Publishing and Discovering Mathematical
Service Descriptions: A Web Registry Approach

Rebhi Baraka, Olga Caprotti, and Wolfgang Schreiner*

Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, Linz, Austria
{rbaraka, ocaprott, schreine}@risc .uni-linz.ac.at

Abstract. We describe an approach for publishing and discovering math-
ematical service descriptions in a Web registry. The registry is based on
and extends the ebXML registry to handle descriptions given in the
Mathematical Service Description Language MSDL. This work is a first
step towards our ultimate goal to produce a “semantic broker” where ser-
vices register their problem solving capabilities and clients submit task
descriptions; the broker then determines the suitable services and returns
them to the client for invocation.

1 Introduction

The interest of the mathematical community to deploy its software over the
Internet has paved the way for the emergence of mathematical Web services.
WebMathematica [18] and MapleNET [11] are commercial approaches towards
this goal; MathWeb [15] is a long-term academic activity. Open technologies such
as OpenMath [4] and MathML [1] are employed to accomplish the exchange and
presentation of mathematical objects in the Web.

A Web service is a problem solution that is available on the Web and can be
accessed by a user or another service or program via standard Web protocols [19].
A mathematical Web service is a service that offers the solution to a mathemat-
ical problem (based on e.g. a computer algebra system or on an automated
theorem prover). Web services need to be advertised by providers and discov-
ered by clients; therefore they need to be described in a machine-understandable
format. In the case of mathematical Web services, these descriptions must be
based on formal mathematics.

There have been several approaches to achieving this goal, in particular
MONET [16] and our own MathBroker project [12], which have been pursued
simultaneously with mutual influence. MathBroker uses the concept of a Web
registry for publishing and discovering descriptions of mathematical Web ser-
vices. A (mathematical) registry provides a set of functionalities to facilitate
the sharing and exchange of (mathematical) service descriptions. For this pur-
pose, we developed the Mathematical Services Description Language (MSDL)

* This work was sponsored by the FWF Project P15183 “A Framework for Brokering
Distributed Mathematical Services”.

[3] and extended an existing registry implementation to handle the publication
and discovery of objects that are presented in MSDL descriptions [6, 5].

The remainder of this paper is organized as follows: Section 2 introduces
our model for describing mathematical services; this represents the basis for
the design of MSDL and for an extension of the information model of a widely
used registry framework. Section 3 describes this extension in greater detail.
In Section 4, we present a sample client for using the extended framework for
publishing MSDL descriptions and discovering such descriptions.

2 A Model for Mathematical Service Descriptions

Figure 1 illustrates our model for the description of mathematical Web services.
It shows the kinds of entities that can be associated to a service and the rela-
tionships among them.

optional
cTTT o TTTTTTTTTTETTS is special
! ! version of
| Algorithm | solves | proplem = Problem
! |
| [!
I . |
i implements ‘
| |
I
! Implementation 1
|
! |
1] !
777777777777777 - islocated on
is based on ‘ !
Realization ispound to | Service _service port | Machine
service port(s) (WsSDL) islocated on Type

Fig. 1. Service Description Model

The model is implemented as a highly structured language called Mathemat-
ical Services Description Language (MSDL) [14]. MSDL was developed in the
frame of MathBroker project [12] with influences from the MONET project [16].

The rationale behind the decomposition of descriptions into multiple inter-
linked entities is to avoid redundancy between specifications (by sharing descrip-
tion components) and to provide a quick shortcut for detecting the identity of
specification entities by reference equality. MSDL thus provides for the develop-
ment of a reusable library of descriptions.

Now we introduce the entities of the model and give sample descriptions in
MSDL syntax which conforms to a grammar of an MSDL schema [3].

Problem: There exist various kinds of problems. For instance, a computing
problem can be specified by input parameters, an input condition, out-
put parameters, an output condition. It can be a special version of another

problem. A problem description for the indefinite integration of a function
f:R xR — R may look like:

<monet :problem name="indefinite-integration">

<monet :header></monet :header>

<monet :body>

<monet:input name="f">

<monet:signature>

<om:0MOBJ>

<om:(0OMA>
<om:0OMS
<om:0OMS
<om:0MS
<om:0MS
</om:0MA>
</om:0MOBJ>

cd="sts"

cd="setnamel" name="R"></om:

</monet:signature>

</monet : input>

<monet :output name="i">

<monet:signature>

<om:0MOBJ>

<om:(0OMA>
<om:0OMS
<om:0MS
<om:0MS
<om:0MS
</om:0MA>
</om:0MOBJ>

cd="sts"

cd="setnamel" name="R"></om:
cd="setnamel" name="R"></om:

