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Abstract

In this paper we review the main theoretical elements of behavioral
subtyping in object-oriented programming languages in a semi-formal
style that should allow software developers to understand better in which
situations the Liskov substitution principle (objects of subclasses may
stand for objects of superclasses) is violated. We then shortly discuss the
specification of class contracts in behavioral specification languages that
allow to ensure that the substitution principle is preserved. Since many
software developers may shy away form these languages because the learn-
ing curve is esteemed as too steep, we propose a language of light-weight
specifications that provides by a hierarchy of gradually more expressive
specification forms a more lenient path towards the use of behavioral spec-
ification languages. The specifications do not demand the use of predicate
logic; by automatic checking certain violations of the substitution princi-
ple may be detected.

*Supported by the Austrian Academic Exchange Service (OAD) under the contract
HU 14/2009.
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1 Introduction

Subclasses and Subtypes One of the most important features of the type
systems of statically typed object oriented languages is that subclasses are in-
tended to denote subtypes [3] (which is not self-evident [5]): if a class S inherits
from a class T,

class S extends T { ... }
then an assignment
T x = new S(...);

is legal, i.e., while the variable x has type T, it actually refers to an object of
type S. Nevertheless, the type system of the language ensures that without
further checks any client may use x as if it were an object of type T without
the danger of triggering a runtime error by accessing some attribute of  which
might be declared in T but not available in the actual object referenced by =x.
In this sense, the type systems of object-oriented languages are safe [3].

Many software developers encounter the subtleties of such type systems for
the first time when they notice that in some object-oriented languages, even if
class S is a subtype of class T, then the type S| (array of S) is not! a subtype
of class T[] (array of T'). This constraint rules out programs like

S[] x = new S[...];
T y = x;
y[0] = new U(...); // U is another subclass of T

where both variables x and y refer to the same array but with different views on
their types. Since y views the base type of the array as T, it may store in the
array a value of another subclass U of T such that the view of x (all elements
of z are of type ) is violated.

Similar problems arise with the use of parameterized classes (“generics”),
where for a generic G, even if S is a subclass of T', the instantiation G(S) is not
considered as a subtype of G(T'). The reason is that we may write a container
class

class G<X> { X v; void set(X x) { v =x; } }

that encapsulates a variable v of type X. Then the method set of an object
referenced by a variable y of type G(T') may update v with a value of type T
while the object is shared with another variable x of type G(S) assumes that it
has value S.

Substitutability While a type system can ensure that substituting an object
of a subtype S into a variable of supertype T is safe, it does not guarantee that
a the more general principle of substitutability formulated by Liskov [11] (the
“Liskov Substitution Principle” [13]) holds:

1Some languages, e.g. Java, consider S[| as a subtype of T[], at the price of checking at
runtime in every update operation whether the base type of the array in memory is indeed
a supertype of the value to be written. Some languages, e.g. C++, even omit the check; the
type systems of such languages are therefore not safe.



What is wanted here is something like the following substitution prop-
erty: If for each object o1 of type S there is an object oo of type T
such that for all programs P defined in terms of T, the behavior of P
is unchanged when oy is substituted for oy, then S is a subtype of T.

A subtle violation of the principle can be demonstrated by the classical
“square/rectangle” (also called “circle/eclipse”) problem [15, 7]. Take a class

class Rectangle {
private int width; private int height;
Rectangle(int w, int h) { width = w; height = h; }
int getWidth() { return width; }
int getHeight() { return height; }
void setWidth(int w) { width = w; }
void setHeight(int h) { height = w; }

}

describing a rectangle by its width and its height. According to the mathemat-
ical definition

A square is a (special) rectangle, namely a rectangle with equal width
and height.

a programmer might derive a subclass

class Square extends Rectangle {
// width and height are equal
Square(int a) { super(a, a); }

}

describing a square as a special rectangle with equal width and height which
is ensured by the constructor of Square. The definition is well-typed and no
runtime error can be triggered by using Square. Still a program using Square
may show unexpected behavior as in

Square s = new Square(a);
System.out.println(s.getWidth() + "x" + s.getHeight());
use(s);

System.out.println(s.getWidth() + "x" + s.getHeight());

which prints

2x2
4x2

Apparently the square has suddenly turned into a rectangle!
Investigating the problem, it turns out that the function

static void use(Rectangle r)

{
int w = r.getWidth(Q);
r.setWidth(2*r);

}



modifies one dimension of a Rectangle by calling its setWidth function which
invalidates the constraint that a square must have equal width and height.

The programmer realizes that it is necessary to override both methods
setWidth and setHeight such that the constraint is preserved, which yields
the following definition:

class Square extends Rectangle {
Square(int a) { super(a, a); }
void setWidth(int a)
{ super.setWidth(a); super.setHeight(a); }
void setHeight(int a)
{ super.setWidth(a); super.setHeight(a); }

}

The resulting program is well-typed and no runtime error can be triggered
by using Rectangle and Square. Still the use of these classes shows e.g. the
following unexpected behavior.

static function use(Rectangle r, int h)

{
System.out.println(getWidth() + "x" + getHeight());
r.setHeight (h);
System.out.println(getWidth() + "x" + getHeight());

}

which produces in one invocation output

3x3
3x5

and in another invocation output

3x3
5x5

So in both cases a rectangle of size 3 x 3 was passed to the function, however in
one case only the height of the rectangle was changed, while in the other case
both width and height were modified. Investigating the problem, it turns out
that the outputs were produced by two invocations

Rectangle ril
use(rl, h);

new Rectangle(w, h);

Rectangle r2 = new Square(a);
use(r2);

In one case, the function was called with a Rectangle of size 3 x 3, in another
case with a Square of size 3 x 3. Apparently the program behaved different
in both cases, because the method setHeight in Rectangle changed only the
height, while the corresponding method in Square changed both width and
height. So the program apparently contradicts the assertion “a square is a
(special) rectangle” since apparently a rectangle and a square behave different.



Indeed, a mutable square is not a mutable rectangle, because a mutable
rectangle has a particular capability (changing its height independently of its
width) which a mutable square has not. Explicitly specifying the setHeight
function in both classes shows that they have different contracts:

class Rectangle {

// sets width to a but leaves its height unchanged
void setHeight(int a) { ... }

}

class Square {

// sets both width and height to a
void setHeight(int a) { ... }

}

i.e. the overriding definition of setHeight has violated the contract of the orig-
inal definition, causing the surprise.

Many solutions have been suggested to overcome this problem [7, 13, 15]; in
essence they boil down to three possibilities [4]:

1. Give up the idea that a mutable square is a mutable rectangle. One may
for instance write a class ConstRectangle without the mutator functions
setWidth and setHeight and then construct the following inheritance
hierarchy:

ConstRectangle <« Rectangle
< ConstSquare <« Square

Thus an immutable square is an immutable rectangle but a mutable square
is not a mutable rectangle.

2. Weaken the contract of the superclass respectively its functions such that
it is easier for a subclass to preserve it. We could for example redefine

class Rectangle {

// attempts to set height to a and
// returns true iff the operation has succeeded
boolean setHeight(int a) { height = a; return true; }

}

i.e. allow the possibility of failure. The subclass may then override the
function as

class Square {



// leaves the height unchanged and returns false
boolean setHeight(int a) { return false; }

}

The price of this solution is that all clients of Rectangle have to cope
with the weaker contracts.

