A JML Specification of
the Design Pattern “Proxy””*

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz, Austria
Wolfgang.Schreiner@risc.uni-linz.ac.at

April 22, 2009

Abstract

We describe a generic Java framework that implements the software de-
sign pattern “proxy” (in two variants “virtual proxy” and “remote proxy”)
and that is formally specified in the Java Modeling Language (JML). In
addition to the information provided by a typical UML specification of
the pattern, the JML specification exactly describes how a request issued
to the proxy is propagated to the underlying object and how the result is
forwarded from this object to the user of the proxy.

Contents

1 Introduction

2 A Generic Proxy Framework in Java

3 A JML Specification of the Framework

4 Conclusions

A The JML-annotated Java Code
Al Proxy . . . e
A2 Virtual Proxy
A3 Remote Proxy
A4 Example Use

*Supported by the Austrian Academic Exchange Service (OAD) under the contract

HU 14/2009.

Client “<interfaces>
__________ :::" Subject

—13 DoAction() <

delegate

Proxy RealSubject

DaAction]) DoAction()

Figure 1: Proxy in UML (from Wikipedia)

1 Introduction

Like most software design patterns [1], the pattern “Proxy” is typically docu-
mented by a UML diagram (see Figure 1) accompanied by an extensive verbal
description that explains the core idea, gives examples, indicates its applicabil-
ity, outlines possible use cases, and so on. For example, the core description of
Wikipedia on the topic “Proxy pattern” is as follows:

A proxy, in its most general form, is a class functioning as an in-
terface to something else. The proxy could interface to anything: a
network connection, a large object in memory, a file, or some other
resource that is expensive or impossible to duplicate. ...

The following Java example illustrates the “virtual proxy” pattern.

The ProxyImage class is used to delay the expensive operation of
loading a file from disk until the result of that operation is actually
needed. If the file is never needed, then the expensive load has been
totally eliminated. ...

While in [1] the description is much more extensive and covers a dozen pages
or so, the basic style is the same: UML diagrams and informal verbal descrip-
tions aided by examples and code snippets. The only formally precise definition
is represented by the UML diagrams which however typically only cover the
static relationship between the classes/objects that make up the pattern. For
instance, the diagram in Figure 1 says that an Object of type Proxy has a
method DoAction() and owns a reference to an object of type RealSubject

that has the same method; both Proxy and RealSubject thus implement an
abstract interface Subject which is seen by the Client object. What the exact
interpretation of the tag “delegate” in the diagram is (i.e. how the two methods
DoAction() are related) is only covered by the informal verbal description.

“Proxy” is considered as a “structural” design pattern (in contrast to e.g. a
“behavioral” one) i.e. it describes mainly a particular form of code organization
without much interesting behavior described by the pattern itself.

Nevertheless, our goal is to make also the dynamic relationship between the
methods formally precise; for this purpose we encode the pattern in a reusable
Java framework which we formally specify with the Java Modeling Language
(JML), a behavioral interface specification language for Java [3]. The remain-
der of this paper is structured as follows: In Section 2, we sketch the design
of the framework. In Section 3, we discuss the JML specification of the frame-
work. In Section 4, we summarize our experience and present our conclusions.
Appendix A presents the full JML-annotated Java source code.

2 A Generic Proxy Framework in Java

Before developing a JML specification for the “Proxy” pattern, we first have to
decide in which way to formulate the pattern in concrete Java code. One option
is to develop a concrete example application of the pattern and to specify this
application; however, then it is difficult to differentiate between those features
that are fundamental to the pattern and those features that are peculiar for the
particular use of the pattern. On the other side, we cannot remain completely
abstract because a JML specification depends on a concrete interface for proxies
and objects.

As a consequence, we made a decision to fix the action of the basic object
to the concrete method

public R request (T arg);

but make it generic in the argument type T and result type R, i.e. we use a
generic type interface

public interface Subject<T,R>

{

public R request (T arg);

}

Generic types are a feature provided by Java 5 and 6, which are not generally
supported by JML tools. However, the JML type checker jml already provides
an option -G which allows to use also generic types in JML specifications; on
the long term full JML support for generics can be expected.

As for proxies, we provide an interface

public interface Proxy<T,R>

{

public R request (T arg) throws Exception;

}

whose request method is more general than the corresponding method in
Subject in that it also allows the method to throw an exception. This ex-
tension reflects the fact that a proxy is not the same as the underlying object
but that some mechanism is required to delegate requests from the proxy to its
object. This delegation may not work, e.g. if the object cannot be created or
not be located or if the propagation of arguments and results between proxy and
object fails. The proxy can indicate any such situation by raising an exception,
correspondingly also the user of the proxy must expect such an exception (even
if the underlying object does not raise one).

Proxies can be created for various reasons, e.g. for deferring the actual al-
location of the object (a wirtual proxy) or for providing a local representative
for a not directly accessible remote object (a remote prozy). Since these proxies
have different requirements, we provide different implementations of Proxy.

