Plotting Algebraic Space Curves by Cluster Computing

Temporal Logic Specifications for Parallel Debugging

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at

Wolfgang Schreiner RISC-Linz




Plotting Algebraic Space Curves by Cluster Computing

Contents

e Non-Determinism and Parallel Debugging
e Temporal Logic Specifications
e Specification Calculus

e System Architecture and Interfaces

Wolfgang Schreiner




Plotting Algebraic Space Curves by Cluster Computing

Non-Determinism and Parallel Debugging

Wolfgang Schreiner




Plotting Algebraic Space Curves by Cluster Computing

Debugging

e Sequential program:
one execution per input
(deterministic execution)

oo

execution 1
e Parallel program: .

several executions possi- i

ble (non-determinism).

Handling non-determinism is a key problem in parallel debugging.

Wolfgang Schreiner




Plotting Algebraic Space Curves by Cluster Computing

Sources of Non-Deterministim

Assume: message passing model with reliable transfer.

e Non-determinism arise because of

— alternative receive operations from multiple sources,
— non-blocking receive operations,

— effects outside the message passing model.
e MP| Message Passing Interface:

— MPI_ANY_SOURCE: message from any sender accepted.
— MPI_IPROBE: non-blocking test for message availability.

— File communication, multi-threading, etc.

Focus: non-determinism from alternative receive operations.

Wolfgang Schreiner




Plotting Algebraic Space Curves by Cluster Computing

P-GRADE Macrostep Debugging

e MTA SZTAKI and SGlI

e Controlled selection of alter-
native Inputs

e Manual or automated traver-
sal of state tree

Macrostep is ready.

http . / / WWW . 1pds .Szt a.kl . hu alt_for_ask (Chopstick_1) < 1 (Philosopher_2)
/projects/p-grade |

Default selection Animation mode
<> Left branch < Until selected

< Rightbranch | [ <> Until branch

<® Manual & One execution line
< Whole graph

Wolfgang Schreiner




Plotting Algebraic Space Curves by Cluster Computing

ldea

How to further aid debugging of non-deterministic parallel programs?

e Sequential programs: debugging crucially aided by assertions.
Property that must be true in denoted state.
e Parallel programs: how to employ assertions?

— State distributed among processes = need to construct consistent global state.
— Multiple state sequences possible = assertion must be designed to hold in every sequence.

— Useful properties involve multiple states = assertion must talk about whole state sequence.

Let assertions be generated from formal program specifications.

Wolfgang Schreiner 6




Plotting Algebraic Space Curves by Cluster Computing

Macrostep Specification Checking

Formula View State Tree View

| State |

| CurrentFormula | [ «»]

<>

> ParentFormula( ) |

PaState

= PFormulal |

Parent

Prev

Next

True in All

— Current — | CFormulal B CFormula2 CFormuls

NFormulal [NFormulaz | NStatel || NState2 || NState3

> NFormulal | |NFormula2 | | |
~ NS (o0 Al Y v
4» |V 4>

4>

Wolfgang Schreiner




Plotting Algebraic Space Curves by Cluster Computing

Temporal Logic Specifications

Wolfgang Schreiner




Plotting Algebraic Space Curves by Cluster Computing

Example: Mutual Exclusion

Py : P;i-o:
c:=—1w:= ) loop
loop p: send(0, “enter”)
(50, mg) := receive() q: m; := receive(0)
a: if myp = “enter” then T critical region
if cg=—1 send(0, “exit”)
then ¢ := sp; send(s, “okay”) end
b: else wy := wyl|{s0)
end
else if m = “exit” then
co = —1

if Wo 7é <> then
o := head(wy); wp := tail(wy)
c: send(cy, “okay”)
end
end
end

Wolfgang Schreiner




Plotting Algebraic Space Curves by Cluster Computing

Crucial Properties

e Mutual exclusion:

Always, if client 7 is in the critical region, then client j £ ¢ is not in the critical region.

Viel...n:Ofat,(i) = (Vjel...n:j#i= —-at(j))

e Progress:

Always, if client 7 requests access to the critical region, it eventually enters the region.

Viel...n:Oaty(i) = Cat,(i)]

Specification of system functionality from clients’ point of view.

Wolfgang Schreiner

10




Plotting Algebraic Space Curves by Cluster Computing

More Properties

e No request is lost:

Always, if the client is to send a request, the server eventually receives it:
Vi e 1.n: Ofaty (1) = O(ata(i) A sp =@ A my = “enter”)]

e No request is forgotten:

Always, if server i does not immediately answer the request, it will later answer it:
Ofaty,(0) = let i = 50 in O(ate(0) A cp = 1))

e No request is added:

Always, if the server grants access to client ¢, it has previously received a request from ¢:
Olat.(0) = let i = ¢y in ©(at,(0) A sg = 1)]

Detailed description of system functionality possible.