3. Strengthen the contract of the subclass respectively its functions to pre-
serve the contract of the superclass. While this is the ultimate goal it may
fail due to the conflicting requirements of the subclass and the superclass.
In particular, there is no way how the conflicting requirements

class Rectangle {

// sets width to a but leaves its height unchanged
void setHeight(int a) { ... }

}

and

class Square extends Rectangle {
// width and height are equal

}

can be reconciled by the implementor of the subclass.

Contracts and Behavioral Subtyping This formulation of the Liskov sub-
stitution principle has due to the phrase “the behavior of P is unchanged”
given rise to various misunderstandings in that it seems to require that subtype
S must behave absolutely exactly like supertype T. This misunderstanding can
be clarified by using the concept of a (behavioral) contract (introduced by the
closely related “design by contract” principle [14]), where a contract describes
the set of possible behaviors of a program or object. Let us re-formulate the
substitution principle as follows:

Let type T fulfill a contract C, i.e. let every object o1 of type T
fulfill a contract C,,. If for every such object oy of type T there is
an object o2 of type S that also satisfies Cy,, then the fulfillment of
every contract by every program P that relies on the fulfillment of
contract C' is not affected when o5 is substituted for o;. S is thus a
subtype of T with respect to contract C.

The question therefore is actually not whether a program behaves “identical”
after an object substitution but whether it fulfills a certain contract. If this
fulfillment depends on the fulfillment of a contract C' by a type T, the details
of the fulfillment are irrelevant to the program as long as the objects of T' fulfill
their contracts. Any object of another type S may also be plugged in, provided
that it fulfills C, independently of the way how it does this. A contract serves
thus as a “filter” that abstracts away from the details of a type that are irrelevant
to the user of this type. A contract C’ may also refine (strengthen) a contract C'



in that it specifies more details of the fulfillment but still requires the fulfillment
of Cp. If S is a subtype of T with respect to the strengthened contract C’, it is
thus also a subtype of T" with respect to the weaker contract C.

Thus the notions of types and behavioral contracts, subtypes and contract
refinement, cannot be clearly separated any more; the notion behavioral subtyp-
ing [12, 9] has been coined to denote types that describe object behaviors with
subtypes describing refined /restricted behaviors.

Related Work The theory of types and object, subtypes and inheritance, the
Liskov substitution principle, contracts, refinement, and behavioral subtyping
has been very well elaborated since the 1990s [1, 3, 9, 12]. Nevertheless, various
resources in the web demonstrate that the principles are often still not very
well understood [4] and even remain controversial [6]. We do not want to claim
that the contribution of the present paper is to shed new light on the theoretical
principles of the field; we rather aim to present a concise overview that condenses
the various bits and pieces found in the literature to a short summary (which
is definitely colored by the personal views of the author); this summary may
help to clarify the views of some readers interested in the topic (indeed every
object-oriented software developer should be interested in this topic). For more
details, see e.g. the cited literature.

Organization of this Paper Sections 2-5 present a simplified but essentially
(under the chosen level of abstraction) correct sketch of the main theoretical
elements underlying the substitution principle. The presentation is given in a
semi-formal style that allows to discuss crucial questions with a certain level
of exactness without digging too deep into the theoretical underpinnings. We
hope that this allows to internalize the general principles with which every
object-oriented programmer should be familiar in order to avoid violations of
the substitution principle.

Section 6 discusses the main elements of the specification of contracts in
behavioral specification languages like the Java Modeling Language [8] (JML).
Section 7 contains the main original part of this paper: a proposal for “light-
weight” specifications that may help to better understand the problems related
to the substitution principle and detect certain cases of its violations; we start
with a tiny core contract language that allows with small effort to characterize
inheritance structures in such a way that certain violations of the substitution
principle (as those presented by the “rectangle/square” problem can be avoided.
The language is gradually extended such that with more effort inheritance hi-
erarchies can be described in a more refined way and other violations may be
detected. In this way a smooth transition to full-fledged behavioral specification
languages like JML is provided. Section 8 concludes the paper.

2 Types and Subtypes

Types Let there be a domain of syntactic phrases whose elements we call
“types”. Each type denotes a set of values i.e. there is a function [.] (“the
meaning of”) such that [ T'] is the set denoted by type T. We call a value z to
be “of type T” (or to be “a T-value”), if x € [T'].



Subtypes Our core notion of interest is the relationship
S<:T

to be read as “S is a subtype of T”. This relationship holds, if there is some
“interpretation function” ST : [S] — [T'], i.e. for every value x of type S,
(S>T)(z) is of type T. By the application of this function, every S-value can
be interpreted as a T-value.

Apparently the subtype relationship is reflexive (S <: S), because we can
define the interpretation (S .5)(x) := x as the identity function. Furthermore,
the subtype relationship is transitive (if S <: T and T <: U, then S <: U),
because we can define the interpretation S>U = (S>T)o (T >U) as the
composition of the respective interpretation functions.

Atomic Types As an example take a type Nat of “unsigned integers”, i.e.
[Nat] ={0,1,2,...}
and a type Int of “signed integers”, i.e.
[Int] ={0,+1,-1,+2,-2,...}.

Please note that the unsigned integer 1 is different from the signed integer +1,
ie. [Nat] C[Int] does not hold. Nevertheless, Nat <: Int does hold, because
we have the conversion function

0 if x=0

Nat > Int(z) := { L else

i.e. every unsigned integer different from 0 can be interpreted as a signed integer
with a “4” sign.

Compound Types In the following we investigate compound types, i.e. non-
atomic types T that depend on some base types T;. The main interesting
question is, if we have two compound types S <: T of the same kind, whether
this implies

e Covariance: S; <: T;,
e Contravariance: T; <: S,
e Invariance: none of above.

In this section we are going to investigate two compound types for which
above questions will be answered as follows:

Tuple Types A tuple type Ty x Ty x ... x Ty is covariant in its com-
ponent types Tj.

Function Types A function type T; x T X ... x T,, —» T is covariant
in its result type T but contravariant in its argument types Tj;.

In the following section, we will investigate another type T (of shared
mutable variables) which is invariant in its base type T.



Tuple Types A tuple type has form Ty x Ty X ... x T, with n types Ty, ..., Ty.
Its meaning is defined as

[T xTyx...xT,]:=
{z|zle[TiNz2e[Ta]AN...ANzne[T,]}

i.e. for every record x, the selector expression z.i yields a value of type T; (for
1<i<n).
We have the following subtype relationship on tuple types

S1 X 8o X ... XS, Sn41yee s Sngm <Th X To x ... x Ty,

provided that
S1<:ThiNSy<:ToN...NS, < T,

i.e. for tuple types the subtype relationship is covariant in the component types
(S; <: Ty, for all 1 < i < n) and the subtype may have more components than
the supertype. For instance, we have

Nat x Int x Int <: Int X Int

because Nat <: Int and the first tuple type is not shorter than the second one.
The interpretation function corresponding to this relationship is

(Sl XSQX...XSn,Sn+1,...7Sn+ml>T1 XTQX...XTn)(:L') =y
where
yl 251>T1($.1),
y2 = SQDTQ(.’I}.Q),

yn =S, > T,(z.n)

i.e. from a value z of type S1 X Sy X ... X Sy, Snt1,--+, Sn+m & value y of type
Ty x Ty x ... x T, can be constructed by taking as each component y.i the
component x.1 interpreted as a value of type T;. For instance, we can define

(Nat x Int x Int> Int x Int)(z) :=y
where
y.1 = Nat > Int(z.1),
y.2 = Int> Int(x.2)

Functions A function type has form T3 x Ty x ... x T, — T (with n > 0)
whose meaning is given as

[[Tl X Ty X...XTnHT]]::
{fIVer€[T1]),z2 €[T2],- - zn €[Tn]: f(z1,22,...,2,) €[T]}

i.e. a function f of type T3 X Ts X ... x T, — T can be applied to n values
xl,zo,...,z, of types T1,Ts,..., T, which yields a result of type T (for the
special case n = 0, f itself is identified with a value of type T').

