A Registry Service as a Foundation for Brokering Mathematical

Services

Rebhi Baraka Olga Caprotti
Wolfgang Schreiner *
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, Linz, Austria
{rbaraka,ocaprott,schreine }@risc.uni-linz.ac.at

February 2004

Abstract

In this report, we present our results of developing a framework for publishing and discovering

mathematical service descriptions in a registry. The registry is based on and extends the eb XML
registry to handle mathematical service descriptions based on the MSDL specification developed
in the framework of the MathBroker project. This work serves our ultimate goal to produce a
“semantic broker” where services register their problem solving capabilities and clients submit
task descriptions; the broker then determines the suitable services and returns them to the client

for invocation.

Contents

1 Introduction 2

2 Information Model 4
2.1 Architecture 4
2.2 TImplementation oL e e e 6

3 ebXML Registry and Information Model 6
3.1 JAVA API for XML Registries (JAXR) 6
3.2 ebXML Registry Architecture oL o 7
3.3 ebXML Registry Information Model L. 8

4 Extending ebXML Registry to MathBroker 9
4.1 MathBroker Information Model and its Registry Implementation 9
4.2 MathBroker Associationso 11
4.3 Classification of mathematical objects L L. 12
4.4 MathBroker Registry Architecture 0 L. 14

*This work was sponsored by the FWF Project P15183 “A Framework for Brokering Distributed Mathematical

Services”.

5 Publishing and Querying in MathBroker Registry 16

5.1 A Sample Service Description oL e 16
5.2 Publishing to the Registry L oo 17
5.3 Querying the Registry o 17
6 Conclusion 19
A A Sample MSDL Service Description (risch.xml) 19
B Publish and Query Examples 21
B.1 Publish Example oL 21
B.2 Query Example Lo 24
C MathBroker Registry API 26
C.1 Interfaces o e e e e e 26
C.2 Classes v v v i i e e e e 32

1 Introduction

Interest from the mathematical community in using the Internet and the Web to facilitate the use of
mathematics has paved the way for the emergence of mathematical web services. A mathematical
web service can be defined in line with the definition of a web service as a description of a solution
to a mathematical problem that is available on the Web and can be accessed by a user or another
service or program. This description may contain information related to algorithm(s) used to solve
the problem, type of problem, related problems, machines executing the problem, etc.

Mathematical web services need to be advertised by developers and discovered by users. There
have been several approaches to achieving this goal. MONET [9] investigates how service discovery
can be performed for mathematical Web services. It presents the following process of discovering
and then invoking a service:

e Registration: The services register their capabilities, access policies, etc., with the broker’s
service manager.

e Inquiry: The client sends a description of the kind of service it is looking for to the broker.
This description may be generic (e.g., something like ”find me a service that performs definite
integration”), or specific (e.g., "find me a service to solve the problem”).

e Analysis: The planning manager inside the broker analyzes the problem and extracts the
criteria on which to select a service, which it then matches against the registry maintained
by the service manager. If it finds one or more possible matches there, details are returned
to the client along with an indication of how closely they fit its requirements.

e Selection: The client selects a suitable service and requests access to it via the broker’s service
manager. What this entails depends on the access policies of the service and the particular
service infrastructure being used. In the case of grid services, for example, where every
abstract service is actually a factory, a new service instance would be generated and a handle
returned to the client.

e Connection: If access is granted, then the client initiates a connection to the service.

A major goal of the Semantic Web [15] is to provide service discovery. Service descriptions
is presented in formal languages or ontologies whose meaning is well defined and unambiguous.
Given a set of service descriptions and a job specification written using a suitable collection of
ontologies, a software agent takes care of selecting the appropriate service for the job and facilitates
the interaction between the client and the service.

In the MathBroker project [8] our approach was to accomplish the goal of publishing and
discovering such services using a registry. A (mathematical) registry provides a set of functionalities
to facilitate the sharing and exchange of (mathematical) service descriptions. Figure 1 shows how
a mathematical registry would be used for the sharing of mathematical web service information
between interested parties.

Service
Implementation

Figure 1: Registry use case scenario (based on [6])

1. A Mathematical web service developer checks existing services to see if his/her problem is
already implemented.

2. If the service is not implemented, or if the developer is not satisfied by existing implementa-
tions, she implements the problem as a web service and deploys it in the web.

3. The developer registers the service together with some descriptive information.

4. Clients browse and query the registry for their desired services and download relevant de-
scriptions.

5. Clients then access the service.

Taking into account the special nature of mathematical objects and the complications of trans-
forming them into web services (see MathBroker sample services [14]), their registry descriptions
must be based on a method that combines their formalism with the necessity for their web acces-
sibility. We developed the Mathematical Services Description Language MSDL [1] as the method
for representing service descriptions. We extended an existing registry implementation to handle
the publication and discovery of objects that are based on MSDL descriptions.

The remainder of this report is organized as follows: Section 2 describes the architecture of
our mathematical information model which serves as the basis for the design of MSDL and in turn

as the basis for functionality which extends the basic registry information model. Section 3 deals
with the ebXML registry and its information model which is the basis of our registry development.
Section 4 presents the registry extension we have developed, the information model in context of
the registry and the overall architecture of the registry. In Section 5, we present some examples of
using the developed framework for publishing MSDL descriptions and discovering such descriptions.

2 Information Model

The MathBroker Information Model for descriptions of mathematical web services is based on
a modular view of the various facets of a mathematical service. Thus, a service comprises de-
scriptions of the communication layer (service and realization), of the implementation layer
(implementation and algorithm) and of its abstract functionality (problem). The rationale be-
hind the decomposition of descriptions into multiple interlinked components is to avoid redundancy
between specifications (by sharing description components) and to provide a quick shortcut for de-
tecting the identity of specification components by reference equality.