Virtual Proxies A virtual proxy is defined as follows:

public class VirtualProxy<T,R,C> implements Proxy<T,R>

{

private final SubjectCreator<T,R,C> creator;
private final C ref;
private Subject<T,R> vsubject;

public VirtualProxy (SubjectCreator<I',R,C> creator , C ref)

{
this.creator = creator;
this.ref = ref;
this.vsubject = null;
}
public R request (T arg) throws Exception
{
if (vsubject = null) vsubject = creator.create(ref);
return vsubject.request (arg);
}

}

The virtual proxy encapsulates a local reference vsubject to the object to which
the request is delegated. However, the creation of this object is deferred, thus the
proxy needs a description ref of the object and an object creation mechanism
creator such that creator.create(ref) constructs the new object. The type
C of ref is generic, the type of the creator is determined by the generic interface

public interface SubjectCreator<T,R,C>

{
public Subject<T,R> create (C ref);

}

Remote Proxies A remote proxy is defined as follows:

public class RemoteProxy<T,R,C> implements Proxy<T, R>

{
private final SubjectReferer<I',R,C> referer;
private final C ref
public RemoteProxy(SubjectReferer<I',R,C> referer , C ref)
{
this.referer = referer;
this.ref = ref;
}
public R request (T arg) throws Exception
{
return referer.request(ref, arg);
}
}

Like a virtual proxy, also a remote proxy encapsulates an object description ref
of generic type C. However, different from a proxy the object is never locally
created. Rather a referer object is consulted every time a request is issued
to the proxy to forward the request to the remote object denoted by ref. The
interface of referer correspondingly is

public interface SubjectReferer<T ,R,C>
{

}

Example uses of VirtualProxy and RemoteProxy are shown in class Main
in Appendix A.4. Our goal is now to specify in JML the interfaces and classes
described above.

public R request (C ref, T arg) throws Exception;

3 A JML Specification of the Framework

The core problem of the JML specification is to describe that the proxy does
not “make up” the result of a request i.e.

1. that it indeed invokes the request method of the underlying object,
2. that it forwards the received argument without change to the request,
3. that it returns the received result without change to the client.

We attempt a solution to this problem by introducing in interface Subject
three JML model variables (specification-only mathematical variables) calls,
larg, and result that denote the number of invocations of method request,
the argument of the last request, and the result of the last request, respectively.
The method request is annotated appropriately to ensure this information in
the poststate of every call:

public interface Subject<T,R>

{
/+*@Q public instance model int calls;
@ public initially calls = 0;
@x/

/@ public instance model T larg; @x/
/*@ public instance model T lresult; @x/

/@ public normal_behavior
@ assignable \everything;
@ ensures calls = \old(calls)+1;

@ ensures larg =— arg && lresult =— \result;
@x/
public R request (T arg);

}

Next we introduce in interface Proxy a model variable subject that repre-
sents the object behind the proxy. The specification of the normal behavior of
method request make sure that the object’s request method is invoked exactly
once with the argument provided to the proxy’s request method and that the
result is appropriately propagated from the object to the client of the proxy:

public interface Proxy<T,R>

{
/@ public nullable instance model Subject<T,R> subject; @Qx/

/*@Q public normal_behavior
@ ensures subject != null;
@ ensures \old(subject) != null => subject = \old(subject);
©
@ ensures \old(subject) = null => subject.calls = 1;
@ ensures \old(subject) != null =>
@ subject . calls = \old(subject.calls)+1;
@ ensures subject.larg = arg && subject.lresult = \result;
©
@ also public exceptional_behavior
@ assignable \everything;
@ signals (Exception e)
@ (\old (subject) = null =
@ subject = null ||
@ subject.calls = 0 || subject.calls = 1) &&
© (\old (subject) != null =
@ subject = \old(subject) &&
© (subject.calls = \old (subject.calls) ||
@ subject.calls = \old (subject.calls)+1));
@x /
public R request (T arg) throws Exception;

}

The reason that the specification declares subject asnullable (i.e. subject
may be null) is that it does not demand that the subject already exists in the
prestate of the first request. It only demands its existence in the post-state and
that, once it has been allocated, its identity does not change. Therefore various
possibilities have to be considered in the normal poststate depending on the fact
whether the object has already existed in the prestate or not.

Furthermore, the proxy’s request is annotated with an exceptional behavior
which is always enabled and which ensures that the object’s request method is
called at most once. This is because it may happen that the proxy’s request fails
before the object’s method has been invoked or it may fail after the invocation.
Furthermore, the case has to be considered that the object has not yet existed
in the prestate.

Virtual Proxy The specification of class VirtualProxy introduces public
model variables pcreator, pref, psubject represented by the corresponding
private object variables; in the public specification of the constructor and the
request method, the model variables serve as substitutes for the project vari-
ables which (since they are private) cannot be referenced there. Furthermore,
the virtual proxy defines the representation of the model variable subject in
specification Proxy by its actual object variable vsubject.

With these provisions, the constructor can be specified to store the argu-
ments in the object and set its local object variable to null. The request
method specializes the specification inherited from Proxy by indicating that on
first call of the method the new object is derived from the result of the creator
with which the proxy has been initialized:

public class VirtualProxy<T,R,C> implements Proxy<T,R>

{
/@ public model SubjectCreator<T,R,C> pcreator; Qx/

private final SubjectCreator<T,R,C> creator; /+«@Q in pcreator; Qx/
/*@Q private represents pcreator <— creator; @/

/*@ public model C pref; @Qx/
private final C ref; /«@Q in pref; Qx/
/*@Q private represents pref <— ref; @Qx/

/*@ public model Subject<T,R> psubject; @/
/*@ nullable @«/ private Subject<T,R> vsubject; /*@Q in psubject; @Qx/
/*Q@Q private represents psubject <— vsubject; @x/

/*@Q private represents subject <— vsubject; @x/

/*@Q public normal_behavior
@ assignable pcreator, pref, psubject;

@ ensures pcreator = creator && pref =— ref && psubject = null;
@x /
public VirtualProxy (SubjectCreator<T',R,C> creator , C ref)

{

this.creator = creator;
this.ref = ref;
this.vsubject = null;

}

/*@Q also public normal_behavior
@ assignable \everything;