We have the following subtype relation among function types

(S1x8Sax...xS, =8 < (Ty xTex...xT,, = T)
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provided that
S<:TANTy <:5 ATy <:SoN...NT,, <: S,

i.e. for function types the subtype relation is covariant in the result type (S <:
T) but contravariant in all argument types (T; <: S;, for all 1 < i < n). For
instance, we have

Int — Nat <: Nat — Int

i.e. every function of type Int — Nat can be interpreted as a function of type
Nat — Int because Nat <: Int.
For function types, we can define the interpretation function as

(S1x8x...xS, =8 (M xTyx...xT, =T)(f) =g

where
g: [T x[Te] x...x[Tn] —[T]
g(1,29, ..., &y) =
ST

(f(Tl > Sl(ml),TQ > SQ($2)7 e ,Tn > Sn(xn)))

i.e. we can from a function f of type S1 X Sg X ... x S, — S construct another
function g of type Ty x Ty x ... x T,, — T as follows:

e ¢ takes n arguments x1,xo,..., T, of types T1,..., Ty,

e it interprets these as values of types Si,...,S5, and applies f to these
arguments,

e it receives from f a result of type S and interprets it as a value of type T
which it returns as a result.

For instance, we can define

((Int — Nat) > (Nat — Int))(f) := g
where
g :[Nat] — [Int]
g(x) =
Nat > Int

(f(Nat> Int(x)))
3 Shared Mutable Variables

A (shared mutable) variable x of type xT refers to a location in the computer
store that holds a value of type T'; this value may be read as xx and replaced
by another value a of type T by an assignment operation *x := a. Furthermore,
we assume that, if x is copied to another variable y, both copies share the same
store location such that after an update xy := b also *x denotes the value b.

The question arises whether y may be of type xS for some value type S that
is (significantly) different from the value type T. As we will see, the answer is
negative, i.e. there is no general subtype relationship %S <: T or T <: *xS
that allows both x and y to share a mutable store location in a safe way. In
particular, we have the following result:

11



Even if S <: T holds (i.e. every S-value can be interpreted as
a corresponding T-value), %S <: *T does in general not hold
(i.e. a shared mutable S-variable can not be interpreted as
a shared mutable T-variable).

Consequently, %S <: «T can be in general only ensured if
S =T, i.e. a variable type is invariant in its base type.

The core reason is that a T-variable has a particular capability (storing a
general T-value) which an S-variable (which may only store an S-value) has not.
Since T and S share the same location, if the T-variable exercises its capability,
it may invalidate the further use of the S-variable.

Example Let variable x be of type *Nat and variable y be of type *Int and
remember that Nat <: Int i.e. every Nat-value can be interpreted as an Int-value
(but not vice versa).

First let us investigate whether the (rather unlikely) relationship xInt <:
*Nat might hold i.e. whether an Int-variable could be interpreted as a Nat-
variable. If yes, then a variable assignment x := y were legal and both x and y
would refer to the same location. However, then we might use y in an assignment
x1y := —1 to write the value —1 into the memory cell which cannot be interpreted
as a Nat-value. Consequently, reading this memory cell as *x cannot return any
meaningful result of type Nat.

Next, let us investigate whether the (at first glance more likely) relationship
*Nat <: *xInt might hold i.e. whether a Nat-variable could be interpreted as an
Int-variable. If yes, then a variable assignment y := x were legal and again both
x and y would refer to the same location. However, then we again might use y
in an assignment *y := —1 such that *z could not return any meaningful result
of type Nat.

So while a Nat-value can be interpreted as an Int-value, a (shared mutable)
Nat-variable cannot be interpreted as a (shared mutable) Int-variable.

Formalism?® To model references, we need to introduce the domains Variable,

Value, and Store where a store is intuitively a mapping of variables of values.
We assume that there exist operations

*—_: Store x Variable — Value
x—_:= _: Store x Variable x Value — Store

with the central property

Vs, s'inStore, x,y € Variable,v € Value :
s =(z:=0v)=>

P ) ify==x
¥ y_{*sy else

i.e. if we write into a store s for variable z a value v, then reading from s’ the
value of a variable y will either give x (if y and z are identical) or the value of y
in the original store s (if y is different from z).

2The remainder of this section presents a formal justification of above statements. The
reader who is more interested in the general picture than the technical details may skip it.
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We assume that the value of every type T can be converted to a storable
value, i.e. that there exists a function

To :[T] — Value

Some storable values may be interpreted as values of type T, i.e. there exists a
partial function
artial
> T : Value Doy [T]
where domain(>T) denotes those values that may be interpreted as values of
type T. We demand

Vee[T]:Tv(t) € domain(>T)
Vie[T]: vT(T>(t) =t
Yo € domain(>T): T (>T(v))=v

Furthermore, we assume that for all types S and T the interpretation S > T
coincides (or is defined by) the value conversions i.e.

(S>T)(a)=p>T(S>(a))
With these preliminaries we define the meaning of a variable type %7 as
[«T] = {z € Variable | ¥s € Store : x*x € domain(>T)}

i.e. as the set of all variables whose values can in any store be interpreted as
T-values. We define
(xS «T)(x) ==z

i.e. we assume that variables preserve their meanings (storage locations) under
different type interpretations (this is the common assumption in all program-
ming languages).

We are now going to investigate the subtype relationship on variable types,
more specifically we show that two variable types S and T with xS <: *T" are
invariant in their base types S and T

Contravariance We first show that xS and T with xS <: *T are in general
not contravariant in their base types S and T. Take two types S and T with
T <: S where S is a “true” supertype of T', i.e. S has some value b that is not
the interpretation of any T-value:

be[S|AVae[T]: (TrS)(a)#Db

Take a variable x of type xS. We can then write into some store s at x the
value b and thus construct a new store s':

v:=(Sp>)(b)

s = (x%z =)
We then know ¥z = v. Since xS <: T, & = (xS > «T')(z) is also of type T
such that we can interpret v as a T-value, i.e. v € domain(>T). We can thus

compute a € T as
a:=(>T)(v)

13



Since T' <: S, we can compute b’ € S as
b = (T S)(a)
Expanding the definitions and applying above laws, we thus have
¥ = ST (>T(S> (D))

>SS (b))
= b

ie. b = (T'> S)(a) which contradicts our assumption that no T-value can be
interpreted as b.

Covariance Now we show that xS and T with %S <: «T" are in general not
covariant in their base types S and T. Take two types S and T with S <: T
where T is a “true” supertype of S, i.e. T' has some value b that is not the
interpretation of any S-value:

be[T]AVae[S]: (SsT)(a)#b

Take a variable z of type xS. Since xS <: T, x = (xS > «T")(x) is also of type
T such that we can write into some store s at z a T-value; in particular, we
can write the value b and thus construct a new store s’:

vi=(T>)(b)
s = (x%z =)

We then know %'z = v and, since z is of type %S, we can interpret v as an
S-value i.e. v € domain(1>S). We thus can compute a € S as

a:=(>85)(v)
We then can compute ¥’ € S as
b = >T(S>(a))
Expanding all definitions and applying the laws given above

V = »T(Sv(>8(Tw (b))
>T(T > (b))
= b

ie. b = S T(a) which contradicts our assumption that no S-value can be
interpreted as b. Thus %S and *T" can not be covariant in their base types.