</monet:signature>

</monet :output>

<monet :post-condition>

<om:0MOBJ>
<om:(0OMA>

<om:0MS cd="relationl" name="eq"></om:

<om:0MV name="1i"></om:0MV>

<om:0OMA>

name="mapsto"></om:
cd="setnamel" name="R"></om:
cd="setnamel" name="R"></om:

name="mapsto"></om:
cd="setnamel" name="R"></om:

0MS>
0MS>
0MS>
0MS>

0MS>
0MS>
0MS>
0MS>

oMS>

<om:0MS cd="calculusl" name="indefint"></om:0MS>
<om:0MV name="f"></om:0MV>

</om:0MA>
</om:0MA>
</om:0MOBJ>

</monet :post-condition>

</monet :body>
</monet : problem>

Algorithm: an algorithm is described by (a link to the description of) the
problem it solves, as well as by time and memory complexity, termination
conditions, and bibliographical information.

<monet:algorithm name="RischAlg">

<monet :documentation>
The Risch algorithm for indefinite integration.

</monet :documentation>

<monet :problem href="http://risc.uni-linz.ac.at/
mathbroker/RischIndefIntegration/indefinite-integration">

</monet :problem>

<monet:bibliography href="http://www.emis.de/cgi-bin/zmen/
ZMATH/en/quick.html?type=xml&an=0184.06702">
<!-- more dublin core -->
<monet :documentation> Dublin Core

Data</monet :documentation>
<dc:creator>Risch,R.H.</dc:creator>
<dc:title>The Problem of Integration in
Finite Terms</dc:title>

<dc:source>Trans. A.M.S. 139 pp.167 - 189</dc:source>
<dc:publisher>AMS</dc:publisher>
<dc:date>1969</dc:date>

</monet :bibliography>

</monet:algorithm>

Implementation: an implementation is described by the algorithm on which
it is based (or optionally the problem it solves), the software on which it is
based, time and memory efficiency w.r.t. some reference architecture.

<monet :implementation name="RImpl">
<mathb:efficiency_factor wrt="S200Spec">
<mathb:speed>1.1</mathb:speed>
<mathb:throughput>0.7</mathb:throughput>
</mathb:efficiency_factor>
<monet :software href="http://www.wolfram.com">
</monet :software>
<monet :software href="http://riaca.win.tue.nl/software/
ROML"></monet : software>
<monet :hardware href="http://risc.uni-linz.ac.at/mathbroker/
RischIndefIntegration/perseus.risc.uni-linz.ac.at">
</monet :hardware>
<monet:algorithm href="http://risc.uni-linz.ac.at/
mathbroker/RischIndefIntegration/RischAlg">
</monet:algorithm>
</monet:imp1ementation>

Realization: a realization of a service is described by the underlying software
implementation (or optionally the algorithm or problem), by the type of

machine on which it is running and by a WSDL description of the service
interface.

<monet :service name="RRISC">
<monet :documentation>
This is an implementation of the Risch algorithm.
</monet :documentation>
<monet:classification>
<monet :problem href="http://risc.uni-linz.ac.at/
mathbroker/RischIndefIntegration/
indefinite-integration">
</monet :problem>
</monet:classification>
<monet:implementation href="http://risc.uni-linz.ac.at/
mathbroker/RischIndefIntegration/RImpl">
</monet:imp1ementation>
<monet :service-interface-description
href="http://perseus.risc.uni-linz.ac.at:8080/axis/
services/SymbolicIntegration?wsdl">
</monet :service-interface-description>
<monet :service-binding>
<monet:map action="exec"
operation="symbint:Integrator:indefInt"
problem-reference="indefinite-integration"></monet :map>
<monet :message-construction io-ref="f"
message-name="symbint : IndefIntRequest"
message-part="in0">
</monet :message-construction>
</monet :service-binding>
<monet:service—metadata></monet:service—metadata>
<monet :broker-interface>
<monet : service-URI></monet :service-URI>
</monet :broker-interface>
</monet :service>

We skip the description of the machine and of the service interface.
For processing MSDL descriptions, a Java API was designed and imple-

mented (see Section 3.6).

3 A Registry for the Service Description Model

In Web technology, a registry is a service for publishing and discovering informa-
tion about Web services. A registry maintains Web service metadata as objects
in a repository and provides access to them via a specific protocol. Currently
there are two dominating registry standards:

— The Universal Description, Discovery, and Integration (UDDI) registry [17].
— The ebXML registry and repository standard [9].