@ ensures \old(psubject) = null =—>
@ pcreator.calls = \old(pcreator.calls)+1 &&
@ pref = pcreator.larg && psubject = pcreator.lIresult;
@sx/
public R request (T arg) throws Exception
{
if (vsubject = null) vsubject = creator.create(ref);
return vsubject.request (arg);
}

}

The specification of interface SubjectCreator is similar to that of Subject
in that it introduces model variables to denote the number of invocations of
create and the argument and the result of the last invocation:

public interface SubjectCreator<T,R,C>

{
/*@Q public instance model int calls;
@ public initially calls = 0;
@x/
/@ public instance model C larg; @Qx/
/*@ public instance model C lresult; @Qx/
/*@Q public normal_behavior
@ assignable \everything;
@ ensures \result != null && \fresh (\result);
@ ensures calls = \old(calls)+1;
@ ensures larg = ref && lresult = \result;
@sx/
public Subject<T,R> create (C ref);
}

Remote Proxy Similar to VirtualProxy, also RemoteProxy introduces pub-
lic model variables for the private object variables for use in the public speci-
fications. The specification variable subject is now represented by looking up
among the objects known to the referrer object that with the name (p)ref (see
the explanation below). The constructor is specified to store its arguments in
the proxy; the request method is specified to invoke the referrer object with
the stored object reference and the argument to the request:

public class RemoteProxy<T,R,C> implements Proxy<T, R>

{

/*@ public model SubjectReferer<T,R,C> preferer; @x/
private final SubjectReferer<T,R,C> referer; /+«@Q in preferer; Qx/
/+*Q@Q private represents preferer <— referer; @x/

/*@ public model C pref; @x/
private final C ref; /«Q@Q in pref; Qx/
/*@Q private represents pref <— ref; @x/

/*@Q public represents subject <—
@ (Subject<T,R>)(preferer.subjects.get(pref)); @x/

/*@Q public normal_behavior
@ assignable preferer, pref;

@ ensures preferer = referer && pref = ref;

@x/
public RemoteProxy(SubjectReferer<T',R,C> referer , C ref)
{

this.referer = referer;

this.ref = ref;
}

/@ also public normal_behavior
@ assignable \everything;
@ ensures preferer.calls = \old(preferer.calls)+1;
@ ensures pref = preferer.lref && arg = preferer.larg;
@ ensures \result = preferer.lresult;
@x/
public R request (T arg) throws Exception

{

}
}

The interface SubjectReferer introduces as usual model variables for the
number of invocations of request and for the arguments and the result of
the last request, respectively. Furthermore, it introduces a model variable
subject representing a mapping of an object name of type C to an object
of type Subject<T,R>. This mapping is of raw type HashMap (rather than
HashMap<C,Subject<T,R>>) because the jml type checker uses a non-generic
definition of HashMap.

In the specification of the normal behavior of request, we introduce a local
specification variable subject to denote the object referenced by ref in subject
and demand that this object does actually exist (i.e. subject is not null). As
usual, the number of calls and the last argument and result are preserved. More
important, we demand that the request method of subject is invoked with
the argument of the proxy request and that its result is returned to the client
of the proxy.

public interface SubjectReferer<T ,R,C>
{

return referer.request(ref, arg);

/*@ public instance model HashMap subjects; @x/

/+*@Q public instance model int calls;
@ public initially calls = 0;
@x/

/@ public instance model C Iref; @x/
/*@ public instance model C larg; @/
/*@ public instance model C lIresult; @/

~
*
)

public normal_behavior

forall Subject<C,R> subject;

requires subject = subjects.get(ref) && subject != null;
assignable \everything;

ensures calls = \old(calls)+1;

ensures lref = ref && larg = arg && lresult = \result;
ensures subject.calls = \old(subject.calls)+1;

ensures subject.larg = arg && subject.lresult = \result;

also public exceptional_behavior
forall Subject<C,R> subject;

requires subject = subjects.get(ref) && subject != null;

assignable \everything;

signals (Exception e) subject.calls = \old(subject.calls) ||
subject.calls = \old(subject.calls)+1;

also public exceptional_behavior
forall Subject<C,R> subject;
requires subject = subjects.get(ref) && subject = null;
assignable \nothing;
signals (Exception e) true;
@x /
public R request (C ref, T arg) throws Exception;

©POOOPOEODOOPOOOODOOODOOOOMOO

}

The exceptional behavior of request may be triggered if no object named
ref is known to the referrer; in this case the specification does not allow any
state change (but this is not really a core requirement).

Caching Proxies Since the request method specified in Subject allows global
state changes, the specification does not allow to “cache” the results of previous
requests and return them without invoking the method. For such a form of
proxy, one might derive from Subject a special interface PureSubject where
the request denotes a pure mathematical function; correspondingly one might
define an interface CachingProxy which drops the requirement that the ob-
ject’s request method is invoked on every request issued to the proxy. Since
our definition of Proxy is not generic on the subject type, CachingProxy would

10

be the origin of another proxy hierarchy with implementations of new classes
VirtualCachingProxy and RemoteCachingProxy not related to the proxy classes
defined above. More research, however, might reveal a better class structure that
allows to make non-caching proxies subclasses of caching proxies.

4 Conclusions

The JML specification of the structural design pattern “Proxy” mainly relates
a call of a “proxy” object to a call of an underlying object by ensuring that
the result of the proxy is not “made up” but derived from actually invoking the
underlying object’s request method. For this purpose, we have introduced in
the specification additional model variables that allow to ensure that a partic-
ular method is invoked and to remember the argument and result of the last
invocation. Thus it becomes possible to relate the specification of one method
call to the specification of another one, something which is not possible by URL
class/object diagrams alone.