Invariance We have shown that the types of (shared mutable) variables are
neither covariant nor contravariant in their base types, i.e. they are invariant.

14



4 Classes and Objects

A class is a type class C' where C' is a collection of declarations of variables and
definitions of functions of the following form3:

var 1 : T
var xo : 1s

var x,, : T},

function f1 : A1 X A1g X ... X A1, — By = ...
function f2 Ay X Agg X ... X A2a2 — By = ...

function fp, 1 A X Ao X ... X A, — B =11

An object is a value of a class which consists of a collection of the (shared
mutable) variables and the functions declared in the class. Given an object o of
class C, every variable x; : T; declared in C may be read as o.x; which yields a
value of type T;; for this variable a new value v; of type T; may be written as
o.x; = vy. Likewise, every function f; : A;1 X Ao X ... A, — B; declared in
C may be called with n arguments vy, vs,...,v,, of types A;1, Aia, ..., Aia, as
o0.fi(v1,va,...,v,,); this may change the values of the variables in o0 and return
a value of type B;.

The meaning of class C' can be defined in terms of the types introduced in the

previous sections and with the help of a new type Store with [Store] = Store:

[class C] :=
[T ] x [*«T2] % ... x [*T,] x
[Store x A1q x A1z X ... x Aqq, — Store X B ] x
[[Store X Aoy X Agg X ... X A2a2 — Store x BQ]] X
cee X
[Store x A1 X Ama X ... X Apg,, — Store X By, |

We see that the meaning of a class is a set of tuples (representing the objects
of the class) where each tuple contains representations of all (actually all of the
non-private*) variables and functions declared in the class:

e Each variable is represented by a location in the store,

e Each function receives as an extra argument the pre-store of the function
application and returns as an extra result the post-store (which differs
from the pre-store if the function is not “pure” i.e. causes side-effects on
the store)®. We assume that the application of a function does not change

3We assume that the component types of class C' do not refer to class C; in reality the
definition of class C' may be recursive. While this causes considerable technical complications,
the main messages of this section still hold in the general scenario.

4The semantic model of an object needs only represent its non-private variables/functions,
all references to private entities can be considered as “compiled into” the non-private entities.
Thus all private entities do not contribute to the object type.

5A reader familiar with the implementation of object-oriented languages might wonder why
there is no extra argument for the “this” pointer referring to the object on which the function
is applied. The answer is that this pointer is only necessary in implementations where all
objects of the same class share the same function f;; in our model, every object o has its own
version of f; which is already specialized with respect to the variable locations contained in o.
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the meaning (location) of a variable (as in object-oriented languages where
the layout of an object in memory remains fixed), thus the function needs
not return new variable locations.

Given a current store s, the operation o.z; looks up o for the value (store lo-
cation) of x; and returns the value of s at that location; likewise the oper-

ation o.x; := v updates s at that location with v;. A function application
o0.fi(v1,v2,...,04,) looks up o for the value (function) of f; and passes to it
8,V1,V2,...,VUq,. It receives as a result a store s’ which replaces s and a value b

which is returned as the result of the application.

Now, from the definition of [class C] given above, all questions
about the properties of the subtype relation of classes (object types)
can be immediately reduced to questions about the already known
subtype relations on atomic types, tuple types, shared mutable vari-
ables, and function types.

It is therefore not necessary any more to introduce a separate definition of
the class subtype relationship

class S <:class T’
but it suffices to investigate the consequences of the model introduced above:

1. Since class types are tuple types, if class T' has n non-private fields (vari-
ables and functions), class S may have n + m non-private fields. In other
words, class S may introduce extra variables and functions.

2. For every 1 < ¢ < n with corresponding non-private fields of type .5; in
class S and type T; in class T', we must have .S; <: T;. In other words, cor-
responding field types must covariantly preserve the subtype relationship.

3. If S; = %V for some type T, then also T; = *V, because variable types are
invariant. In other words, class S and class T" must have the same types
for corresponding variables.

4. If S; = Storex Ay x Ay X...x A, — Store x B, then T; = Store x A} x A} x
... X A — Store x B' with B <: B’ and A, <: A;. In other words, class S
and class T must have the same number a of arguments for corresponding
functions and, while the result types are covariant, the argument types
are contravariant.

Above rules constrain the way how inheritance may be used to derive a
subclass S from a superclass T' by a construction like class S extends T ... such
that the subtype relationship is preserved:

e The subclass S may introduce extra variables and functions that
are not among the (non-private) variables and functions of the
superclass S.

e The subclass S must not override the declarations of non-private
variables of superclass T by declarations with new types.

e The subclass S must only override the declarations/definitions
of non-private functions of superclass S in such a way that the
number of arguments remains the same, result types are over-
ridden covariantly, argument types are overridden covariantly.
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The substitution principle only holds, if the inheritance mechanism of the
language obeys these constraints.

5 Contracts

By using the more expressive language of logic, a domain of admissible values
may be further constrained than by using the simple language of types intro-
duced so far. The idea is to generalize a plain type T to a contract T* (where L
is a specification based on formal logic) such that

[T*1<I71]

In other words, 7™ denotes a subtype of T that describes a domain of admissible
values more precisely than T alone can.
In particular, contracts may be described by the following elements:

e The admissible applications of every function may be constrained by a
precondition and (possibly exceptional) postcondition; furthermore, the
function’s effect on the store may be constrained by a frame condition.

e The admissible values of the variables of a class may be constrained by
invariants and history constraints.

In the following, we discuss these elements in more detail. Please remember
that a function declaration

function f; @ Aj1 X Ajg X ... X Ao, — By
denotes a proposition
fi € [Store x A11 x Aja X ... X A1, — Store x B |
ie.
fi € Store x [A11] x [A12] X ... X [A1q, ] — Store x [ B1]
Preconditions A precondition of a function
function f; : Aj1 X Ajg X ... X Ao, — By

is a predicate P; that constrains the store and the arguments with which the
function is called i.e.

[Pi] C Store x [Ain ] x [Aia] X ... x [Aia; ]
The type of the function thus effectively becomes
[P;] — Store x [ B;]
This type is apparently contravariant in P;, i.e.
([ P:] — Store x [ B;]) <: ([ P/] — Store x [ B.])
holds only if [ P/ C [ P;] ie. if
P! = P

This implies that, if f; is an element of some class T, then every class S with
class S <: class T' may only weaken the precondition of f. With respect to class
inheritance we thus get the following constraint:
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If a class S inherits from a class T and overrides a func-
tion f, the overriding may only weaken (not strengthen)
the precondition of f.

Postconditions A postcondition of a function
function f; : Aj1 X Ajg X ... X A, — By

is a predicate @Q; that relates the store and the arguments with which the func-
tion is called to the store and the result returned by the function, i.e.

[[QL]] - Store x [[Ad]] X [[A»LQ]] X ... X [[Awq]] X Store X [[Bz]]
The type of the function effectively becomes a subset of

[@:]

i.e. it is covariant in @);. The type of a function with precondition @); is therefore
only a subtype of a function with precondition @} if [Q;] C [Q%], i-e. if

Qi = Q;

This implies that, if f; is an element of some class T, then every class S with
class S <: class T' may only strengthen the postcondition of f. With respect to
class inheritance we thus get the following constraint:

If a class S inherits from a class T and overrides a func-
tion f, the overriding may only strengthen (not weaken)
the postcondition of f.