2.1 Architecture

Figure 2 shows the kind of metadata that can be associated to a service and the relationships
between the various fragments of information. Some of the arrows symbolizing the references to
problems, algorithms, or implementations are optional.

Every description is extensible, but the following information is recommended:

Problem: E.g. computing problems can be specified by input parameters, an input condition,
output parameters, an output condition. Optionally, a problem can be declared as a special
version of another problem (stronger input and/or weaker output condition);

Algorithm: An algorithm is described by (a link to the description of) the problem it solves plus
time and memory complexity, termination conditions, etc.

Amplementation: An implementation is described by the algorithm on which it is based (or
optionally the problem it solves) plus the software on which it is based plus time and memory
efficiency w.r.t. some reference architecture;

Realization: A realization of a service is described by the underlying software implementation (or
optionally the algorithm or problem), by the type of machine on which it is running and
by a WSDL description of the service interface.

Machine type description specifies the underlying hardware specifications such as processor
type, speed, memory size, etc. A WSDL description includes the syntactical interface of the service
which might be availble at multiple ports.

The issues listed in Figure 2 are separate descriptions and represent important characteristics
of the information model:

e Problems are organized in a hierarchy where generalizations and specializations are taken into
account.

e Algorithms are in relation to the problems they solve. Several algorithm may solve the same
problem.

input params
output params Problem
precondition
postcondition
solves
time complexity)
space complexity Algorithm
termination condition
implements
[« _-_2-
time efficiency)
space efficiency | |mplementation
software system
optiondl is based on
Realization

is specia
version of

Problem

Computing Problems, Solving Problems, Proving Problems, ...

isbound to

| ssues covered
Problems may be special versions of other problems
Different algorithms may solve the same problem
Different programs may implement the same algorithm
Different realizations may use the same program
Different services may provide the same realization
Different services may run on same machine type

service port(s)

All nodes may contain bibliographica information.

e.g. WSDL
service port Machine
Service
islocated on Type
messages processor type
port types processor speed (SPEC)
operations memory size

ports, service location

Figure 2: MathBroker Information Model

islocated on

e Implementations are in relation to the algorithm they compute. Several programs may im-
plement the same algorithm.

e Realizations are in relation to the implementation they are based on and to the service
interface they are bound to. Additionally they might carry information about hardware
details of the machine running the service. Several realizations may be based on the same
implementation and several service interfaces may be bound to one realization.

2.2 Implementation

The information model is implemented as an XML based structured language called Mathematical
Services Description Language MSDL [1, 2, 10]. Its grammar is defined by an XML schema [12].
Binding the schema using the Java Architecture for XML Binding (JAXB) [5] generated the MSDL
library API [11]. The generated classes in the API represent the MathBroker schema. These classes
define methods that are used later by the MathBroker registry provider to obtain and specify data
for each type of element. A sample service description in MSDL is shown in Appendix A. It gives
a description for each of the components presented above. A problem description for example is
given from line 28 through line 73.
The next section explains the registry framework to which the above components are added.

3 ebXML Registry and Information Model

A registry is a web-based shared resource that enables the creation, deployment, and discovery
of Web services. Web services shared information is maintained as objects in a repository and
managed by the Registry Services defined as interfaces.

Currently there are two predominant specifications for a registry.

e The Universal Description, Discovery, and Integration (UDDI) registry [17].
e The ebXML Registry and Repository standard [4].

After some experimenting with the UDDI registry server provided as part of Sun’s Java Web
Services Developer Pack (JWSDP) [7], we decided to base our development on the OASIS ebXML
registry server reference implementation [3] whose information model is much more generic and
extensible than UDDI. Furthermore, ebXML information model closely follows Sun’s Java API for
XML registries (JAXR) [6] which provides a uniform access to different kinds of XML registries.

In the remaining of this section, we describe the ebXML registry functionality and information
model. We introduce those components and entities that are most relevant to the MathBroker
development. But first we briefly introduce JAXR, API since the ebXML registry client-side imple-
mentation is based on it.

3.1 JAVA API for XML Registries (JAXR)

JAXR is designed with the intention of easy-to-use abstraction APT to access a variety of XML reg-
istries. JAXR information model describes content and metadata within XML registries. Registry
clients that are based on JAXR are meant to be portable across different target registries.

The high-level architecture of JAXR consists of the following parts:

e A JAXR client: a client program that uses the JAXR API to access a registry via a JAXR
provider.

e A JAXR provider: an implementation of the JAXR API that provides access to a specific
registry provider or to a class of registry providers that are based on a common specification.

JAXR specification [6] includes detailed bindings between the JAXR information model and
the ebXML Registry.

3.2 ebXML Registry Architecture

The ebXML registry architecture, Figure 3, consists of an eb XML Registry Service and ebXML
Registry Client. The ebXML Registry Service provides the ability for managing a repository.
An ebXML Registry Client is an application used to access the registry.

Registry Client

RC

SOAP

L
LM QM

Registry Service

A

SQL
Y

Database, Repository

Figure 3: ebXML Registry Architecture

3.2.1 Registry Service

The ebXML Registry Service fundamentally manages objects and queries associated with the
ebXML registry. The two primary interfaces for the Registry Service consist of:

e A Lifecycle Management (LM) interface that implements a collection of functionalities for
managing objects within the registry.

e A Query Management (QM) interface that controls the discovery and retrieval of information
from the registry.

3.2.2 Registry Client

A registry client program utilizes the services of the registry by invoking methods on one of the
above interfaces. The client may use this interface to submit objects, to classify and associate
objects, to remove objects, to browse objects, query for objects and their associated repository
items.