We based our development on the ebXML registry reference implementa-
tion [8] because its information model [7] is much more generic and extensible
than UDDI. Furthermore, this model closely follows Sun’s Java API for XML
registries (JAXR) [10] which provides generic access a variety of XML registries.

3.1 The ebXML Registry

The ebXML registry architecture consists of a service and a client. The registry
service manages the objects associated with the registry and queries for them. A
registry client is an application that accesses the registry. It utilizes the registry
service to submit objects, to classify them, to associate them to each other, to
browse them, and to query for them.

The registry information model [7] represents a blueprint for the registry.
It provides the information on the classes of metadata that are stored in the
registry as well as the relationships among metadata classes. It defines what
types of objects are stored in the registry and how they are organized. The
information model is extensible to new kinds of objects.

3.2 Extending the Registry to Mathematical Service Descriptions

We extended the ebXML information model to accommodate the entities of our
mathematical service description model. Figure 2 shows the corresponding Java
classes and their relationships to each other.

A generic “MathbrokerObject” class was introduced as an extension of the
ebXML class “ExtrinsicObject”. From this class, all other MathBroker classes
are inherited such that ebXML treats the MathBroker objects as instances of
ExtrinsicObject. We do not have a class “Service” as in our information model;
its information (a WSDL description) is directly included in “Realization”.

The rationale for using ExtrinsicObject as the basis of our classes is that it
allows to hold metadata about which the registry has no prior knowledge. In
particular, it may hold an XML document, e.g., the MSDL description of the
entity. The MathBroker subclasses provide additional methods to extract and
to modify this information.

3.3 Association of Entities

An essential characteristic of our service description model is the ability to ex-
press relationships among the various entities that comprise a service. The reg-
istry facilitates this feature by the concept of an “Association”. A registry object
may be associated with zero or more other registry objects. The service descrip-
tion model defines the following mathematical associations (see Figure 2):

IsSpecialVersionOf: Problem P “is special version of” Problem P’.

RegistryObject

Inheritance: ———— T
Association: > — -
ExtrinsicObject
% ebXML objects

- Mathbroker objects
MathbrokerObject

T

Machine Realization Implementation Algorithm Problem

A A A A
RunsOn 1sBasedOn Implements Solves 1sSpecVersOf

Fig. 2. Service Description Model in the registry context

Solves: Algorithm A “solves” Problem P.

Implements: Implementation I “implements” Algorithm A.
IsBasedOn: Realization R “is based on” Implementation I.
RunsOn: Implementation I “runs on” Machine M.

Associations are themselves registry objects and correspondingly stored in
the registry with links to a source and a target registry object.

3.4 Classification of Entities

A classification scheme (or taxonomy) is a hierarchical tree of concepts that
structures a particular knowledge area. The ability to classify an object (i.e.,
to link it to a concept in a classification scheme) is an important feature of a
registry, because it facilitates the process of discovering the object. An object in
the registry may be classified multiple times in one or in multiple schemes.

ebXML allows to submit new classification schemes into the registry such
that registry objects may be classified in these schemes. We used this feature to
import as an example the GAMS (Guide to Available Mathematical Software)
classification scheme by translating the published XML format of this scheme
into a format accepted by the registry [2]. Figure 3 shows the scheme viewed
in the registry browser. MSDL entities may be classified in this and in other
mathematical schemes.

3.5 Using the Entities

Since our mathematical entities are (extensions of) ebXML entities, they can be
accessed using the standard ebXML mechanisms. For instance, Figure 4 demon-

Query Suing: iSP‘E(\ * from Classificationscheme

& Polynarmials

2 Other functions (.., rigonOmMetric, user-specified)

B Multivariate data (surface fitting)
& Constrained
& Nonlinear least squares
& Minimax (L\infty) approximation
& Least absolute value (L1) approximation
& Other anabdic approximations (e.g., Tavor polynamial, Pad?)
& Smoothing
& Serdce routines for approximation
& Statistics, prabability
& Simulation, stachastic modeling (search also classes L& and L10)
& Dara handling (search also class L2)
& Symbolic computation
& Computational geometry (search also classes G and ()
& Craphics (search also class L3)
& Servce routines
9 & Software development taols
& Program transformation 1o0ks
& Static program analkysis tools
& Dynamic program analysis tools
& Other