Exceptional Postconditions In most programming languages, a function
may not only return in a normal way but also in the form of throwing an
exception. The postcondition of a function

function fz : Ail X Aig X ... X Aiai — Bj,
may thus contain the specification of a set E; of exceptions that may be thrown:
[Q:] C Store x [Ai1] X ... x [ A, ] x Store x ({Normal} U E;) x [ B;]

The outcome of the function is now tagged either as Normal or with one of
the exceptions in E. Given two exceptional postconditions @; and @} with
exceptions F; and E!, [Q;] C [Q}] can only hold if

E;CE;

i.e. postconditions are covariant in their sets of exceptions. This implies that,
if f; is an element of some class T'; then every class S with class S <: class T’
may only shrink the set of exceptions of f. With respect to class inheritance we
thus get the following constraint:

If a class S inherits from a class T and overrides a function f,
the overriding may only shrink (not increase) the set of
exceptions that may be thrown by f.
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Frame Conditions To simplify reasoning about the effect of a function on
the store, the specification of a function may include the definition of a set L of
those locations in the store that may be altered by the execution of the function.
The type of a function

function fl : Ail X Aig X ... X Aiai — Bz

with modifiable location set L; thus effectively becomes the value of a frame
condition F; with

[E:] :={f € Store x [ A1 ]| X [Aiz] X ... X [Asq, ]| = Store x [ B;] |
Vs, s € Store,a € [A1],a2 € [A2],...,an €[A,], b€ [B]:
f(s,a1,a9,.. an) = (s',b) = Vo & Li : s(x) = s'(z)}

i.e. only those pairs s, s’ of pre- and poststate are allowed where the values of
all the locations not in L; remain unchanged. A frame condition is essentially
a postcondition; one can show that given two frame conditions F; and F; with
location sets L; and L, we have [ F; | C [ F/] only if

L;C L]

i.e. frame conditions are covariant in their sets of modifiable locations. This
implies that, if f; is an element of some class T', then every class S with class S <:
class T' may only shrink the set of modifiable locations of f. With respect to
class inheritance we thus get the following constraint:

If a class S inherits from a class T and overrides a function f,
the overriding may only shrink (not increase) the set of
locations that may be modified by f.

Invariants An invariant of an object is a predicate I that constrains the
values of the object variables in the store, i.e.

[1]C Store

For the further discussion, we need to generalize our model a bit by intro-
ducing the notion of a current “context” P C Store which is a predicate on
stores (respectively a set of stores satisfying the predicate). We parameterize
our semantic function on types over the current context, i.e. for a type T and
a context P, [T]p denotes the set of values denoted by T in context P. By
this generalization, the original semantics described above will become a spe-
cial case for P = Store. The semantics of all previously introduced kinds of
types are naturally generalized by appropriately forwarding the context, e.g.
[TIxTox...xTyp=[T1]p x[T2]p X ... x[Tn]pP-

The meaning of class C, a class C annotated by invariant I, now is

[class CL]p :=
[«T1]p % [*T2]p x ... x [Ty ]p X
(PX HAll]]P ><[[A12]]p>< oo X [[Alal]]P)_)(IXHBll]P) X
(PX HA21]]P X [[Agg]]p X ... X [[A2a2]]P) — (IX HBQ]]p) X
oo X
(Px [Ami]p X [Am2]lp X .. X [Ama,, |P) = (I X[ Bm]pr)
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i.e. every function must ensure that under the assumption that the pre-store
satisfies P that also its returned post-store satisfies I. If I initially (after the
creation of the object) holds, it is therefore guaranteed that it is preserved by
every application of an object function. Furthermore, if it can be ensured (by
other means) that no function outside of the object invalidates the invariant,
the invariant thus always holds before and after every invocation of the object
function. This is in particular the case, if the invariant only refers to the store
locations of variables that are kept private to the object.

To discuss the subtype properties of class C! we generalize the subtype re-
lationship to S <:¥ T which denotes that S is a subtype of T in context P. It
holds if there exists an interpretation S T': [S]p — [T ]p i-e., in context I,
every value of type S may be interpreted as a value of type T. The properties of
subtypes described in the previous sections still hold by appropriately forward-
ing the context, e.g. (S1 x Sy x ... x S,) <P (T4 x Ty x ... x Tp,) if §; <:F' T;
for 1 <17 < n. We now investigate the subtype relationship

’
class ST <:F class T

where class S has invariant I and class S has invariant I’. By expanding the
definitions (and induction on the structure of C!), one can show that,

e if class S <: class T', and
e if I=1T1 (le [I]C[I']),
e then class S! <:! class T'.

This is easy to see if we assume that none of the T;, A;,j, and B; involve a
class. In that case, the only differences between the original class semantics and
the new one is the occurrence of P = I as an argument type both in S’ and
in 77" and the occurrence of I as a result type in S’ and the the corresponding
occurrence of I’ as a result type in T /; the later is allowed, since function types
are covariant in their result types and [I] C [I’]. The general claim can then
be shown by induction on the structure of the class type.

Still we must not forget that the subtype relationship is qualified in that it
only holds in a context P = I, i.e. we may substitute an object of type class S’
for any object of type class 77 only if the invariant I holds. However, if we can
guarantee that I initially (i.e. immediately after the construction of the object)
holds, then, since all functions in P preserve I, the context P = I is established
at all times when also I’ is expected to hold. Therefore classes are covariant in
their invariants.

As for the consequences on the semantics on inheritance see the correspond-
ing paragraph given below.

History Constraints A history constraint is a generalization of an invariant
in that it relates the current values of the variables in the object store to their
initial values (i.e. the values they had at the time when the object was created).
For a history constraint H we thus have

[H] C Store x Store
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We denote by class CTH a class C' annotated by invariant I and history con-
straint H. Its meaning is given as:

[class CT-H ] p =
[T ]p x [*T2]p % ... x [*T,]p %
(Px [An]p x [Ai2]p % ... x [Ara, [p) 22 (1 x [B1]p)

(P x [Ao]p x [Asa]p % ... % [Asa, [p) 22V (1 x [Ba]p)
. X

(Px [Ami]r X [Amz]p X - % [Ama,. 1p) 22V (I % [ B )

X
X

where S represents the set of possible initial states and

P x A xAgx...xAnngB::
{fePXxA xAyx...x A, -1 xB|
Vte P,s,s’ € I,a; € Ay,a2 € As,...,a, € A,,bE B :
(t,s) € HA f(s,a1,a9,...,a,) = (s',b) = (t,s') € H}

i.e. for all applications of object functions the only legal pairs (t,s’) of initial
state t and poststate s’ are those allowed by H.
We now investigate the subtype relationship

class STH <P class TT' 1’
which essentially boils down to the relationship
(IxA x...x A, B TxB)<F (I’xA’lx...xAilﬂl’xB’)
Let I H be the condition with meaning
[INH]:=[I]n{s" € Store | Is € Store : (s,s') € H}

i.e. it denotes all states in which the invariant I holds and which are allowed
by the history constraint H. Then, by generalization of the argument in the
previous subsection, one can show that

e if class S <: class T', and

e if I=1 (e [I]C[I']),

e if H=H (ie. [H]C[H']),

e then class ST <:IMH class 71" H'

i.e. I and H are preserved by all contexts in which the invariant holds and that
are allowed by the history constraint H. If we now can guarantee that the
initial state s (immediately after the creation of the object) satisfies s € I and
(s,s) € H, then the context P = I T H is established at all times when also
I’ respectively H' are expected to hold. Therefore classes are also covariant in
their history constraints.