The Registry Client (RC) interfaces may be local to the registry or local to the user. In
the first case the registry provides a web based “thin client” application for accessing the registry
that is available to the user using a common web browser. In this scenario the Registry Client
interfaces reside across the Internet and are local to the registry from the user’s view. In the second
case the user uses a “fat client” registry browser application to access the registry. In this scenario
the Registry Client interfaces reside within the registry browser tool and are local to the registry
from the user’s view. The Registry Client interfaces communicate with the registry over the
Internet in this scenario.

3.3 ebXML Registry Information Model

The information model of the ebXML registry (see Figure 4) provides information on the type of
metadata that is stored in the registry as well as the relationships among metadata classes. It
defines what types of objects are stored in the registry and how these objects are organized in the
registry.

RegistyEntry
|RegiskryPackage] 0~ Externall ink Externalidentifier

o
packages
Association externalLinks

Slot *|<{Assotiati0n}>

0.* | externalidentifiers

0.*|shots 1.* members 1.* linkedCihjects identificationScheme
RagistryObject =
-> classifications 0.~ Corysiicator
audifTrail | —
0.
clasgificationSchema
AuditabieF vent {Associaticn
ReagistrvE ntry
Specificationl ink |ClassificatonS cherme |
classification Mo de
reguestor
1 e I

Usar 1= Orgamzalion

classificationScheme

afiliatedyith «»| ServiceBinding

1
1

\arlmaWCﬂmaBt ﬁ Classificatonfiode o1

o £ -

— 0.*[binding
\ targetBinding
- 1 arent

1 L 3 d 4

\EmailAddress TelephoneNumt PostalAddress ReqistrvEntry
Service

L%

Figure 4: ebXML Information Model [3]

In our case, we used the ebXML information model to determine which components of it to
include in MathBroker (registry) provider. The following entities are the most relevant ones and
are introduced as they appear in [3].

RegistryObject: The RegistryObject class is an abstract base class used by most classes in
the model. It provides minimal metadata for registry objects. It also provides methods for
accessing related objects that provide additional dynamic metadata for the registry object.

Association: Association instances are RegistryObject instances that are used to define many-
to-many associations between objects in the information model.

ClassificationScheme: ClassificationScheme instances are RegistryEntry instances that de-
scribe a structured way to classify or categorize RegistryObject instances. The structure
of the classification scheme may be defined internal or external to the registry, resulting in a
distinction between internal and external classification schemes.

Classification: Classification instances are RegistryObject instances that are used to classify
other RegistryObject instances. A Classification instance identifies a ClassificationScheme
instance and taxonomy value defined within the classification scheme. Classifications can be
internal or external depending on whether the referenced classification scheme is internal or
external.

ExtrinsicObject: ExtrinsicObject provides metadata that describe submitted content whose
type is not intrinsically known to the registry and therefore MUST be described by means of
additional attributes (e.g., MIME type). Examples of content described by ExtrinsicObject
include Collaboration Protocol Profiles [ebCPP], Business Process descriptions, and XML
schemas.

4 Extending ebXML Registry to MathBroker

In this section, we describe the extension we made to the ebXML registry information model to
accommodate the MathBroker information model. This allows MSDL descriptions to be stored and
retrieved using the basic ebXML mechanisms.

The information model of a registry defines the type of objects that reside in the registry and
how they relate to each other. The MathBroker information model is added as an extension to
the ebXML information model [3] to accommodate mathematical objects defined in MSDL (see
Figure 2).

4.1 MathBroker Information Model and its Registry Implementation

The MathBroker information model in the context of the ebXML registry is shown in Figure 5. It
shows basic entities and relationships among them to each other as associations; the term association
is used in ebXML to relate two or more registry objects.

Next we explain the components of the MathBroker ebXML-extended information model.

The motive behind defining an ExtrinsicObject (explained above) in ebXML registry informa-
tion model is to provide metadata for a repository item (e.g. WSDL document or an XML schema
document) about which the registry has no prior knowledge. A mathematical object description
in the form of MSDL fits under that definition. Therefore the decision was to define mathematical
objects as extensions to the ExtrinsicObject.

RegistryObject
Inheritance; —— Y
Association; > — -
ExtrinsicObject
Y ebXML objects
- Mathbroker objects
MathbrokerObject
Machine Realization Implementation Algorithm Problem
A A A A ‘ :
RunsOn IsBasedOn . Implements : Solves - IsSpecia VersionOf

Figure 5: MathBroker Information Model in the registry context

MathBroker Object: This class is an extension of the ebXML class textttExtrinsicObject. It
provides additional functionality to process a mathematical object description in the form
of MSDL. For example extracting the different fields of the description of an object in order
for instance to specify the kind of object or to show them to the user. This functionality
as explained later is handled by the MathBrokerLifecycle manager which is part of the
MathBroker registry provider in behalf of that object.

MathBroker Problem: This class provides information about a repository item (MSDL descrip-
tion) which contains the detailed specification of a problem such as input/output parameters
and conditions, associations to other objects, etc.

MathBroker Algorithm: This class provides information about a repository item (MSDL de-
scription) which contains the detailed specification of an algorithm, efficiency factors, associ-
ations to other objects, e.g., link to the problem it solves, etc.

MathBroker Implementation: This class provides information about a repository item (MSDL
description) which contains the detailed specification of an implementation such as the algo-
rithm which implements, its time and memory efficiency, association(s), etc.

MathBroker Service: This class provides information about a repository item (MSDL descrip-
tion) which contains the detailed specification of a service such as its underlying implemen-
tation, the WSDL description of its interface, etc.

MathBroker Machine: This class provides information about a repository item (MSDL descrip-
tion) which contains the detailed specification of a machine such as its hardware characteris-
tics.

