the results:
further verification (by comparison against measurements of the actual system) or validation (by
comparison with the analysis of another model by another tool) is highly recommended.
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A. The PRISM Model without Spectrum Renting

// ------------------------------------------------------------------
// Spectrum0.prism
// A model for mobile cellular networks.
//
// The model serves as the comparison basis for the improvements
// introduced by the application of "spectrum renting" in
//
// Tien v. Do, Patrick Wüchner, Tamas Berczes, Janos Sztrik,
// Hermann de Meer: A New Finite-Source Queueing Model for
// Mobile Cellular Networks Applying Spectrum Renting,
// September 2012.
//
// Use for fastest checking the "Sparse" engine and the "Gauss-Seidel" solver
// and switch off "use compact schemes".
//
// Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
// Copyright (C) 2013, Research Institute for Symbolic Computation
// Johannes Kepler University, Linz, Austria, http://www.risc.jku.at
// ------------------------------------------------------------------

// continuous time markov chain (ctmc) model
ctmc

// ------------------------------------------------------------------
// system parameters
// ------------------------------------------------------------------

// bounds
const int K = 100; // population size
const int n; // number of servers/channels

// rates
const double rho; // normalized traffic intensity
const double mu = 1/53.22; // service rate
const double lambda = rho*n*mu/K; // call generation rate
const double nu = 1; // retrial rate
const double eta = 1/300; // rate of queueing users getting impatient

// probabilities
const double p_b = 0.1; // prob. that user gives up (-> sources)
const double p_q = 0.5; // prob. that user presses button (-> queue)
const double p_o = 1-p_b-p_q; // prob. that user retries later (-> orbit)
const double p_io = 0.8; // prob. that impatient user retries later (-> orbit)
const double p_is = 1-p_io; // prob. that impantient user gives up (-> sources)

// ------------------------------------------------------------------
// system model
// note that the order of the modules influences model checking time
// heuristically, this seems to be the best one
// ------------------------------------------------------------------

// available servers accept requests

12



module Servers
servers: [0..n] init 0;
[sservers] servers < n -> (servers’ = servers+1);
[oservers] servers < n -> (servers’ = servers+1);
[ssources1] servers > 0 & queue = 0 ->

servers*mu : (servers’ = servers-1);
[ssources2] servers > 0 ->

servers*mu : true ;
endmodule

// generate requests at rate sources*lambda
module Sources

sources: [0..K] init K;
[sservers] sources > 0 ->

sources*lambda : (sources’ = sources-1);
[sorbit] sources > 0 & servers = n ->

sources*lambda*p_o : (sources’ = sources-1);
[squeue] sources > 0 & servers = n ->

sources*lambda*p_q : (sources’ = sources-1);
[ssources1] sources < K -> (sources’ = sources+1);
[ssources2] sources < K -> (sources’ = sources+1);
[qsources] sources < K -> (sources’ = sources+1);
[osources] sources < K -> (sources’ = sources+1);

endmodule

// if no server is available, requests are redirected
// with probability p_o to the orbit
formula orbit = K-(sources+servers+queue); // make variable virtual
module Orbit

// orbit: [0..K-n] init 0;
[sorbit] orbit < K-n -> true;
[qorbit] orbit < K-n -> true;
[oservers] orbit > 0 -> orbit*nu : true;
[oqueue] orbit > 0 & servers = n -> orbit*nu*p_q : true;
[osources] orbit > 0 & servers = n -> orbit*nu*p_b : true;

endmodule

// if no server is available, requests are redirected
// with probability p_q to the queue
module Queue

queue: [0..K-n] init 0;
[squeue] queue < K-n -> (queue’ = queue+1);
[oqueue] queue < K-n -> (queue’ = queue+1);
[qorbit] queue > 0 & servers = n ->

queue*eta*p_io : (queue’ = queue-1);
[qsources] queue > 0 & servers = n ->

queue*eta*p_is : (queue’ = queue-1);
[ssources2] queue > 0 -> (queue’ = queue-1);

endmodule

// ------------------------------------------------------------------
// system rewards
// ------------------------------------------------------------------

13



// mean number of active requests
rewards "mM"

true : max(0, orbit)+queue+servers;
endrewards

// mean number of calls in orbit
rewards "mO"

true : max(0, orbit);
endrewards

// mean number of calls in queue
rewards "mQ"

true: queue;
endrewards

// mean number of active calls
rewards "mC"

true: servers;
endrewards

// ------------------------------------------------------------------
// Spectrum0.props
// ------------------------------------------------------------------

// mean number of active requests
"mM" : R{"mM"}=? [ S ] ;