One can consider this technique as the special case of a “history variable” [2]
that records previous states; we might e.g. use a vector to remember all previous
invocations of a method (and not just the last one). In this way, it would
also become possible to relate one method invocation to sequences of previous
method invocations. It is, however, unclear whether this is really the appropriate
way to formulate temporal properties of programs. As an alternative, e.g. a
temporal logic extension of JML has been proposed [4] that operates on a higher
level to describe sequences of program events (where an event is e.g. calling
a particular method or returning from a particular method). However, this
extension is expressed in a propositional logic framework which does not allow
to refer to the variables of a previous state; thus specifications like the ones
presented in this paper are not yet possible.

Our experience is currently still limited to the specification of the one design
pattern presented in this paper; further work will reveal whether JML is a
generally applicable framework for design pattern specification.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Pearson Education, 1995.

[2] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison Wesley, 2002.

[3] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design
of JML: A Behavioral Interface Specification Language for Java. Technical
Report 98-06y, Department of Computer Science, Iowa State University,
June 2004. See www. jmlspecs.org.

11

[4] Kerry Trentelman and Marieke Huisman. Extending JML Specifications

with Temporal Logic. In Algebraic Methodology And Software Technology
(AMAST’02), St. Gilles les Bains, Reunion Island, France, September 9-
18, volume 2422 of Lecture Notes in Computing Series, pages 334—348.
Springer, 2002.

A The JML-annotated Java Code
A.1 Proxy

package patterns.proxy;

/**

* An interface to an object for which a proxy may be supplied.

* @author Wolfgang Schreiner < Wolfgang. Schreiner@risc.uni—linz.ac.at>

*

x @param <T> the type of the argument of the object’s request method.

* @param <R> the type of the result of the object’s request method.
***/

public interface Subject<T,R>

{

/%% the number of calls of the request method xx/
/+*@ public instance model int calls;

@ public initially calls = 0;

@x/

/*% the argument of the last request xx/
/+*@ public instance model T larg; @Qx/

/** the result of the last request xx/
/*@Q public instance model T lresult; @x/

[3¢ 3 o o o o o o o s ok oK KKK KKK R KK K K K 3 o o 5K 5K 3K oK oK oK SR KKK KKK K KR H KK K K K K o o o oK oK oK ok oK oK oK KKK KK KRR
* Perform a request.

The method increases the specification’s call counter and sets the
specification variables to remember the argument and result.

* X ¥ X ¥

@param arg the argument to the request

% @return result the request result.

st sk sk s sk sk sk ok sk ok sk ok sk sk ok sk ok K s sk sk sk ok K sk ok sk ok K s ok sk ok ok ok sk sk ok K sk sk sk sk sk sk ok sk ok K sk ok sk ok K sk sk sk sk ok K sk ok sk ok sk ok sk ok ko ok /
/@ public normal_behavior

@ assignable \everything; // allow global effects

@ ensures calls = \old(calls)+1; // increase call counter

@ ensures larg == arg && lresult == \result; // remember argument/result
@x/

public R request (T arg);

}

package patterns.proxy;

/**

* A proxy for another object of type Subject<T,R>

12

@author Wolfgang Schreiner &1t ; Wolfgang. Schreiner@risc.uni—linz.ac. at>

* ¥ ¥ ¥

@param <T> the type of the argument of the object’s request method.
* @param <R> the type of the result of the object’s request method.
***/
public interface Proxy<T,R>
{
/35 sk ok ok sk sk sk ok sk sk sk sk ok sk sk sk sk sk ok sk sk ok sk ok K s sk sk sk ok R sk ok sk ok sk s ok sk sk ok R sk sk sk ok Kk sk sk sk ok R sk ok sk ok K sk ok sk ok K K sk sk sk ok K ok sk ok ok
* a specification of the actual subject behind this proxy.
S Sk K KKK KK KKK KK R R R R R R K ok oK oK oK oK oK SR SR KKK KK KKK KKK K K K R R R K oK ok oK oK oK oK oK oK SR SRR KKK KKK Rk ok

/@ public nullable instance model Subject<T,R> subject; @Qx/

[sk ok ok sk sk sk ok sk sk sk sk ok ok sk ok sk ok sk s ok sk ok Kk sk sk sk ok R s ok sk ok sk sk sk sk ok R sk ok sk ok sk sk sk ok ok sk ok sk ok sk sk sk ok ok K sk ok sk ok ok ok koK ok
* the proxy request method; ensures that the subject’s request method

is called with the proxy’s request argument and that its result is
returned by the proxy request.

However, the proxy request method may also throw an exception indicating
that it was for some reason not possible to get a result from an
invocation of the subject’s method (either the method could not

be invoked or its result could not be retrieved).

@param arg the request argument

@return result the request result

* @throws Exception a exception indicating why the proxy call failed
***/
/@ public normal_behavior

* X X X ¥ X ¥ ¥ ¥ *

// side effects are allowed
assignable \everything;

// if the call returns normally, the subject’s request method was called

ensures subject != null;

ensures \old(subject) != null => subject = \old(subject);

ensures \old(subject) = null => subject.calls = 1;

ensures \old(subject) != null => subject.calls = \old(subject.calls)+1;

// the subject’s request method was called with the given argument
// and we return its result
ensures subject.larg = arg && subject.lresult = \result;

// in the exceptional case we may or may have not called the method
// side effects are also allowed

also public exceptional_behavior

assignable \everything;

signals (Exception e)

©POOPOPPOPOOOOODOPOOOOOOOOOOOMO

(\old (subject) = null =
subject = null || subject.calls = 0 || subject.calls = 1) &&
(\old (subject) != null =>
subject = \old (subject) &&
(subject.calls = \old(subject.calls) ||
subject.calls = \old (subject.calls)+1));