The basic functionality of these components as registry objects is implemented as part of the
MathBroker Registry API [13] which is shown in Appendix C. The rest of their functionality, such

10

as get and set methods as defined by the MSDL schema are implemented in the MSDL Library
API [11].

Publishing and discovering mathematical objects having the above types and also handling
them through their Lifecycle is the responsibility of the MathBroker registry provider “the broker”.
See Section 4.4.4.

4.2 MathBroker Associations

An essential characteristic of the MathBroker information model is the ability of relating different
mathematical objects that comprise a service to each other (see Section 2). The ebXML registry
facilitates this feature by the concept of “association”. A registry object maybe associated with
zero or more registry object instances. The MathBroker information model (Figure 5) defines the
following MathBroker associations:

IsSpecialVersionOf: Problem P “is special version of” Problem P’.
Solves: Algorithm A “solves” Problem P.

Implements: Implementation I “implements” Algorithm A.
IsBasedOn: Realization R “is based on” Implementation I.

RunsOn: Implementation I “runs on” Machine M.

A more detailed view of MathBroker associations is shown in Figure 6.

Object

P
problem (P)
sV s s algorithm (A)
implementation (1)
Al A2 realization (R)
P1 s
s
11

machine (M)
/F i AN service (S)

association
i

Solves ()

T b /F b Implements (i)
I1sBasedOn (b)

R1 b R2 R3 R4 I1sBoundTo (bt)

RunsOn (r)

IsSpecialVersion (sv)

R5

Figure 6: MathBroker associations

For every association there exists a source object and a target object. For example, in the
association: Algorithm A “Solves” Problem P, the source object is Algorithm A and the target
object is Problem P.

These associations are considered as registry objects and are defined to the registry like its prede-
fined association types and therefore they are published under the ebXML registry’s AssociationType
classification scheme.

11

4.3 Classification of mathematical objects

The ability to classify objects is one of the main features of a registry. This is because classifications
facilitate the process of discovering objects within the registry. An object in the registry may be
classified along multiple classifications. A classification scheme in the registry represents taxonomies
that provide values to classify objects. The ebXML registry provides the SubmitObject protocol to
publish a classification scheme to the registry. Once a classification scheme is submitted /published
to the registry, objects published can be classified against that scheme.

We were able to submit the GAMS (Guide to Available Mathematical Software) classification
scheme to the ebXML registry. Figure 7 shows the scheme viewed in the registry browser.

Query String: ‘SE‘E(\ * from ClassificationScheme

X Registry B [DICIES
Eile Eart Help
EEL.EF SRS
R m‘lhup:}}perseus.risc.mi—ﬂnz.a«: an 080/ ehxmirr/regisiryf soap |-
| Discovery | Submission | X Cissification I
N Q & AdhBEQ 9@ B CAMS |
L !“ - "a & Arithmetic, error analysis
& Number theory
Hoc Query Selection
i & Elementary and special functions (search also class LS)
Select Query: & Linear Algebra
& Interpalation
query
|W & Solution of nonlinear egquations
Name: & Optimization (search also classes K, LB)
& Differentiation, integration
At e v
gy & Differential and integral eguations
- Description: & Integral transforms
Arbitrary query ® & Approximation (search also class LS)
® & Least squares (L2) approximatian
@ & Linear least squares (search also classes DS, D&, DY)
9 & Unconstrained
9 B Univariate data {curve fitting)
Ad Hoc Query Parameters & Polynomial splines (piecewise polynomials)

& Polynarmials

B Multivariate data (surface fitting)
& Constrained
& Nonlinear least squares
& Minimax (L\infty) approximation
& Least absolute value (L1) approximation
& Other anabdic approximations (e.g., Tavor polynamial, Pad?)
& Smoothing
& Serdce routines for approximation
& Statistics, prabability
& Simulation, stachastic modeling (search also classes L& and L10)
& Dara handling (search also class L2)
& Symbolic computation
& Computational geometry (search also classes G and ()
& Craphics (search also class L3)
& Servce routines
9 & Software development taols
& Program transformation 1o0ks
& Static program analkysis tools
& Dynamic program analysis tools
& Other

2 Other functions (.., igonomMetric, user-specified

Figure 7: Registry browser screenshot of GAMS classification scheme

originally GAMS scheme was in a generic XML format as shown below:

<gamslist>

<title>GAMS classification</title>

<gamslist>

<gamscode>A</gamscode>

<title>Arithmetic, error amalysis</title>

<gamslist>
<gamscode>A1</gamscode>

12

<title>Integer</title>
</gamslist>
<gamslist>
<gamscode>A2</gamscode>
<title>Rational</title>
</gamslist>
<gamslist>
<gamscode>A3</gamscode>
<title>Real</title>
<gamslist>
<gamscode>A3a</gamscode>
<title>Standard precision</title>
</gamslist>
<gamslist>
<gamscode>A3c</gamscode>
<title>Extended precision</title>
</gamslist>

</gamslist>

We wrote a stylesheet to transform it to the ebxml SubmitObjectRequest XML format and
submitted it to the registry by means of the SubmitObject protocol mentioned above. The
SubmitObjectRequest includes a RegistryObjectList which contains the ClassificationScheme
object to be submitted a long with a number of ClassificationNodes preserving the parent-child
relation determined by the id. For example the parent id is ”urn:uuid:62aebe64-866a-4706-9821-
eech9a32e7ad” and its name is ”GAMS”, while the id of its imeddiate child is ”urn:uuid:62aebe64-
866a-4706-982f-eec59a32e7ad/A” and the name is ” Arithmetic, error analysis”