Wolfgang Schreiner

11




Plotting Algebraic Space Curves by Cluster Computing

Temporal Logic Formulas

e Atomic formulas pp(tg, ..., th—1)

— Mathematical variables x
— Program variables v;
— Program counters at,(7)

— Message buffers msgbuf,
e Connectives A\, V, 0, =, &

e QuantifiersVx €¢ D, dx € D, let x =T
e Temporal operators

— Always O
— Eventually &
— Leads to ~»

— Past variants: & & ~»

Wolfgang Schreiner

12




Plotting Algebraic Space Curves by Cluster Computing

Temporal Logic Specifications

-

J

I3el

A temporal logic formula F' can express a property about all possible
executions of a (non-deterministic, parallel) program.

execution 1

®
o—

Wolfgang Schreiner 13




Plotting Algebraic Space Curves by Cluster Computing

Specificaton Calculus

Wolfgang Schreiner

14




Plotting Algebraic Space Curves by Cluster Computing

Specification Calculus

1. Semantics of temporal logic formulas.

Semantics in terms of state sequences.

2. Translation to guarded temporal formulas.

Only knowledge about previous state, current state, next state required.

3. Tree semantics of temporal formulas.

Semantics in terms of state trees.

4. Partial tree semantics of temporal formulas.

Next state may be unknown.

5. Extraction of (previous/current/next)-state formulas.

Wolfgang Schreiner

15




Plotting Algebraic Space Curves by Cluster Computing

Temporal Logic Semantics

e Validity of temporal logic formulas:

A temporal formula F' is true for a program with initial states is C State and next state
relation ns C State x State, if it is true for every state sequence induced by is and ns:

S(is,ns) :={s: N — State : 59 € is A\Vi € N: (s;,s41) € ns}
U{s: N, — State: sy € is A\Vi € N,_1: (8;,841) € ns A =3z : (s,_1,7) € ns}

T[[F]]is ns = Vs € S(is,ns) : T[|F]]s 0
e Validity of a formula in a non-empty state sequence s:

Tllpn(to, - -, ta-2)lls @ = llpall([ollsis - - - [[tn-]]s:)

T[[OF]]s i & true iff T[[F]|s j = true for all j with i < j < |s]
T[[CF]|s i < true iff T[[F]]s j = true for some j with i < j < |s|
T[[E F]]s i < true iff T[[F]]s j = true for all j with 0 < j <4

Wolfgang Schreiner

16




Plotting Algebraic Space Curves by Cluster Computing

Guarded Temporal Formulas

e Guard temporal operators by o resp. o ( “next/previous time")

G[OF]] = G|[F]] A otrueDdF — “always” becomes “now and next time always"
G[[OF]] = G[[F]] V ofasedF — "“eventually” becomes “now or next time event.”
G[[B F]] = G[[F]] A et4ue& F — “once” becomes “now or previous time once”

e Translation preserves semantics
T[[F]ls i & T(G[[F]])s 4

T[lo,F]]s i < if i +1 = |s| then v else T|[[F]|s (i + 1)
T[le,F]]s i < if i = 0 then v else T[[F]|s (i — 1)

Only need current state, next state, and previous state.

Wolfgang Schreiner

17




Plotting Algebraic Space Curves by Cluster Computing

Tree Semantics t.prev

t.curr

e Trees of states induced by is and ns:

T(is,ns) ={T(T,1,ns):i € is} t next
T(p,i,ns) =1t < tppey =D N leun =1
N tuext = if Az 1 (i, ) € ns then {T'(i,z,ns) : (i,x) € ns} else {T}

e Semantics of guarded temporal formulas based on trees

T[[pn(t()a s 7tn—1)“t - H n“([[tontcurra cey th—lﬂtcurr)

o, F]]t & true iff T(G[[F]])x < true for every & € tyext
[eu F|]t & true iff T(G[[F]])z < true where & = tey

[0, F]]T & v

[[ovF]]

T v

Op

Sv

Translate sets of state sequences to (sets of) state trees.

Wolfgang Schreiner 18




Plotting Algebraic Space Curves by Cluster Computing

Semantic Relationship

e Validity of formulas over state trees:
T[|GF||T < true iff T||GF]|t < true for every t € T

e Relationship to original semantics preserved
T[[F]lis ns < T(G[[F]])F(is, ns)

May operate on state trees instead of sequences.

Wolfgang Schreiner

19




Plotting Algebraic Space Curves by Cluster Computing

Partial Tree Semantics

e Replace 2-valued logic in T by 3-valued logic (L = unknown):
sl =1, TA3L=1,FAs L=FTVsL=TFvsl=1

e Assume that only part of tree is known (L = unknown subtree).