@x/
public R request (T arg) throws Exception;

}

13

A.2 Virtual Proxy

package patterns.proxy;

[/ 3 sk sk ok sk ok ok sk ok ok ok sk sk sk sk sk sk ok ok ok ok KKK K K K R R 3R ok ok ok ok ok ok ok ok ok ok Sk SR SR SR KKK KRR K K K K K R R R ok ok ok ok ok ok ok ok ok ok Sk KK KKK K K K
* The creator of an object for which a proxy may be supplied.

x @author Wolfgang Schreiner < Wolfgang.Schreiner@risc.uni—linz.ac.at>
*
* @param <T> the type of the argument of the object’s request method.
x @param <R> the type of the result of the object’s request method.
stk ok ok kK K K K K R R R o ok ok ok ok ok ok ok ok ok sk sk ok kKRR R K K K K K R R R o ok ok ok ok ok ok ok ok ok ok Sk SR SR KKK KKK K K K K K K K R ok ok ok ok ok ok ok ok ok o/
public interface SubjectCreator<T,R,C>
{
/*% the number of calls of the create method %%/
/@ public instance model int calls;
@ public initially calls = 0;
@x/

/*% the argument of last call of create *x/
/%@ public instance model C larg; @Qx/

/*x the result of last call of create *x/
/*@Q public instance model C lresult; Q@x/

/**
*+ Create a subject from a description.

* @param ref a description of the subject.

* @return the object (not null)
***/
/+*@ public normal_behavior

@ assignable \everything; // global state may be changed

@ ensures \result != null && \fresh(\result); // a new object is returned
@ ensures calls = \old(calls)+1; // count call

@ ensures larg = ref && lresult = \result; // remember effect of call
@x/

public Subject<T,R> create(C ref);
}

package patterns.proxy;

/3 3 3 3 o o ok ok ok ok ok ok ok ok ok KKK KKK K KR K R K K ok oK oK ok oK oK oK K SR KKK KKK KKK R KRR K K K sk ok ok oK oK oK KK KKK KRR R K
x A virtual proxy, i.e. a proxy (@see patterns.proxy.Proxy) which defers
x creation of the object until the first invokation of an object request.

@author Wolfgang Schreiner &1t ; Wolfgang. Schreiner@risc.uni—linz.ac.at>

@param <T> the type of the argument of the object’s request method.

@param <R> the type of the result of the object’s request method.

*x @param <C> the type of the object description (used for object creation).
stk KK KK K K R R R oK ok oK oK oK oK oK K SR KKK KKK KKK KK R R R R 3 oK ok ok ok ok ok oK oK SR KSR SRR KKK KK KK K K K Kk ok ok ok ok ok ok ok ok k[
public class VirtualProxy<T,R,C> implements Proxy<T,R>

{

* X ¥ X ¥

/+* the creator of the subject xx/

/+*@ public model SubjectCreator<T,R,C> pcreator; Qx/

private final SubjectCreator<T,R,C> creator; /+@Q in pcreator; @/
/*Q private represents pcreator <— creator; Qx/

14

/*% a description of the subject x*x/
/@ public model C pref; @Qx/

private final C ref; /+#Q in pref; Qx/
/+«@ private represents pref <— ref; Qx/

/** the subject itself (null, if not yet created *=x/

/+*@ public model Subject<T,R> psubject; @x/

/@ nullable @x/ private Subject<T,R> vsubject; /*@Q in psubject; Qx/
/+*@ private represents psubject <— vsubject; @x/

/***
* the representation of the specification’s subject

SRR KRR KK K K K K R K K oK K K K K KKK KKK KKK KKK K o oK 3K 3K oK oK oK K K KKK KKK KR K K K K K o ok oK ok ok ok %/
/*Q private represents subject <— vsubject; @Qx/

[skt s sk ok ok sk s sk sk ok ok sk sk sk ok sk sk sk ok Rk sk ok kR R R sk ok K sk sk otk R sk ok R R sk sk kR sk sk ok K sk sk ok ok R sk koK K sk ok ok ok
x* Create a virtual proxy from an object creator and an object description.

x The actual object creation is delayed until the proxy’s request () method
* is invoked.

* @param creator of an object

s sk oK KRR KKK K K R R R R R R ok ok ok ok ok ok ok ok sk Sk KKK KR K KKK K K K K R R R R ok ok ok ok ok ok ok ok ok ok SR SRR KK KKK Rk %
/@ public normal_behavior

@ assignable pcreator, pref, psubject;

@ ensures pcreator == creator && pref = ref && psubject = null;

@x/
public VirtualProxy (SubjectCreator<T,R,C> creator, C ref)

{

this.creator = creator;
this.ref = ref;
this.vsubject = null;

}

/35 sk sk ok sk sk sk ok sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk ok K sk ok sk ok sk s ok sk sk ok s sk sk sk ok K sk sk sk sk ok K sk ok sk ok sk sk ok sk sk ok sk sk sk ok Kk ok ok ok ok
* An implementation of the proxy request (@see patterns.proxy.Proxy.request)
x* If the object has not yet been created, it is created now.