<7xml version="1.0" encoding="UTF-8"7>
<rs:SubmitObjectsRequest
xmlns = "urn:oasis:names:tc:ebxml-regrep:rim:xsd:2.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation = "urn:oasis:names:tc:ebxml-regrep:rim:xsd:2.0
http://www.oasis-open.org/committees/regrep/documents/2.0/schema/rim.xsd
urn:oasis:names:tc:ebxml-regrep:registry:xsd:2.0
http://www.oasis-open.org/committees/regrep/documents/2.0/schema/rs.xsd"
xmlns:rim = "urn:oasis:names:tc:ebxml-regrep:rim:xsd:2.0"
xmlns:rs = "urn:oasis:names:tc:ebxml-regrep:registry:xsd:2.0">
<LeafRegistryObjectList>
<ClassificationScheme id="urn:uuid:62aebe64-866a-4706-982f-eec59a32e7ad"
isInternal="true" nodeType="UniqueCode"
xmlns="urn:oasis:names:tc:ebxml-regrep:rim:xsd:2.0">
<Name>
<LocalizedString charset="UTF-8" value="GAMS"/>
</Name>
<Description>

13

<LocalizedString charset="UTF-8"
value="This is the classification scheme for GAMS"/>

</Description>
<ClassificationNode id="urn:uuid:62aebe64-866a-4706-982f-eecb9a32e7ad/A" code="A">
<Name>
<LocalizedString charset="UTF-8" value="Arithmetic, error analysis"/>
</Name>

</ClassificationNode>
</ClassificationScheme>
</LeafRegistryObjectList>
</rs:SubmitObjectsRequest>

4.4 MathBroker Registry Architecture

The overall structure of the MathBroker registry extending the ebXML registry and incorporating
the MSDL library is shown in Figure 8.

Mathbroker Client
Pulish, Query MSDL descriptions:

problem, algorithm, implementation,
service, and/or machine

Read
Write

Registry Client

apIs JuBIjO

JAXB-based MSDL bindings

Mathbroker provider

JAXR-ebXML provider

ebxml Registry Service

SQL

—

Database (postgresql)

RIS

Repository (file system)

Figure 8: MathBroker Registry Architecture

14

4.4.1 Database and Repository System

At the bottom of the Figure is the rational database system where metadata of registry objects
is stored. Metadata are defined attributes of a MathBroker registry object. Repository items in
the form of MSDL descriptions associated with these objects are stored in the repository which
is basically a file system managed by a server-side component called Repository Manager. Each
repository item is assigned a UID by the Life Cycle Manager which servers as its name in the file
system.

4.4.2 Registry Service

The server-side component managing the database and the repository is known as Registry Service
in ebXML terminology (registry provider in JAXR terminology) and is deployed in our case to the
Tomcat servlet container [16].

4.4.3 JAXR-ebxml Provider

The JAXR-ebxml Provider provides an implementation of the JAXR specification to access the
ebXML registry provider (registry service in ebXML terminology). It accepts JAXR requests from
the client and transforms them into equivalent requests based on the specification of the ebXML
registry. From the registry service (provider) point of view, its client is the JAXR-ebXML provider.

4.4.4 MathBroker Provider: the “Broker”

The MathBroker Provider extends the JAXR-ebXML provider and implements features required
to enable the client to manage MSDL based objects. Specifically it performs the publishing and
discovering of these objects. It has the following management components:

MathBroker Life Cycle Manager

In order to publish Mathematical objects to the registry and to manage them through their life
cycle in the registry taking into account their accompanying MSDL structures, we extended the
LifecycleManager of ebXML registry. MathBrokerLifeCycleManager (See Appendix C) performs
all management functionalities in the registry on behalf of MathBroker objects. When a service
description (See Appendix A) is submitted to the registry, MathBrokerLifeCycleManager mainly
performs the following:

e determines the type of MathBroker entity/entities contained in the description,

e for each entity, it creates a registry object and retrieves the coressponding metadata from the
description to uniquely name the object in the registry (mathematical objects in the registry
are given unique names aside from the unique ID given to them by the registry.) The unique
name is formed by concatenating the enitiy’s name to the target name space,

o for each entity, it extracts the coressponding description and stores it as a separate repository
item “attached” to the created registry object,

e creates the required associations and classifications as specified in the description,

e saves each created object and its repository item,

15

e if an object already exists in the registry it updates it.

The MathBrokerLifeCycleManager uses the “get methods” of the MSDL Library API [11] to
perform any of the above steps involving service descriptin. For example, to read the name of any
entity in the description, it uses the getName () method.

MathBroker Query Manager

The MathBrokerQueryManager adds to the ebXML query manager the ability to query or search the
registry for mathematical objects, fetches their respective MSDL descriptions from the repository
and extracts the required fields from these descriptions. It can display these fields and save the
whole description as an MSDL file. Inheriting the functionality of the ebXML Query manager, it
can query for associations, an object’s associated objects, classifications, etc. It performs queries
according to object’s ID, classification, or name.

The implementation of these two managers is the core of the MathBroker Registry API [13].
Appendix C shows the methods of these managers.

4.4.5 JAXB-based MSDL Bindings

The JAXB-based MSDL bindings (MSDL Library API [11]) provides a collection of content classes
(with get and set methods) generated from a schema representing the MathBroker information
model by means of JAXB (Java API for XML Bindings). The MathBrokerLifeCycleManager uses
these classes and methods to specify the kind of content contained within an MSDL description
and gets/sets for instance its name, namespace, service url, input/output parameters, etc.

4.4.6 MathBroker Client

It is a user program (command line program in our case and a registry browser in ebXML) that
accesses the registry via the registry client. A client sample for publishing and querying the registry
is shown in the next section.