Tree s is a subtree of ¢ if it equals t except for some _L subtrees:
bij.
S E t & s=1V (Scurr — tcurr A\ Elf - Snext i tnext : Vo € Spext - T E f(ﬂj'))

e Partial Tree Semantics
Ty[F]|L - |

e Compatibility and monotonicity:

t does not contain L = Ts[[F|]t = Tof[F]|t
s E 1= Ty[[Fl]s £ T3 FJ¢

Wolfgang Schreiner

20




Plotting Algebraic Space Curves by Cluster Computing

Extraction of State Formulas

o T(G[B(pn(-- ) Agml. - )1t

T(G[O(pn(...) Agnl...)]])t & true

iff T(G[[pn(--) A gn(.. )] AoO(pu(...) Agn(...)))t < true

iff T(G[[pn(...) A gn(...)]])t < true and T[[cO(py(...) A gn(...))]]t < true

iff T[[pn(...) A gm(.. )]t < true and T[[O(pu(...) A gu(...))]]Jz < true for © € tex

e Extracted Formulas:

Previous state: none (zero or more formulas)
Current state:  p,(...), gm(. - .) (one ore more atomic formulas)
Next state: O(pn(---) Agm(...)) (zero or more formulas)

Checking formula yields formulas for previous, current, next state.

Wolfgang Schreiner

21




Plotting Algebraic Space Curves by Cluster Computing

System Architecture and Interfaces

Wolfgang Schreiner

22




Plotting Algebraic Space Curves by Cluster Computing

System Architecture

: Linked to program or

i v

Program V *

; to debugger ...or to checker
I Linked
' Check(SF); I;:tern;r
Specification | _ |
Processor | o L abel("A"): g Debugger -— Checker
Label(L) I
{debug0)} t |
|

1
GUI I GUI
1

File or sent by program via debugger interface

Wolfgang Schreiner

23




Plotting Algebraic Space Curves by Cluster Computing

User Interface

Formula View State Tree View

<>

> ParentFormula( ) |
PaState Y
= [Prstate ]
o »| PFormulal |
g 3 |
& I State I

— Current — ™ CFormulal B CFormula2 CFormuls

Next
|

r
O B NFormulal |NFormula2 | Ntatel || Nstate2 || Nstate3
NStatel

> NFormulal | [INFormula2 | | |
NState2
~ [NCArmula2 A Y Y Y A
4>V 4>V

Wolfgang Schreiner

24




Plotting Algebraic Space Curves by Cluster Computing

Program /Debugger Interface

e Label set by program:

— label (name) ;

— Denotes checking state (in addition to states of receive operations?)
e Functionality of atomic predicate functions:

— procNumber ()
— getVar (name, procid) (scope?)
— atLabel(name, procid)

— msgNumber (procid), msgSender (procid, %), msgContent(procid)
e Possibly: assert (temporal) formula in current state.

— tassert(formula)
— current state becomes root of tree for checking the formula.

— formula as string (or possibly as object) forwarded to checker.

Wolfgang Schreiner

25




Plotting Algebraic Space Curves by Cluster Computing

Debugger/Checker Interface

e General questions:

— |Is checker external program or linked to debugger?
— If external, own graphical user interface?
e Debugger functionality (used by checker):
— type State = voidx*
pointer that represents program state in debugger

—eval(State state, String f, int x0, ...)
determine value of named atomic formula in denoted state with given values for the mathe-
matical variables free in the formula.

e Checker functionality (used by debugger):

— Determine validity of specification with partial state tree.

— Notify debugger when truth of formula in state has changed (from unknown to true/false).

Wolfgang Schreiner 26




Plotting Algebraic Space Curves by Cluster Computing

Checker Functionality

interface Node

{

// register callback function for value change notification
static void setNodeFormulaNotify(void (*f) (NodeFormula))

// register formula to be checked with current node as root
void setFormula(String f)

static Node topNode() // constructors
Node addChild(State state)
void noMoreChildren()

State getState() // selectors
NodeFormula[] getNodeFormulas()

Wolfgang Schreiner

27




Plotting Algebraic Space Curves by Cluster Computing

Checker Functionality

interface NodeFormula

{
Node getNode ()
Bool3 value()

// node of formula
// value of formula in node

String getString() // string representation of formula

String[] getString(NodeFormula s); // ...before/after subformula s

NodeFormula getParent () // parent formula

NodeFormula[] getPrevious() // previous state formulas

NodeFormula[] getCurrent() // current state formulas
NodeFormulaP[] getNext () // proxy for next state formulas

Wolfgang Schreiner

28




Plotting Algebraic Space Curves by Cluster Computing

Checker Functionality

interface

{

NodeFormulaP

int getNumber () // number of next states
NodeFormula getNodeFormula(int i) // formula for next state i

boolean
boolean

interface
{
boolean
boolean
boolean

allTrue() // formula in all states true?
someFalse() // formula in some state false?

Bool3

isTrue();
isFalse();
isUnknown() ;

Wolfgang Schreiner

29