In the following we investigate the consequence of the subtype relationship
of classes with invariants and history constraints with respect to inheritance.
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Inheritance and Invariants respectively History Constraints The re-
sults above show that class STH can be a subtype of class class TUVH §f =1
and H = H’, i.e. class S may strengthen the invariant and history constraint
of class T. However, if class S inherits from class T', this requires that not only
the new functions of S (possibly overriding some functions of T') but also the
inherited (non-overridden) functions of T must satisfy I respectively S.

If a class S inherits from a class T, and strengthens the
invariant respectively history constraint of T, then also the
non-overridden inherited functions of T must preserve the
strengthened invariant respectively history constraint of S.

However, it is very unlikely that a (previously defined) class class 7! H’
satisfies the additional constraints of a (still unknown) class class S*#, except
for one particular situation: if we define

I.s1' NI
H:= H NH"

where I and H” are relations that cannot be violated by the execution of any
function of T, because I"” and H” refer to storage locations that cannot be
modified by 7. This can be shown, if all functions f; of T are equipped with
frame conditions with location sets L; and the truth values of I"” and H” do not
depend on any store location in | J L;. The most typical case however is that I”
and H” only refer to variables that were newly introduced by class S and that
are kept secret by T'. We thus may state:

If a class S inherits from a class T, it may strengthen the
invariant I’ respectively history constraint H of T to I’ A T”
respectively H A H”, provided that the truth values of I”
and H” only depend on store locations that cannot be mod-
ified by any function of T (e.g. store locations that are kept
secret by T).

6 Specifying Contracts

The type systems of most statically typed object-oriented programming lan-
guages are designed to obey the constraints outlined in Section 4. Consequently,
they ensure that

e on the one side any object of type class S may be considered as an object
of type class T if class S is a subtype of class T', but

e on the other side the execution of a program may never assume that an
object has some type class T' while actually its type is some type class T’
which is not a subtype of class T'.

The goal of these type systems is to guarantee that programs are safe in the
sense that no unchecked errors of this kind occur. However, these type systems
are not sufficiently strong to express true contracts, i.e. they cannot ensure that
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also the constraints outlined in Section 5 are obeyed; consequently even in well-
typed programs, the semantic substitutability of objects may be violated and
unexpected behaviors may occur.

In order to express true contracts, we need more than a simple type system,
we need a behavioral specification language which allows to precisely describe the
behavior of functions and the constraints of values. Such a language is the Java
Modeling Language (JML) [8] whose core is a version of first order predicate logic
that is embedded into the syntactic and semantic framework of Java. JML is
based on semantic foundations of “behavioral subtyping” [12] and thus supports
the development of programs that obey the substitution principle. In particular,
it allows to express the semantic constraints formulated in Section 5 as it is
sketched below.

Method Behaviors Each Java function (“method”) can be annotated by
a “behavior” which integrates a pre-condition, a frame condition, a normal
postcondition and possibly exceptional post-conditions of the form

requires precondition;

assignable framecondition;

ensures postcondition;

signals (ezception_1 e) exzcondition_1;

éiénals (ezception_n e) excondition_n;
with the following interpretation:
e The behavior is applicable, if precondition holds.
e The method only modifies store locations denoted by framecondition.

e The method terminates normally or throws an exception of one of the
types exception_1,. .. exception_n.

e If the method terminates normally, then postcondition holds.

e If the method throws an exception of type exception_i, then excondition_i
holds.

If a class S inherits from a class T' and overrides a method, the overridden
method inherits the behavior of the overridden method and possibly extends
it by an additional behavior. The combination of two behaviors is defined as
follows:

e Preconditions are combined by logical disjunction to
preconditiong V preconditionp
In other words, the precondition is weakened.

e Frame conditions are combined such that the value of a store location may
be only modified, if this is admissible according to all behaviors that is
applicable for the method’s prestate; i.e. if both behaviors with modifiable
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location sets Lg and Lp are applicable, the method may modify only
values at locations in the intersection

LsN Ly
In other words, the frame condition is strengthened.

e Normal postconditions are combined such that every postcondition must
hold in every behavior that is applicable to the current state; i.e. if both
behaviors are applicable, the postcondition is combined by logical con-
Junction to

postconditiong A postconditiony

In other words, the normal postcondition is strengthened.

e The postconditions of the same exception type exception, are combined
such that every postcondition must hold in every behavior that is ap-
plicable to the current state; i.e. if both behaviors are applicable, the
postcondition is combined by logical conjunction to

excondition; g N\ excondition; T

An exception of type exception, may be only raised, if it may be raised
according to all behaviors that are applicable in the current state. If
both behaviors with exception sets Fs and Ep are applicable, then only
exceptions in the intersection

EsNEr
may be raised. Exceptional postcondition are thus strengthened.

We see that the constraints described in Section 5 are obeyed and the overriding
method can be semantically substituted for the overridden method.

Invariants and History Constraints Every Java class can be annotated by
class invariants and history constraints as

invariant <nwvariant ;
constraint comnstraint;

These declarations essentially constrain the states of the objects at all times
when a function of the object is called and when a function of the object returns.

If a class S inherits from a class T, it inherits the invariant and constraint
of T" and combines it with its own to

mvartants N invarianty
constraintg N\ constrainty

i.e. invariants and constraints are always strengthened and the obligations stated
in Section 5 are met.

As a side remark, proving the correctness of invariants and constraints in
JML is more complex than it might look at first glance. The JML specification
essentially states that every function
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e may, when it is called, assume that the invariants of all objects (of any
type) hold,

e must, when it returns, ensure that the invariants of all objects (of any
type) is preserved

The reason for this is described in the JML reference manual [10]:

The semantics given above is highly non-modular, but is in general
necessary for the enforcement of invariance when no mechanisms
are available to prevent aliasing problems, or when constructs like
(concrete) public fields are used.

This highlights a problem we have deliberately side-stepped in our previous
discussion: in the presence of shared mutable variables, every function in every
object may invalidate the invariant of all objects in all classes.

The reasoning about JML invariants and history constraints does therefore
not scale to complex programs; for this reason, many JML verification tools
are not sound (in the sense of logic) because they only verify that a function
preserves the invariant /history constraint of the current object, not even of all
objects of the current class, much less of all objects of all classes.

7 Light-Weight Specifications

Behavioral interface specification languages like JML are rich enough to con-
strain class inheritance such that the substitution principle is obeyed; further-
more automatic checking and semi-automatic verification tools are available that
allow to detect certain violations of this principle [2]. Still programmers not fa-
miliar with logic may not find the learning curve of the formalism too steep and
thus shy away from its use.

The situation may be possibly improved by a more gradual introduction to
class specification such that with little effort some benefits can be gained; if
then one is willing to invest more effort, also the gain may be increased. In
particular, we would like to support the programmer by helping to avoid the
the violation of the substitution principle.

In the further discussion let the term constraint denote both invariants and
history constraints and let the term mutator denote a function that changes
the state of an object respectively the global program state (in contrast, a pure
function does not change any state). Then a subclass can only violate the
substitution principle by one of the following actions:

1. Adding a Mutator: In a subclass, a mutator is introduced that violates
a (possibly implicit) constraint of the superclass.

As an example, a class HorizontalRectangle maintains the length and
the width of a rectangle with the constraint that the length must not be
less than the width. A subclass MutableHorizontalRectangle introduces
a method setLength which forgets to check whether the requested new
length is greater than or equal the current width.