5 Publishing and Querying in MathBroker Registry

We wrote a sample client that demonstrates the use of the MathBroker registry. The client performs
two tasks: publishing, i.e., submitting service descriptions, and querying, i.e., discovering them.
For publishing, the client takes an MSDL file and registers all entities described in it (also creating
the related associations and classifications). For querying, the client takes a question from the user
and prints the resulting MSDL descriptions.

5.1 A Sample Service Description

An MSDL description can contain one or more service descriptions entities. A complete service
description would include all the entities introduced in Section 2 and pointers for entity associations
and classifications. A complete service description is shown in Appendix A.

16

5.2 Publishing to the Registry

The publish interface the client is shown in Appendix B.1. It makes a connection to the registry
using the URL of the registry, uses this connection to obtain the registry service, and utilizes
the service by accessing the MathBrokerLifecycle manager and MathBrokerQuery manager to
publish to the registry.

The client takes an MSDL description stored in a file (e.g. risch.xml) and extracts the de-
scription of each entity. For each description it creates a registry object embedding that description
and also creates all required associations and classifications. All this functionality is hidden in the
method publishMathBrokerObject of the MSDL registry APIL.

5.3 Querying the Registry

The query program shown in Appendix B.2 allows to make queries for mathematical objects ac-
cording to ID, name, or classification by invoking the following methods of the registry API.

executeQueryById(argument)
executeQueryByName (argument)
executeQueryByClassification(argument)

Ultimately the MathBrokerLifecyle manager is invoked to retrieve a description from the
repository, then extracts and displays the respective fields from this description using the get
methods of the MSDL Library APT [11].

The following example shows a query for an algorithm:

MathBrokerAlgorithm algorithm =
(MathBrokerAlgorithm)mlcm.createMathBrokerAlgorithm(

null, null, classificationConcept, dh);
algorithm.showContent () ;

The showContent () method displays individual fields from the description of an entity. It also
shows the whole description in MSDL indented properly on the screen of the user. The user can
also use the ebXML registry browser to graphically view mathematical objects, their associations,
and their classifications.

Using ebXML Registry Browser to View MathBroker Objects

Figure 9 shows some MathBroker objects namely Service, Implementation, Problem, Algorithm,
and Machine with their names appear in the rectangular boxes. The Figure also shows associations
among these objects. For example, Service
http://risc.uni-linz.ac.at/mathbroker/RischIndefIntegration/RRISC Solves Problem hitp://risc.uni-
linz.ac.at/mathbroker/RischIndefIntegration/indefinite-integration and IsBasedOn Implementa-
tion http://risc.uni-linz.ac.at/mathbroker/RischindefIntegration/RImpl which Implements Algo-
rithm http://risc.uni-linz.ac.at/mathbroker/RischIndefIntegration/RischAlg and RunsOn
Machine http://risc.uni-linz.ac.at/mathbroker/RischIndefIntegration/perseus.risc.uni-linz. ac. at.
The name of an object is formed, when the object is read from its MSDL description, from its
namespace and its element name as it appears in the description. For example, the namespace for
Problem http://risc.uni-linz.ac.at/mathbroker/RischIndefIntegration/indefinite-integration
is http://risc.uni-linz.ac.at/mathbroker/RischIndefIntegration/ and its element name is indefinite-
integration.

17

= ooE

T[] [a[a]a] w[m

5 ErvICE

(Itm'ric! iohs

— 7

http:/ frisc.uni-linz ac at/mathbroker/Rischindefintegration/RRISC

oo
classiTications Spte
T

http:/ frisc.uni-linz. ac.at/mathbroker/Rischindefintagration/ indefinite-integration

Figure 9: Registry browser screenshot of MathBroker objects with their classifications and associ-

ations

implementation|

clas sificatidng

http: Jfrisc uni-linZ. ac. at/mathbraker/Rischindefintegration/Rischal

7

Fisc. uni=linz. ac. at mlftrﬁqerfkﬁchhdﬂ]magaimfkhg]

e

class iITH

http: /frisc. uni-linz. ac. at/mathbroker/Rischindefintegration fperseus. risc. uni-linz. ac. at

18

© 0 N 3 oA W N

B W W W W W W W W W W N NN NN N NN NN e e e e e
O © 00 N O Ok W N O © 00 W N RO © 00NN TR W N = O

6 Conclusion

We presented our results on the development of a registry framework where descriptions of math-
ematical Web services are represented in a standard mathematical description language [1, 2],
published in the registry, and discovered by registry clients. Our results demonstrate the fact that
standards and technologies developed for a particular application area (such as ebusiness) can be

used in a more sophisticated application area such as computer mathematics.

This framework serves as the foundation for our ultimate goal of developing a “semantic broker”
where services register their problem solving capabilities, clients submit task descriptions, and the
broker then determines the suitable services and returns them to the client for invocation. Our
next step is to enhance the discovery mechanism of the registry by designing an MSDL query model

and to develop a query language based on this model.

A A Sample MSDL Service Description (risch.xml)

<monet:

definitions

targetnamespace="http://risc.uni-linz.ac.at/mathbroker/RischIndefIntegration"

xmlns:

xmlns

xmlns:

xmlns

xmlns:
xmlns:

<1--
<1--

dc="http://purl.org/dc/elements/1.1/"

:mathb="http://risc.uni-linz.ac.at/mathbroker/ns"

monet="http://monet.nag.co.uk/monet/OpenMathDC"

:om="http://www.openmath.org/0OpenMath"
xmlns:

symbint="http://perseus.risc.uni-linz.ac.at:8080/axis/services/SymbolicIntegration"
wsdl="http://schemas.xmlsoap.org/wsdl/"
xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://monet.nag.co.uk/monet/OpenMathDC/
home/olga/cvs/perseus/monet-based-xsd/xsd/monetOM_DC.xsd">
$Id: risch.xml,v 1.1 2004/04/23 10:49:52 rbaraka Exp $ -->
actually these are just directives - at this stage no tool processes these ——>