% @param arg the request argument
* @return result the request result
stk ok sk ok sk sk ok sk ok sk ok ks ok sk ok ok s sk sk sk ok R s ok sk ok ok ok sk ok ok R sk sk sk ok sk s ok sk ok sk sk ok sk ok sk ok sk ok Kk sk sk sk ok K sk ok sk ok sk ok skok ok ok /

/+#@ also public normal_behavior

@ assignable \everything;

@ ensures \old(psubject) = null =>

@ pcreator. calls = \old(pcreator.calls)+1 &&

Q@ pref = pcreator.larg && psubject = pcreator.lresult;
Q@x/

public R request (T arg) throws Exception

if (vsubject = null) vsubject = creator.create(ref);
return vsubject.request(arg);

}
}

package patterns.proxy;

]33 3 o o o o sk sk sk ok ok ok sk ok ok KKK KKK KK KKK R R R R R ok ok sk ok ok oK oK oK SR SR SR SRR KKK KKK KKK R R R R o sk sk ok ok ok ok ok oK KKK KKK R K
x A factory for the creation of virtual proxies

* (@see patterns.proxy.VirtualProxy).

*

15

@author Wolfgang Schreiner &1t ; Wolfgang. Schreiner@risc.uni—linz.ac.at>

@param <T> the type of the argument of the object’s request method.

@param <R> the type of the result of the object’s request method.

x @param <C> the type of the object description (used for object creation).
***/

* ¥ ¥ ¥

public class VirtualProxyFactory<T,R,C>

{

}

/
/

/*% the creator for this factory %/

/+*@ public model SubjectCreator<T,R,C> pcreator; @x/
private SubjectCreator<T,R,C> creator; /*@Q in pcreator; @Qx/
/+*@ private represents pcreator <— creator; @x/

[sk ok ok sk sk sk ok sk sk sk sk ok ok sk ok sk ok sk s ok sk ok Kk sk sk sk ok R s ok sk ok sk sk sk sk ok R sk ok sk ok sk sk sk ok ok sk ok sk ok sk sk sk ok ok K sk ok sk ok ok ok koK ok
* Create a virtual proxy using the denoted object creator.

% @param creator the creator that will be used for creating objects.
***/
/+*@ public normal_behavior

@ assignable pcreator;

@ ensures pcreator = creator;

@x/
public VirtualProxyFactory (SubjectCreator<T,R,C> creator)
{

this.creator = creator;

}

[3k sk sk sk sk sk sk sk sk sk sk sk ok ok KKK KK KKK KKK R R R 3 ok ok sk ok ok ok ok oK oK SR SR SRR KKK KKK KKK KRR R R sk sk ok ok ok ok ok oK KKK KKK KR K
* Get a virtual proxy that allocate its objects with the denoted description.
* @param ref the description of the object.

% @return a proxy that creates its object with the denoted description.
s sk stk KRR KKK K K R R R R o ok ok ok ok ok ok ok ok ok ok sk ks K K K K R R R oK ok ok ok ok ok ok ok ok ok ok Sk SR KKK K KKK K K Rk % [

/@ public normal_behavior

@ assignable \nothing;
@ ensures \fresh(\result);
@ ensures \result.pcreator = pcreator && \result.pref = ref;
@x/
public VirtualProxy<T,R,C> getProxy(C ref)
{

return new VirtualProxy<T,R,C>(creator, ref);

}

A.3 Remote Proxy

package patterns.proxy;

*@ model import java.util.HashMap; @/

ok KK R K K KK K K K R K K K K K K K K KK K KK K KK K KK KKK K KK KKK R K K KK KK K K oK K K K K K K K K K K K K KK R KK KKK Rk K
* The referer to an object for which a proxy may be supplied.

* @author Wolfgang Schreiner < Wolfgang. Schreiner@risc.uni—linz.ac.at>

*

* @param <T> the type of the argument of the object’s request method.

x @param <R> the type of the result of the object’s request method.

sk sk s sk sk sk ok o sk sk ok ok K sk ok sk ok ks ok sk sk ok sk ok sk sk ok K sk sk sk ok sk sk sk sk sk ok sk sk ok sk ok K sk sk sk sk sk sk sk sk sk ok sk sk ok sk ok K sk ok sk ok ok K sk sk sk ok K skok ok ok ok /

public interface SubjectReferer<T,R,C>

16

[3% 3 sk ok ok sk sk ok ok ok sk ok ok KKK KKK KK KRR R R R R ok ok ok ok ok oK oK oK SR KKK KKK KKK KK KRR R K sk sk ok ok oK oK oK KKK KKK KRR K
* a specification of the actual subjects behind this proxy.
**>(</

/+*@ public instance model HashMap subjects; @x/ // HashMap<C,R> not supported by JML toc

/** the number of calls of the request method xx/
/+*@ public instance model int calls;

@ public initially calls = 0;

@x/

/+* the object reference in the last call of request xx/
/+*@ public instance model C lref; @Qx/

/*% the argument in the last call of request %%/
/*@ public instance model C larg; @x/

/*% the result of last call of create %/
/*@Q public instance model C lresult; @x/

/**
*+ Execute the request of an object identified by a reference.

% @param ref the reference to the object.

% @param arg the argument to the request.

% @return the result of the request.