2. Adding a Constraint: In a subclass, a (possibly implicit) constraint is
introduced which is violated by a mutator in the superclass.
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As an example, a class Rectangle maintains the length and width of a
rectangle with a method setLength to change the length of the rectangle.
A subclass Square introduces the constraint that the length equals the
width; this constraint is violated if the method setLength of the superclass
is invoked.

3. Overriding a Function: In a subclass, a function of the superclass is
overridden in such a way that violates the (possibly implicit) specification
of the function.

As an example, a class Square maintains the length of a square with a
method expand that multiplies the length with some same given factor,
provided that the factor is positive (such that the square cannot be shrunk
to a point). A subclass MinSquare maintains a minimal size and overrides
the function expand such that if the resulting size would be too small, no
change is performed. Using a MinSquare object for a Square object thus
gives unexpected results.

To gradually tackle this problem, we suggest the following language of class
annotations

class ::= | nosubtype | subtype | [ kind contract | class C ...
kind ::= core | simple | extended | full[lang]
lang ::= "JML" |

which is further explained below.

7.1 nosubtype | subtype

The annotation nosubtype indicates that the corresponding class C' is not in-
tended as a subtype of another class i.e. that it is a root node in the subtype
hierarchy of classes. Class C may still inherit from another class D but the type
of C' is not considered as a subtype of the type of D. The rationale for this an-
notation is that frequently inheritance is just used for code sharing respectively
code reuse such that a deeper semantic relationship between the superclass and
the subclass is intended; in that case also no obligation for the specification of
such a relationship should be imposed. An extended type checker might subse-
quently refuse the use of an object of type C in a place where an object of type
D is expected. On the other hand, the annotation subtype explicitly indicates
that the corresponding class C is intended as the subtype of the class D from
which it inherits.

Annotating a class as nosubtype or subtype also indicates that the objects of
the class may be constrained by the contract language described below; if a class
is annotated in such a way, also its subclasses must be annotated in one of the
two forms. An extended type-checker should also ensure that every annotated
class only contains declarations of variables whose visibility is restricted to the
class and its subclasses (private and protected). For variables with more
visibility, object constraints could be invalidated by any client through plain
variable assignments.
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7.2 core contract

The annotation core contract indicates the use of a tiny annotation language
that helps to void fundamental violations of the substitution principle.

e Each class must indicate by a declaration
mutable mvars;

that only the values of the non-private variables mvars are modified by ap-
plications of the functions that are declared in the current class; optionally,
also private variables may be included in the declaration. A declaration
mutable \nothing indicates that a class has no mutators.

In the presence of pointer structures, above declaration should be more
generally read as “only properties that depend on the values of mwars
may become invalidated by the application of functions of the current
class”. By this statement e.g. a non-private variable x should be included
in mwars, if it contains a pointer that (directly or indirectly) refers to some
object whose content is changed.

As an alternative format, each variable itself might be declared as mutable
for the object functions of the current class and its subclasses; this format
however makes it easy to overlook missing mutable declarations. In the
following, we stick to the primary form of declaration stated above.

e Every class may introduce predicates: a declaration of the form

[ public | protected | private |
predicate pname (params) "text";

introduces a new predicate named pname with the denoted visibility level
and the number and types of arguments denoted by params. The meaning
of the predicate is informally described by tezxt.

e Every class may introduce constraints: a declaration of the form
constrains cname: pname (cvars);

introduces a constraint (invariant or a history constraint) cname on the
non-private object variables cvars by predicate pname; optionally, also
private variables may be included in the declaration.

The use of explicitly declared predicates may look a bit heavy-weight for
the core contract language; however, it comes handy for the extensions of
the contract language described in the following sections. If this extension
is not considered, we can also just have constraint declarations of form

constrains cname (cvars): "text";

which states that the variables cvars are constrained and what is the
informal interpretation of the constraint.

e (Optional) For each constraint cname introduced in a (direct or indirect)
superclass, the class must contain a declaration
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constrains cname inherited;

such that all constraints for the current class (also the inherited ones) are
textually visible within the class.

This rule is not crucial for the following discussion; its main purpose is a
pragmatic one, namely to make programmers explicitly aware of all the
constraints they have inherited from superclasses. A checker may easily
detect and report its violation.

No constraint may refer to a variable whose visibility is not restricted to
the class and its subclasses; every such occurrence should be reported as
an error because the corresponding constraint could be violated by any
client of the class through plain variable assignments.

Checking the Annotations A checker may investigate whether the decla-
rations indicate a possible violation of the substitution principle. The checking
proceeds by processing a class hierarchy top down such that for each class T
two variable sets T'.cvars and T.mwvars are maintained:

e T.cvars is the set of non-private variables that are constrained by C or an
ancestor class of C.

e T.muwars is the set of non-private variables that are modified by C' or an
ancestor class of C.

In detail, class T is processed as follows:
1. If T is a root class, then C := ), else C' := parent(T').cvars.
2. If T is a root class, then M := (), else M := parent(T).muvars.

3. If T has constrained non-private variables cvars such that M N cvars # 0,
then report “constraint prohibited”.

4. If T has mutable non-private variables mvars such that C N mvars # 0,
then report “mutation prohibited”.

5. T.cvars := C' U {x € cvars: x is not private}
6. T.mvars :== M U {x € mvars: x is not private}

No variable in T.mwvars may be further constrained by a subclass of T' because
this constraint is potentially violated by a mutator of M. Likewise, no variable
in T.cvars may be further modified by a subclass of T because this would pos-
sibly violate a constraint of this variable (but see the paragraph “Overriding
Mutators” below).

If correctly applied, this mechanism rules out the previously stated violations
“Adding a Mutator” and “Adding a Constraint” of the substitution principle.
For example, the declaration of MutableHorizontalRectangle in

core contract class HorizontalRectangle {
protected int length; protected int width;
mutable \nothing;
predicate LE(int 1, int w) "length is not below width";
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constrains sides: LE(length, width);

}

subtype core contract class MutableHorizontalRectangle
extends Horizontallength {
mutable length;
constrains sides inherited;
void setLength(int 1) { length = 1; }

}

is reported as erroneous, because MutableHorizontalRectangle mutates a vari-
able that was constrained by constraint sides in HorizontalRectangle. Like-
wise, the declaration of Square in

core contract class Rectangle {

protected int length; protected int width;
mutable length;

void setLength(int 1) { length = 1; }

.

subtype core contract class Square extends Rectangle {
predicate EQ(int 1, int w) "length equals width";
constrains isSquare: EQ(length, width);

}

is reported as erroneous because it constrains by the new constraint isSquare
a variable that was mutated in Rectangle.

Overriding Mutators While above calculus rules out possible errors, it is
also very stringent in that it does not allow to override in a subclass the mutator
of a superclass in order to maintain additional constraints that the subclass
might introduce.

In a refined version of the calculus, also each function is annotated by a
clause

assignable avars;

where avars is the subset of mwars mutated by the function (an annotation
assignable \nothing indicates that the function is a pure function rather than
a mutator). Then Step 3 of the processing of class T can be refined as follows:

3 If T has among its constrained non-private variables cvars a variable that
appears among the assigned variables avars of an inherited function f that
is not overridden by T', then report

“constraint prohibited because of inherited mutator f (you may
override the definition of f if you can simultaneously ensure the
constraint and also preserve the contract of f)”.