<mathb:machine_hardware address="193.170.37.69" name="perseus.risc.uni-linz.ac.at">
<mathb:CPU name="Intel Celeron"></mathb:CPU>
<mathb:CPU_speed mhz="733"></mathb:CPU_speed>
<mathb:RAMsize mb="256"></mathb:RAMsize>
<mathb:disksize gb="40"></mathb:disksize>

<mathb:0S href="http://www.suse.de"></mathb:0S>
</mathb:machine_hardware>

<monet:import location="./SymbolicIntegration.wsdl"
namespace="http://perseus.risc.uni-linz.ac.at:8080/axis/services/SymbolicIntegration">
</monet : import>

<monet:problem name="indefinite-integration">

<monet :header></monet:header>
<monet :body>

<monet:input name="f">

<monet :signature>

<om:0MOBJ>

<om:(OMA>
<om:0MS cd="sts" name="mapsto"></om:0MS>
<om:0MS cd="setnamel" name="R'"></om:0MS>
<om:0MS cd="setnamel" name="R'"></om:0MS>
<om:0MS cd="setnamel'" name="R"></om:0MS>

19

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

</om:0MA>
</om:0MOBJ>
</monet:signature>

</monet:input>
<monet:output name="i">
<monet :signature>

<om:(0MOBJ>
<om:(OMA>

<om:0MS cd="sts" name="mapsto"></om:0OMS>

<om:0MS cd="setnamel" name="R'"></om:0MS>

<om:0MS cd="setnamel'" name="R"></om:0MS>

<om:0MS cd="setnamel" name="R'"></om:0MS>

</om:0MA>
</om:0MOBJ>
</monet:signature>
</monet :output>
<monet:post-condition>
<om:0OMOBJ>
<om:0OMA>
<om:0MS cd="relationl" name="eq"></om:0MS>
<om:0MV name="i"></om:0OMV>

<om:(OMA>
<om:0MS cd="calculusl" name="indefint"></om:0MS>
<om:0MV name="f"></om:0MV>
</om:0MA>
</om:0MA>
</om:0MOBJ>
</monet:post-condition>
</monet :body>
</monet : problem>

<monet:algorithm name="RischAlg">
<monet :documentation>This is the metadata for the algorithm
Risch. The namespace is the target namespace of this document.
</monet :documentation>

<monet :bibliography href="http://www.emis.de/cgi-bin/zmen/ZMATH/en/
quick.html?type=xml&an=0184.06702">
<!-- more dublin core —-->
<monet:documentation> Dublin Core Data </monet:documentation>
<dc:creator>Risch,R.H.</dc:creator>

<dc:title>The Problem of Integration in Finite Terms</dc:title>
<dc:source> Trans. A.M.S. 139 pp.167 - 189</dc:source>
<dc:publisher>AMS</dc:publisher>
<dc:date>1969</dc:date>
</monet:bibliography>
</monet :algorithm>

<monet :implementation name="RImpl">

<mathb:efficiency_factor wrt="S200Spec'">
<mathb:speed>1.1</mathb:speed>
<mathb:throughput>0.7</mathb:throughput>

</mathb:efficiency_factor>
<monet:software href="http://www.wolfram.com"></monet:software>

20

99 <monet:software href="http://riaca.win.tue.nl/software/ROML">
100 </monet:software>

101 <monet:hardware href="http://risc.uni-linz.ac.at/mathbroker/

102 RischIndefIntegration/perseus.risc.uni-linz.ac.at">
103 </monet :hardware>

104 <monet:algorithm href="http://risc.uni-linz.ac.at/

105 mathbroker/RischIndefIntegration/RischAlg">
106 </monet:algorithm>

107 </monet:imp1ementation>

108

109 <monet:service name="RRISC">

110 <monet:documentation>This is an implementation of the algorithm
111 Risch. We use the mathb namespace to state expected performance
112 of the concrete implementation wrt to its theoretical

113 complexity measure.</monet:documentation>

114 <monet:classification>

115

116 <monet:problem href="http://risc.uni-linz.ac.at/mathbroker/

117 RischIndefIntegration/indefinite-integration">
118 </monet:prob1em>

119 </monet:classification>

120 <monet:implementation href="http://risc.uni-linz.ac.at/mathbroker/
121 RischIndefIntegration/RImpl">

122 </monet:imp1ementation>

123 <monet:service-interface-description

124 href="http://perseus.risc.uni-linz.ac.at:8080/axis/

125 services/SymbolicIntegration?wsdl">

126 </monet:service-interface-description>

127 <monet:service-binding>

128 <monet:map action="exec" operation="symbint:Integrator:indefInt"
129 problem-reference="indefinite-integration"></monet :map>

130 <monet :message-construction io-ref="f"

131 message-name="symbint:IndefIntRequest" message-part="in0">

132 </monet :message-construction>

133 </monet:service—binding>

134 <monet:service-metadata></monet:service-metadata>

135

136 <monet :broker-interface>

137 <monet :service-URI></monet:service-URI>

138 </monet :broker-interface>

139 </monet:service>

140 </monet:definitions>

B Publish and Query Examples
B.1 Publish Example

import java.io.*;

import java.util.x;

import java.io.InputStream.*;

import java.net.PasswordAuthentication;
import java.net.URL;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashSet;

import java.util.Iterator;

import java.util.Properties;

© 0 N e oo W N

=
o

21

11 import java.util.Set;

12 import java.util.List;

13 import javax.activation.¥;

14 import javax.activation.DataHandler;

15 import javax.activation.FileDataSource;

16 import java.awt.*;

17 import java.awt.event.*;

18 import javax.swing.*;