* @throw Exception if the request could not be performed.
***/
/@ public normal_behavior

forall Subject<C,R> subject;

requires subject == subjects.get(ref) && subject != null;

assignable \everything; // global state may be changed

// count call and remember its effects
ensures calls = \old(calls)+1;
ensures lref = ref && larg = arg && lresult = \result;

// delegate request to object
ensures subject.calls = \old (subject.calls)+1;
ensures subject.larg = arg && subject.lresult = \result;

// allow exception at any time (object may not have been called)
also public exceptional_behavior
forall Subject<C,R> subject;

requires subject == subjects.get(ref) && subject != null;

assignable \everything;

signals (Exception e) subject.calls = \old(subject.calls) ||
subject.calls = \old(subject.calls)+1;

// also right object might not exist

// (we ignore that it may also not have right type due to
// lack of type parameters for HashMap)

also public exceptional_behavior

forall Subject<C,R> subject;

requires subject == subjects.get(ref) && subject = null;
assignable \nothing; // do not allow any state change then
signals (Exception e) true;

*/

©OPPPOPOOPPLOPPPOOPPLPOPOOPOOOOOOOOO

17

}

public R request(C ref, T arg) throws Exception;

package patterns.proxy;

/

Kok KoK KK oK KK K KK K KK K KK K KK KK K KKK KK K KK K KK R KK KK K KK K KK S KK K oK K K KK K K K oK K K oK oK K K KK K KK K K R K K
* A remote proxy, i.e. a proxy (@see patterns.proxy.Proxy) which serves

as a local substitute for a proxy that can be only referenced by

an address—independent reference (i.e. a unique identifier).

@author Wolfgang Schreiner &1t ; Wolfgang. Schreiner@risc.uni—linz.ac.at> ;

@param <T> the type of the argument of the object’s request method.

@param <R> the type of the result of the object’s request method.

*x @param <C> the type of the object reference (used for object identification).
**>(</

* X X X ¥ X ¥

public class RemoteProxy<T,R,C> implements Proxy<T,R>

{

/#*#% the mechanism by which the object is referenced xx/

/*@Q public model SubjectReferer<I',R,C> preferer; @x/

private final SubjectReferer<T,R,C> referer; /+Q in preferer; @Qx/
/+*@ private represents preferer <— referer; @x/

/** the name by which the object is refererenced *x/
/+*@ public model C pref; @Qx/

private final C ref; /+#@Q in pref; Qx/

/+*@Q private represents pref <— ref; Qx/

// representation of the proxy object
/+*@ public represents subject <—
@ (Subject<T,R>)(preferer.subjects.get(pref)); Q@x/

[sk ok sk sk sk ok sk sk sk sk ok ok sk sk ok sk ok sk sk ok sk ok ok sk ok sk ok sk ok sk ok s sk sk ok KR sk ok sk ok R s ok sk sk sk ok sk ok sk ok sk ok sk sk ok ok ok sk ok ok ok ok
*+ Creates a remote proxy.
%+ @param referer the referer mechanism.
% @param ref the unique name of the object.
SR KKK KKK K KR K K R R K K K oK oK K K K SR KKK KKK KKK KRR R K o ok ok ok ok oK oK oK KKK KKK KK K R K K ok ok ok ok ok %/
/+*@ public normal_behavior
@ assignable preferer, pref;
@ ensures preferer = referer && pref = ref;
@x/
public RemoteProxy(SubjectReferer<T',R,C> referer , C ref)
{
this.referer = referer;
this.ref = ref;

}

[3k sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok oK K KK KKK KRR R R R ok ok ok ok ok ok ok ok sk ok SR SR SRR KKK KRR KK K R R R R R R ok sk ok ok ok ok ok ok KRR KKK K K
* An implementation of the proxy request (@see patterns.proxy.Proxy.request)
* by invoking the referer mechanism.

% @param arg the request argument

% @return result the request result

stk sk sk sk sk sk ok sk ok sk ok sk ok ok sk ok K s sk sk sk ok K sk ok sk ok ks ok sk ok ok ok sk sk ok K sk sk sk sk sk sk ok sk ok sk ok sk ok K sk sk sk ok ok K sk ok sk ok K sk ok sk ok ko ok /
/+*@ also public normal_behavior

@ assignable \everything;

@ ensures preferer.calls = \old(preferer.calls)+1;
@ ensures pref = preferer.lref && arg =— preferer.larg;
@ ensures \result = preferer.lresult;

18

@x/
public R request (T arg) throws Exception

{

return referer.request(ref, arg);

}

package patterns.proxy;

/3 3 3 o ok o ok sk sk sk sk ok ok sk sk ok kKK KK KK KKK K R R R R oK ok ok ok ok ok ok oK oK SR SR SR SRR KKK KR KK KK KRR R R o ok sk ok ok ok ok ok oK SR KKK KK K R K
x A factory for the creation of remote proxies
* (@see patterns.proxy.RemoteProxy).

@author Wolfgang Schreiner &1t ; Wolfgang. Schreiner@risc.uni—linz.ac.at>

@param <T> the type of the argument of the object’s request method.

@param <R> the type of the result of the object’s request method.

x @param <C> the type of the object reference (used for object lookup).
***/
public class RemoteProxyFactory<T,R,C>

{

EE S S I

/+*@public model SubjectReferer<T,R,C> preferer; @Qx/
private SubjectReferer<T,R,C> referer; /+Q in preferer; Qx/
/+x@private represents preferer <— referer; @Qx/

[35 sk sk sk sk sk sk sk sk sk sk sk sk ok sk KKK KK KKK KK R R R 3R ok ok ok ok ok ok ok ok ok oK SR SR SRR KKK KKK KK KR R R R R sk sk ok ok ok ok ok Sk KKK KKK K K
*+ Create a remote proxy using the denoted object referer

* @param referer the reference mechanism for looking up objects.

st ok ok sk sk sk ok ok sk ok sk ok sk sk ok sk ok K sk sk sk ok R sk ok sk ok ks ok sk ok ok R sk sk sk ok ks ok sk ok ok sk ok sk ok sk ok sk ok Kk sk sk sk ok R sk ok sk ok sk sk ok skok ok ok /
/+#@ public normal_behavior

@ assignable preferer;

@ ensures preferer = referer;

@x/
public RemoteProxyFactory (SubjectReferer<T',R,C> referer)

{

this.referer = referer;