// mean number of active sources
"mK" : K-"mM" ;

// mean throughput (served and unserved)
"m1" : "mK"*lambda ;

// mean number of active calls
"mC" : R{"mC"}=? [ S ] ;

// mean goodput
"m1good" : "mC"*mu ;

// probability that arriving customer gets served
"Pgood" : "m1good"/"m1" ;

// mean response time (served and unserved)
"mT" : "mM"/"m1" ;

// mean number of idle servers
"mAS" : n-"mC" ;

// utilization of available servers
"Sutil" : "mC"/n ;

// blocking probability
"Pblock" : S=? [ servers = n ] ;

14



// mean queue length
"mQ" : R{"mQ"}=? [ S ] ;

// mean time spent in queue
"mTQ" : "mQ" / "m1" ;

// mean orbit length
"mO" : R{"mO"}=? [ S ] ;

// mean time spent in orbit
"mTO" : "mO" / "m1" ;

B. The PRISM Model with Spectrum Renting

// ------------------------------------------------------------------
// Spectrum.prism
// A model for mobile cellular networks applying spectrum renting.
//
// The model is described in
//
// Tien v. Do, Patrick Wüchner, Tamas Berczes, Janos Sztrik,
// Hermann de Meer: A New Finite-Source Queueing Model for
// Mobile Cellular Networks Applying Spectrum Renting,
// September 2012.
//
// Use for fastest checking the "Sparse" engine and the "Gauss-Seidel" solver
// and switch off "use compact schemes".
//
// Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
// Copyright (C) 2013, Research Institute for Symbolic Computation
// Johannes Kepler University, Linz, Austria, http://www.risc.jku.at
// ------------------------------------------------------------------

// continuous time markov chain (ctmc) model
ctmc

// ------------------------------------------------------------------
// system parameters
// ------------------------------------------------------------------

// renting tresholds
const int t1; // block renting treshold
const int t2 = 6; // block release treshold

// bounds
const int K = 100; // population size
const int r = 8; // number of servers/channels per block
const int m = 5; // maximum number of blocks that can be rented
const int n = 2*r; // minimum number of servers/channels
const int M = n+r*m; // maximum number of simultaneous calls
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// rates
const double rho; // normalized traffic intensity
const double mu = 1/53.22; // service rate
const double lambda = rho*n*mu/K; // call generation rate
const double nu = 1; // retrial rate
const double eta = 1/300; // rate of queueing users getting impatient
const double lam_r = 1/5; // block renting rate
const double nu_r = 1/7; // block rental retrial rate
const double mu_r = 1; // block release reate

// probabilities
const double p_b = 0.1; // prob. that user gives up (-> sources)
const double p_q = 0.5; // prob. that user presses button (-> queue)
const double p_o = 1-p_b-p_q; // prob. that user retries later (-> orbit)
const double p_io = 0.8; // prob. that impatient user retries later (-> orbit)
const double p_is = 1-p_io; // prob. that impantient user gives up (-> sources)
const double p_r = 0.8; // block rental success probability
const double p_f = 1-p_r; // block rental failure probability

// ------------------------------------------------------------------
// system model
// note that the order of the modules influences model checking time
// heuristically, this seems to be the best one
// ------------------------------------------------------------------

// number of currently available servers/channels
formula servAvail = n+blocks*r;

// blocks are rented at rate lam_r and released at rate mu_r
// renting is successful with probability p_r and fails with probability p_f
// retrying a failed attempt is performed at rate nu_r
module Blocks

blocks: [0..m] init 0;
trial: [0..1] init 0;
[success1] trial = 0 & servAvail-servers <= t1 & blocks < m & queue = 0 ->

lam_r*p_r: (blocks’ = blocks+1);
[success2] trial = 0 & servAvail-servers <= t1 & blocks < m ->

lam_r*p_r: (blocks’ = blocks+1);
[failure] trial = 0 & servAvail-servers <= t1 & blocks < m ->

lam_r*p_f: (trial’ = 1);
[retrial1] trial = 1 & servAvail-servers <= t1 & blocks < m & queue = 0 ->

nu_r*p_r : (trial’ = 0) & (blocks’ = blocks+1) ;
[retrial2] trial = 1 & servAvail-servers <= t1 & blocks < m ->

nu_r*p_r : (trial’ = 0) & (blocks’ = blocks+1) ;
[interrupt] trial = 1 & servAvail-servers > t1 ->