X+ Registry IBCIES
(Elle Eamt Help
m & e
m;Mhup:,','perseus.rist.mi—inz.ac an 080/ ehxmirr/regisiryf soap | -
| Discovery | Submission | XA Chssitic hemes.
—
Business Query Adhoc Quen ¢ B CAMS -
O ® — & Arithmetic, error analysis
Ho Selectio & Number theory
mentary and special functions (search also class
g Qurty S Be nol | fi i h also class LS)
Select Query: ES Linear Algebra
Atbitrary query & Interpalation
tion of nonlinear eguations
| & Solu f nanl
Name: & Optimization (search also classes K, LB)
[& Differentiation, integration
itrary que L
o A & Differential and integral eguations
Description: & Integral transforms
Arbitrary query ® & Approximation (search also class LS)
® & Least squares (L2) approximatian
@ & Linear least squares (search also classes DS, D&, DY)
® & Unconstrained
T T T ® & Univariate data (curve fitting)
Ad Hot Query & Polynomial splines (piecewise polynomials)

Fig. 3. Registry browser screenshot of GAMS classification scheme

strates how the ebXML browser displays sample entities (of type Service, Im-
plementation, Problem, Algorithm, and Machine) with their names drawn in
rectangular boxes and the relations among them illustrated as arrows.

3.6 Implementation Aspects

We implemented the entities of the service description model such that this
implementation captures all the aspects and features of MSDL. Moreover the
MSDL entity classes inherit all the functionality of the ebXML class “Extrinsi-
cObject” they extend. We also extended the management functionality of the
ebXML registry to allow the registration, classification, association, and discov-
ery of MSDL descriptions. The result of this implementation is a Java API for

MSDL registries [13].

F

o= [p|e|(n]s x| a|[a]a]a] mlm wn

Association -

classifigations

4

it/ frisc.uni-linz ac a1/ maihbroker/Rischindefinte gration/RRISC

Solres

rope
classiTications

tip:/ frisc.uni-linz. ac_al}mathbroker/Rischindefinte gration/indefinite- integratio

jrnplementation|

classificaidhs
—
[@garitn ?
mp: /risc. uni-linz. ac. a1/mathbroker/Rischindefintegration /Rimp
Clas sifi ations b/‘"f -
—
? runfon .
It dfrisc uni-linz. ac. atjmathbroker (Rischindelimegration /Rischalg) / i
classifiestions

?

Mg/ /risc.uni-linz. ac. at/mathioroker/Rischindefintegration/perseus. risc.uni-inz ac. ay

Fig. 4. Registry browser with MathBroker entities, their classifications and associations

4 Publishing and Querying Service Descriptions

We wrote a sample client that demonstrates the use of the registry API. The
client performs two tasks: publishing, i.e., registering service descriptions, and
querying, i.e., discovering them. For publishing, the client takes an MSDL file
and registers all entities described in it (also creating the related associations
and classifications). For querying, the client takes a question from the user and
prints the resulting MSDL descriptions.

4.1 A Sample Description

A description can contain one or more service descriptions entities. A complete
service description would include all the entities introduced in Section 2 and
pointers for entity associations and classifications. A skeleton of such a descrip-
tion is shown below.

<\monet:definitions

10
<mathb:machine_hardware name="perseus.risc.uni-linz.ac.at">
</$;£hb:machine_hardware>
<monet :problem name="indefinite-integration">
</Qéﬁet:prob1em>
<monet:algorithm name="RischAlg">
</ﬁ;£et:a1gorithm>
<monet:implementation name="RImpl">
</ﬁ;ﬁet:implementation>
<monet:service name="RRISC">

</monet :service>
</monet:definitions>

4.2 Publishing to the Registry

The client, as shown below, makes a connection to the registry, uses this connec-
tion to obtain the registry service, utilizes the service by accessing the ebXML
“life cycle manager” and “query manager” to publish to the registry.

The following part of the client code creates the connection to the registry;
the essential information needed is the registry URL:

String url = "http://perseus:8080/ebxmlrr/registry/soap";
Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL", url);
ConnectionFactory factory =
MathBrokerConnectionFactoryImpl.newInstance() ;
factory.setProperties(props);
MathBrokerConnection connection =
(MathBrokerConnection)factory.createConnection() ;
MathBrokerRegistryService mrs =
connection.getMathBrokerRegistryService();
MathBrokerLifeCycleManager mlcm =
mrs . getMathBrokerLifeCycleManager() ;
MathBrokerFocusedQueryManager fqm =
mrs . getMathBrokerFocusedQueryManager () ;

The client takes an MSDL file (e.g. risch.xml) and extracts the descrip-
tion of each entity it contains. For each description it creates a registry ob-