}

[3¢ 3 o o o s o o o s ok oK SRR KKK KRR KK K K 3 3 o oK 5 5K 3K oK oK oK K KKK KKK KRR R K K K K o o o 3K 3K oK oK oK oK K KKK KK KRR
* Get a remote proxy that refers to its objects with the denoted referer.
* @param ref the description of the object.
% @return a proxy that refers to the object with the denoted description.
SRR K KKK K K K K K R K oK oK oK K K K KKK KKK KKK KKK K K K o o oK 3k ok ok oK oK KKK KKK KR K K K K K K o ok ok oK ok ok ok %
/+*@ public normal_behavior
@ assignable \nothing;
@ ensures \fresh (\result);
@ ensures \result.preferer = preferer && \result.pref = ref;
@x/
public RemoteProxy<T,R,C> getProxy (C ref)
{
return new RemoteProxy<T,R,C>(referer , ref);
}
}

A.4 Example Use

package patterns.proxy;

19

import java.util.x;
3 3 3 s o o ok ok sk sk sk ok sk sk sk ok kKKK KKK KKK KR R R R R ok ok ok ok ok ok oK oK oK SR SR SRR KKK KKK KK KRR R R R ok sk ok ok ok ok ok oK KKK KKK R K
x* A test of the implementation of the proxy pattern.

* Passes jml type check except that there are errneous complaints of the form

The type of right—hand side of a represents clause, ”java.lang.Integer”,
is not assignment—compatible to the type of left—hand side, ”T” [JML]

(i.e. type instantiation is not handled appropriately by JML).

¥ X X X ¥ ¥

x @author Wolfgang Schreiner < Wolfgang.Schreiner@risc.uni—linz.ac.at>
***/
public final class Main

{

public static void main(String [] args)
{

testVirtualProxy ();

testRemoteProxy ();

}

private static void testVirtualProxy ()
{
VirtualProxyFactory<Integer ,Integer ,Integer> cfactory =
new VirtualProxyFactory<Integer ,Integer ,Integer >(new CounterCreator ());
System.out. println (”creating _proxy”);
Proxy<Integer ,Integer> p = cfactory.getProxy(new Integer (3));
System.out. println (”proxy_created”);
try{
for (int 1=0;i<3;i++) System.out.println(p.request (new Integer (2)));
}

catch(Exception e){ System.out.println(e);}

}

private static void testRemoteProxy ()

{
CounterReferer creferer = new CounterReferer ();
creferer.add(”a”, 2);
creferer.add(”b”, 3);
RemoteProxyFactory<Integer ,Integer ,String> cfactory =

new RemoteProxyFactory<Integer ,Integer ,String >(creferer);

Proxy<Integer ,Integer> p = cfactory.getProxy(”a”)
Proxy<Integer ,Integer> q = cfactory.getProxy(”b”);
Proxy<Integer ,Integer> r = cfactory.getProxy(”c”);
try{
for (int i=0;i<3;i++) System.out.println(p.request (new Integer (2)));
for (int i=0;i<3;i++) System.out.println(q.request (new Integer (2)));
for (int i=0;i<3;i++) System.out.println(r.request(new Integer (2)))

)

)

catch(Exception e){ System.out.println(e);}

}

private static class Counter implements Subject<Integer ,Integer>

{

private int counter;

20

// representation of the specification—only model fields
/+*@ private ghost int gcalls = 0;
private represents calls <— gcalls;

Q
Q
@ private ghost Integer garg;

@ private represents larg <— garg;
Q

Q

private ghost Integer gresult;
private represents lresult <— gresult;

@x /

©

public Counter(int counter)

{

this.counter = counter;

public Integer request(Integer arg)

{

//@Q set gcalls = gcalls+1;
//@Q set garg = arg;

counter = counter + arg.intValue ();
Integer i = new Integer (counter);
//@Q set gresult = i;

return i;

}

public int getCounter ()

{

return counter;

}
}

private static class CounterCreator implements
SubjectCreator<Integer ,Integer ,Integer>

// representation of the specification—only model fields
/+*@ private ghost int gcalls = 0;

@ private represents calls <— gcalls;

@

@ private ghost Integer garg;

@ private represents larg <— garg;

@

@ private ghost Counter gresult;

@ private represents lresult <— gresult;
@« /

public Counter create(Integer start)

{
//@set gcalls = gcalls+1;
//@set garg = start;
System.out.println (” counter.created”);

Counter ¢ = new Counter(start.intValue ());
//@set gresult = c;
return c;

}
}

private static class CounterReferer implements
SubjectReferer<Integer ,Integer ,String>

21

// HashMap<Integer ,Integer> not supported by JML tools
private static HashMap counters = new HashMap ();
/+*@ private represents subjects <— counters; Qx/

// representation of the specification—only model fields
/+@ private ghost int gcalls = 0;

@ private represents calls <— gcalls;
Q

@ private ghost String gref;

@ private represents lref <— gref;

Q

@ private ghost Integer garg;

@ private represents larg <— garg;

Q

@ private ghost Integer gresult;

@ private represents lresult <— gresult;
@« /

public CounterReferer ()

{
}

public void add(String name, int init)

{
}

private CounterReferer (String name, int init)

{

new CounterReferer (name, init);

Counter ¢ = new Counter(init);
counters.put(name, c);

}

public Integer request(String ref, Integer arg) throws Exception

{
//@Q set gcalls = gcalls+1;

//@Q set gref = ref;
//@Q set garg = arg;

Counter ¢ = (Counter)counters.get(ref);

if (¢ = null) throw new Exception(”no_such._counter:.” + ref);
Integer i = c.request(arg);

//@Q set gresult = i;

return i;

22