9999 : (trial’ = 0); // "immediately"
[release] servAvail-servers >= t2+r & blocks > 0 ->

mu_r : (blocks’ = blocks-1);
endmodule

// available servers accept requests
module Servers

servers: [0..M] init 0;
[sservers] servers < servAvail -> (servers’ = servers+1);
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[oservers] servers < servAvail -> (servers’ = servers+1);
[success2] servers < M -> (servers’ = servers+1);
[retrial2] servers < M -> (servers’ = servers+1);
[ssources1] servers > 0 & queue = 0 ->

servers*mu : (servers’ = servers-1);
[ssources2] servers > 0 ->

servers*mu : true ;
endmodule

// generate requests at rate sources*lambda
module Sources

sources: [0..K] init K;
[sservers] sources > 0 ->

sources*lambda : (sources’ = sources-1);
[sorbit] sources > 0 & servers = servAvail ->

sources*lambda*p_o : (sources’ = sources-1);
[squeue] sources > 0 & servers = servAvail ->

sources*lambda*p_q : (sources’ = sources-1);
[ssources1] sources < K -> (sources’ = sources+1);
[ssources2] sources < K -> (sources’ = sources+1);
[qsources] sources < K -> (sources’ = sources+1);
[osources] sources < K -> (sources’ = sources+1);

endmodule

// if no server is available, requests are redirected
// with probability p_o to the orbit
formula orbit = K-(sources+servers+queue); // make variable virtual
module Orbit

// orbit: [0..K-n] init 0;
[sorbit] orbit < K-n -> true;
[qorbit] orbit < K-n -> true;
[oservers] orbit > 0 -> orbit*nu : true;
[oqueue] orbit > 0 & servers = servAvail -> orbit*nu*p_q : true;
[osources] orbit > 0 & servers = servAvail -> orbit*nu*p_b : true;

endmodule

// if no server is available, requests are redirected
// with probability p_q to the queue
module Queue

queue: [0..K-n] init 0;
[squeue] queue < K-n -> (queue’ = queue+1);
[oqueue] queue < K-n -> (queue’ = queue+1);
[qorbit] queue > 0 & servers = servAvail ->

queue*eta*p_io : (queue’ = queue-1);
[qsources] queue > 0 & servers = servAvail ->

queue*eta*p_is : (queue’ = queue-1);
[ssources2] queue > 0 -> (queue’ = queue-1);
[success2] queue > 0 -> (queue’ = queue-1);
[retrial2] queue > 0 -> (queue’ = queue-1);

endmodule

// ------------------------------------------------------------------
// system rewards
// ------------------------------------------------------------------
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// mean number of active requests
rewards "mM"

true : max(0, orbit)+queue+servers;
endrewards

// mean number of calls in orbit
rewards "mO"

true : max(0, orbit);
endrewards

// mean number of calls in queue
rewards "mQ"

true: queue;
endrewards

// mean number of active calls
rewards "mC"

true: servers;
endrewards

// mean number of active blocks
rewards "mB"

true: blocks;
endrewards

// ------------------------------------------------------------------
// Spectrum.props
// ------------------------------------------------------------------

// mean number of active requests
"mM" : R{"mM"}=? [ S ] ;

// mean number of active sources
"mK" : K-"mM" ;

// mean throughput (served and unserved)
"m1" : "mK"*lambda ;

// mean number of active calls
"mC" : R{"mC"}=? [ S ] ;

// mean goodput
"m1good" : "mC"*mu ;

// probability that arriving customer gets served
"Pgood" : "m1good"/"m1" ;

// mean response time (served and unserved)
"mT" : "mM"/"m1" ;

// mean number of rented blocks
"mB" : R{"mB"}=? [ S ] ;
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// mean number of available servers
"mS" : n+"mB"*r ;

// mean number of idle servers
"mAS" : "mS"-"mC" ;

// utilization of available servers
"Sutil" : "mC"/"mS" ;

// blocking probability
"Pblock" : S=? [ servers = servAvail ] ;

const int B;

// probability that B blocks are partially utilized
"Pb" : S=? [ n+r*(B-1) < servers & servers <= n+r*B ] ;

// mean queue length
"mQ" : R{"mQ"}=? [ S ] ;

// mean time spent in queue
"mTQ" : "mQ" / "m1" ;

// mean orbit length
"mO" : R{"mO"}=? [ S ] ;

// mean time spent in orbit
"mTO" : "mO" / "m1" ;

const int d;

// average profit rate
"APR" : "mC" - (r/d) * "mB" ;