11

ject embedding that description and also creates 0 updates all required as-
sociations and classifications. All this functionality is hidden in the method
publishMathBrokerObject of the MSDL registry APIL:

File repositoryltemFile = new File ("risch.xml");
javax.activation.DataHandler repositoryltem =

new DataHandler(new FileDataSource(repositoryItemFile));
mlcm.publishMathBrokerObject (fqm, repositoryItem);

4.3 Querying the Registry

The client allows to make queries for mathematical objects according to ID,
name, or classification by invoking the following methods of the registry API.

executeQueryById (argument)
executeQueryByName (argument)
executeQueryByClassification(argument)

The implementation of the APT ultimately invokes the MathBroker registry
manager to retrieve a description from the repository, then extracts and displays
the respective fields from these description.

The following example shows a query for an algorithm:

MathBrokerAlgorithm algorithm =
(MathBrokerAlgorithm)mlcm. createMathBrokerAlgorithm(

null, null, classificationConcept, dh);
algorithm.showContent () ;

5 Conclusion

We presented first results on the development of a registry where the descrip-
tions of mathematical services are published and can be discovered by potential
clients. Our results demonstrate that standards and technologies that were orig-
inally developed for facilitating electronic business can be successfully used in
a completely different (and considerably more sophisticated) application area,
namely computer mathematics. Thus we profit from the work in the Web com-
munity, preserve compatibility with its standards, and build on its software.

This framework serves as the basis for our ultimate goal of developing a “se-
mantic broker” where services register their problem solving capabilities, clients
submit task descriptions, and a broker then determines the suitable services and
returns them to the client for invocation. Our next steps will be the design of
a more expressive query model based on the syntactic and semantic content of
the registered descriptions and of a corresponding query language that allows
clients to discover suitable services.

12

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Ausbrooks et al. Mathematical Markup Language (MathML) Version 2.0. W3C
Recommendation, October 2003. http://www.w3.org/TR/MathML2.

R. F. Boisvert, S.E. Howe, and D. K. Kahaner. GAMS: A Framework for the
Management of Scientific Software, ACM Transactions on Mathematical Software
11(4), December 1985, 313-355.

0. Caprotti. Extending MONET to the MathBroker Information Model. Project
Report, RISC-Linz, Johannes Kepler University, Linz, Austria, June 2003.

O. Caprotti, D. P. Carlisle, A. M. Cohen. The OpenMath Standard. The OpenMath
Esprit Consortium. February 2000.

M. Dewar, D. Carlisle, O. Caprotti. Description Schemes For Mathematical Web
Services. Proceedings of EuroWeb 2002 Conference: The Web and the GRID: from
e-science to e-business. St Anne’s College Oxford, UK, December2002 . British
Computer Society Electronic Workshops in Computing (eWiC).

O. Caprotti and W. Schreiner. Towards a Mathematical Services Description Lan-
guage. ICMS2002 , International Congress of Mathematical Software, Beijing,
China, August 17-19, 2002.

ebXML Registry Information Model v2.0. OASIS, December 2001.
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRIM.pdf
ebXML Registry Reference Implementation Project (ebxmlrr). OASIS, April 2004.
http://ebxmlrr.sourceforge.net/

ebXML Registry Services Specification v2.0, OASIS, April 2002.
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRS.pdf
Java API for XML Registries (JAXR). Sun Microsystems, April 2004.
http://java.sun.com/xml/jaxr/

MapleNET. MapleSoft, April 2004. http://www.maplesoft.com/maplenet/
MathBroker: A Framework for Brokering Distributed Mathematical Services. Re-
search Institute for Symbolic Computation, April 2004.
http://poseidon.risc.uni-linz.ac.at:8080 /mathbroker/index.xml

Mathbroker Registry API. Research Institute for Symbolic Computation, April
2004. http://poseidon.risc.uni-linz.ac.at:8080/results/registry /MBregistry API
Mathematical Service Description Language: Technical Report Deliverable D14,
The MONET Consortium, March 2003. http://monet.nag.co.uk/

MathWeb.org: A Portal for Math-on-the-Web. University of Saarbriicken, April
2004, http://www.mathweb.org.

MONET: Mathematics on the Net. The MONET Consortium, April 2004.
http://monet.nag.co.uk/

UDDI Version 2.04 API Specification. OASIS, July 2002.
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf
WebMathematica, April 2004.
http://www.wolfram.com/products/webmathematica/index.html

Web Services Activity. World Wide Web Consortium, March 2004.
http://www.w3.org/2002/ws.