29



The error message reminds the programmer of the possibility to override the
mutator but also states the requirement that the original specification of the
mutator must be preserved.

This would allow a definition of Square as in

core contract class Rectangle {

protected int length; protected int width;
mutable length;

// contract:

void setLength(int 1) { length = 1; }

.

subtype core contract class Square extends Rectangle {
predicate EQ(int 1, int w) "length equals width";
constrains isSquare: EQ(length, width);
// preserves isSquare and the original contract of setLength
void setLength(int 1) { ... }

}

where it is now the task of the programmer to make sure that the overriding
definition of setLength preserves the constraint isSquare (if this is not possible,
then the subclass is ill-defined i.e. violates the substitution principle).

The problem with the extension is that the contract of a mutator itself is
just implicitly stated (e.g. as a comment) but not part of the calculus itself.
The next section is going to overcome this limitation.

7.3 simple contract

The annotation simple contract indicates that the corresponding class C' is
(in addition to core contract annotations) annotated by a simple form of a
behavioral contract:

e Class constraints are given in the general form
constrains cname: pnamel (cvarsl) &&...&& pnamen (cvarsn);

i.e. as conjunctions of atomic formulas.

e Methods are specified by behaviors in the following form

requires pnamel (pvarsl) || ... || pnamen (pvarsn);
assignable awvars;
ensures gnamel (quarsl) && ... && qnamen (quarsn);

signals (exl el) enamell (evll) &&...&& enamelel (evinl);

with preconditions specified as disjunctions of atomic formulas and (nor-
mal and exceptional) postconditions as conjunctions of atomic formulas.
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If a class C overrides a function of a subclass, the following rules apply for
the specification of an overriding function:

e The list of atomic formulas in a precondition may be extended to

requires pnamel (pvarsl) || ... || pnamen (pvarsn)
Il pname_n+1 (pvars_n+1) || ...;

e The set of assignable variables may be a subset of the original set.

e The list of atomic formulas in a postcondition may be extended to

ensures gnamel (quarsl) && ... && gqnamen (quarsn)
&& qname_n+1 (quars_n+1) && ...;

e The set of signals declarations may be a subset of the original set. Each
declaration may be extended to

signals (ezt et) enameil (evil) &&...&& enamin_i (evin_<)
&& enamein_t+1 (evin_1+1) && ...;

The specification of the overriding definition is thus at least as strong as the
specification of the original function definition.

The virtue of this format is that there are simple syntactic rules the pro-
grammer must follow rather than semantic arguments. Unlike JML (where
behaviors are implicitly inherited), the specification format makes also the total
set of obligations on the function definition explicit, i.e. no obligation can remain
“hidden”. A checker may easily verify that the obligations on the specification
format are met and report an error if a violation is detected.

With this format, it is thus possible to specify

simple contract class Rectangle {
protected int length; protected int width;
mutable length;

predicate PSL(int 1) "1 is not negative";
predicate QSL(int 1, int length, int width)
"length and width...";

requires PSL(1);

assignable length, width;

ensures QSL(1, length, width);

void setLength(int 1) { length = 1; }

.

subtype simple contract class Square extends Rectangle {
predicate EQ(int 1, int w) "length equals width";
constrains isSquare: EQ(length, width);

requires PSL(1);
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assignable length, width;
ensures QSL(1, length, width);
void setlLength(int 1) { ... }

}

which indicates that the overriding definition of setLength must satisfy both the
constraint isSquare and the postcondition QSL (whatever this condition may
look like). Furthermore, if the setLength in Rectangle would have specified

assignable length;

then the overriding definition in Square must also specify this clause and is
thus not allowed to modify width (which may, depending on the interpretation
of QSL, indicate that setLength is infeasible).

Propositions In order to support a core form of logical reasoning, declara-
tions of the form

proposition(vars) pnamel (...) ==> pname2(...);

“ »

may be introduced where as predicate arguments any subset of vars may
be used. The logical interpretation of such a statement is that of a universally
quantified implication Yvars : pnamel(...) = pname2(...). It implies that

e any occurrence of predicate pname2 in a constraint or postcondition may
be replaced by an occurrence of the stronger predicate pnamel (after
appropriate substitutions of the formal parameters by the concrete argu-
ments)

e any occurrence of predicate pnamel in a precondition may be replaced by
an occurrence of the weaker predicate pname2 (after appropriate substi-
tutions of the formal parameters by the concrete arguments)

In this way the predicate introduced in a superclass may be implied by a
stronger predicate introduced in a subclass or it may imply a weaker predicate
introduced in a subclass. As an example, take the definitions:

simple contract class Rectangle {
protected int length; protected int width;
mutable length;

predicate PSL(int 1) "1 is positive"
predicate QSL(int 1, int length, int width)
"length and width..."

requires PSL(1);

assignable length, width;

ensures QSL(1, length, width);

void setLength(int 1) { length = 1; }
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subtype simple contract class Square extends Rectangle {
predicate EQ(int 1, int w) "length equals width";
constrains isSquare: EQ(length, width);

predicate PSL2(int 1) "1 is not negative"
predicate QSL2(int 1, int length, int width)
"length and width..."

proposition forall(int 1) PSL(1) ==> PSL2(1);
proposition forall(int 1, int length, int width)
QSL2(1, length, width) ==> QSL(1, length, width);

requires PSL2(1);

assignable length, width;
ensures QSL2(1, length, width);
void setLength(int 1) { ... }

}

Here the overriding definition of setLength in Square uses a weaker precondi-
tion and a stronger postcondition.

7.4 extended contract

The annotation extended contract uses the same language elements as simple
contract but allows the use of arbitrary combinations of logical connectives in
the specifications of constraints, preconditions, and (normal and exceptional)
postconditions as well as the specification of arbitrary propositional logic for-
mulas in propositions.

For verifying the wellformedness of contracts in sub-classes, simple syntactic
considerations do not suffice any more; rather it has to be argued from the
semantic point of view whether a precondition is not erroneously strengthened
and a postcondition is not erroneously weakened.

However, the validity of these arguments can be fully automatically checked
with the help of propositional satisfiability solvers; such solvers are freely avail-
able and can be easily integrated in a corresponding checker.

7.5 full contract

The annotation full contract indicates the use of a full-fledged behavioral
specification language like “JML”. Semantically, the core difference is that in-
stead of undefined atomic predicates, the full power of first-order predicate logic
with quantifiers may be used to give formal definitions of such predicates. Such
specifications can in general not any more be automatically checked; while ex-
tended static checkers may automatically detect certain violations, their validity
can only be verified with semi-automatic theorem proving tools.

For truly expressive specifications, the use of such a specification language
is required. However, as the previous sections have strived to show, also simpler
specification forms may be useful, at least as first steps in the use of formal
specifications in object-oriented languages.
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8 Conclusions

We have presented in this paper a sketch of the main theoretical elements that
underly the Liskov substitution principle which should help to understand better
under which circumstances class inheritance may violate this principle. While
full-fledged behavioral specification languages like JML are designed in such a
way that they help to obey substitutability, they are quite heavy-weight, par-
tially because they depend on formal specifications expressed in predicate logic.
In this paper, we have attempted to indicate a more lenient path by proposing
a light-weight specification format which already with little effort may help to
detect certain violations of the substitution principle. The specifications can
be gradually refined to more precise descriptions that characterize inheritance
hierarchies better and may detect more errors. Certain violations of these spec-
ifications are statically checkable with existing technology. Software developers
that proceed along this path may thus have a considerably more lenient learning
curve towards the use of behavioral specification languages.
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