C. The Parallel Execution Script

#!/bin/sh

# the program locations
export PRISM_JAVA="prism-java"
PRISM="prism"
PARALLEL="./parallel"
TIME="time"

# the input/output locations
MODELFILE="Spectrum.prism"
MODELFILE0="Spectrum0.prism"
MODELFILE2="Spectrum2.prism"
MODELFILE3="Spectrum3.prism"
PROPSFILE="Spectrum.props"
PROPSFILE0="Spectrum0.props"
RESULTDIR="Results"
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LOGDIR="Logfiles"
LOGFILE="LOGFILE"

# the checker settings
PRISMOPTIONS="-sparse -gaussseidel -nocompact"

# the number of processes to be used
for PROC in 1 2 4 8 16 32 ; do

(

# the properties to be checked and the parameters for the experiment

# Figure 2
for PROPERTY in Pblock mO mTO mQ mTQ mAS ; do

for RHO in $(seq 0.6 0.5 4.6) ; do
for N in 8 16 24 32 ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE0 $PROPSFILE0 -prop $PROPERTY \
-const rho=$RHO,n=$N \
-exportresults $RESULTDIR/Fig2-$PROPERTY-$N-$RHO \
> $LOGDIR/Fig2-$PROPERTY-$N-$RHO"

done
done

done

# Figure 3
for PROPERTY in Pblock mO mTO mB mQ mTQ mC mAS ; do

for RHO in $(seq 0.6 0.5 4.6) ; do
for T1 in $(seq 1 1 4) ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1 \
-exportresults $RESULTDIR/Fig3-$PROPERTY-$T1-$RHO \
> $LOGDIR/Fig3-$PROPERTY-$T1-$RHO"

done
done

done

# Figure 4
PROPERTY="Pb"
for B in $(seq 1 1 4) ; do

for RHO in $(seq 0.6 0.5 4.6) ; do
for T1 in $(seq 1 1 4) ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE $PROPSFILE -prop $PROPERTY \
-const B=$B,rho=$RHO,t1=$T1 \
-exportresults $RESULTDIR/Fig4-$PROPERTY-$B-$T1-$RHO \
> $LOGDIR/Fig4-$PROPERTY-$B-$T1-$RHO"

done
done

done

# Figure 5
RHO="0.6"
for PROPERTY in mB Pblock mQ mO mTQ mTO ; do

for T1 in $(seq 0 1 4) ; do
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for T2 in $(seq 5 1 8) ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE2 $PROPSFILE -prop $PROPERTY \

-const rho=$RHO,t1=$T1,t2=$T2 \
-exportresults $RESULTDIR/Fig5-$PROPERTY-$T1-$T2 \
> $LOGDIR/Fig5-$PROPERTY-$T1-$T2"

done
done

done

# Figures 6-7
PROPERTY="APR"
for RHO in 0.6 4.6 ; do

for T1 in $(seq 0 1 4) ; do
for T2 in 5 8 ; do
for D in 1 2 4 8 ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE2 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D \
-exportresults $RESULTDIR/Fig67-$PROPERTY-$T1-$T2-$D-$RHO \
> $LOGDIR/Fig67-$PROPERTY-$T1-$T2-$D-$RHO"

done
done

done
done

# Figure 8, T1 apparently 2
PROPERTY="APR"
T1=2
for RHO in $(seq 0.6 0.5 4.6) ; do

for T2 in 5 8 ; do
for D in 1 8 ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE2 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D \
-exportresults $RESULTDIR/Fig8-$PROPERTY-$T2-$D-$RHO \
> $LOGDIR/Fig8-$PROPERTY-$T2-$D-$RHO"

done
done

done

# Figures 9,10
PROPERTY="APR"
T1=2
T2=5
D=2
for PROPERTY in "APR" "mC" ; do

PO=0.2
PIO=0.4
for RHO in $(seq 4.55 0.01 4.6) ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE3 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D,p_o=$PO,p_io=$PIO \
-exportresults $RESULTDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO \
> $LOGDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO"

done
PO=0.4
PIO=0.8
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for RHO in $(seq 4.55 0.01 4.6) ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE3 $PROPSFILE -prop $PROPERTY \

-const rho=$RHO,t1=$T1,t2=$T2,d=$D,p_o=$PO,p_io=$PIO \
-exportresults $RESULTDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO \
> $LOGDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO"

done
PO=0.000000001
PIO=0.000000001
for RHO in $(seq 4.55 0.01 4.6) ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE3 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D,p_o=$PO,p_io=$PIO \
-exportresults $RESULTDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO \
> $LOGDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO"

done
done

# execute the experiments in parallel with PROC processes
) | $TIME -p $PARALLEL $PROC > $LOGDIR/$LOGFILE 2>&1

done
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