19 import javax.xml.parsers.*;

20 import javax.xml.registry.*;

21 import javax.xml.registry.infomodel.x*;

22 import javax.xml.registry.BulkResponse;

23 import javax.xml.registry.ConnectionFactory;

24 import javax.xml.registry.infomodel.x*;

25 import com.sun.xml.registry.ebxml.ConnectionFactoryImpl;

26 import at.ac.uni_linz.risc.mathbroker.registry.infomodel.x*;
27 import at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.*;
28 import javax.xml.bind.JAXBContext;

29 import javax.xml.bind.JAXBException;

30 import javax.xml.bind.Marshaller;

31 import javax.xml.bind.Unmarshaller;

32 import com.sun.msv.grammar.¥;

33 import org.w3c.dom.*;

34 import javax.xml.parsers.DocumentBuilder;

35 import javax.xml.parsers.DocumentBuilderFactory;

36 import javax.xml.parsers.ParserConfigurationException;

37 import org.xml.sax.InputSource;

38 import org.xml.sax.SAXException;

39 import monet.openmath.lang.*;

40 import monet.openmath.lang.impl.*;

41 import org.openmath.lang.*;

42 import nl.tue.win.riaca.openmath.io.OMXMLReader;

43 import nl.tue.win.riaca.openmath.lang.0MObject;

44 import org.xml.sax.XMLReader;

45 import at.ac.uni_linz.risc.mathbroker.lang.*;

46 import at.ac.uni_linz.risc.mathbroker.lang.impl.*;

47 import at.ac.uni_linz.risc.mathbroker.lang.0bjectFactory;

48 import at.ac.uni_linz.risc.mathbroker.registry.infomodel.*;
49 import com.sun.xml.registry.ebxml.*;

50 import org.oasis.ebxml.registry.bindings.rim.ExtrinsicObjectType;
51
52 /*%
53
54
55

* The MathBrokerPublish class consists of a main method, a
*
*
56 * extracts each element to a separate xml file, and
*
*
*

makeConnection method, and a publish method.
It takes an xml file with mathbroker element defenitions,

57 creates a Mathbroker object for it and loads the

58 corresponding repository item file to the Mathbroker
59 registry.

60 */

61 public class MathBrokerPublish {

62 MathBrokerRegistryService mrs = null;

63 MathBrokerConnection connection=null;

64 MathBrokerFocusedQueryManager fqm=null;

65 MathBrokerLifeCycleManager mlcm=null;

66 Marshaller marshaller =null;

67 String uri=null;

68 String username = "rbaraka"; //"Rebhi S Baraka";

22

69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

String password = "testuserl"; //"mathbroker";

public MathBrokerPublish(){
}

public static void main(String[] args) throws Exception {
String queryPublishUrl =
"http://perseus.risc.uni-linz.ac.at:8080/ebxmlrr/registry/soap";
MathBrokerPublish mathbrokerPublish = new MathBrokerPublish();
mathbrokerPublish.makeConnection(queryPublishUrl);
mathbrokerPublish.publish(args) ;

}
/%%
* Establishes a connection to a registry.
* @param queryUrl the URL of the query registry
*/
public void makeConnection(String queryPublishUrl) {
/*

* Define connection configuration properties.

*/

// To publish, you need both the query URL and the publish URL
Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL", queryPublishUrl);
props.setProperty("javax.xml.registry.lifeCycleManagerURL", queryPublishUrl);
props.setProperty("javax.xml.registry.factoryClass",

"com.sun.xml.registry.ebxml.ConnectionFactoryImpl");
try {
// Create the connection, passing it the configuration properties
ConnectionFactory factory = MathBrokerConnectionFactoryImpl.newInstance();
System.out.println("NewInstance is " + factory);
factory.setProperties(props);
MathBrokerConnection connection =
(MathBrokerConnection)factory.createConnection() ;
System.out.println("---Created connection to registry---");
mrs = connection.getMathBrokerRegistryService();
mlcm = mrs.getMathBrokerLifeCycleManager () ;
fgm = mrs.getMathBrokerFocusedQueryManager () ;
System.out.println("---Got Mathbroker registry service and manager—--");
// Get authorization from the registry
PasswordAuthentication passwdAuth =
new PasswordAuthentication(username, password.toCharArray());
Set creds = new HashSet();
creds.add(passwdAuth);
connection.setCredentials(creds);
System.out.println("---Established security credentials——-");
}catch (Exception e) {
e.printStackTrace();
if (connection != null) {
try {
connection.close();
} catch (JAXRException jaxre) {}
}
}
}

23

© 0 N3 Ut W N

W W W N NN NN N NN NN R e e e e e e e e
N = O © 00 9 O R W N = O © 0N W N = O

public void publish(String [1 args) {

try {
String fileName = args[0];
//InputStreamReader input = new InputStreamReader(System.in);
//BufferedReader reader = new BufferedReader (input);
//System.out.println("Enter xml file name ");
//fileName = reader.readLine();
System.out.println("Filename reads: "+ fileName);
File repositoryItemFile = new File (fileName);
// File repositoryltemFile = new File ("risch.xml");
javax.activation.DataHandler repositoryItem =

new DataHandler(new FileDataSource(repositoryItemFile)) ;

mlcm.publishMathBrokerObject (fqm, repositoryItem);

}catch (JAXBException je) {
je.printStackTrace() ;

}catch (JAXRException jre) {
jre.printStackTrace() ;

}catch (IDException ioce) {
ioe.printStackTrace();

}

B.2 Query Example

import javax.xml.registry.x*;

import javax.xml.registry.infomodel.x*;

import javax.activation.DataHandler;

import java.io.*;

import java.net.*;

import java.util.*;

import com.sun.xml.registry.ebxml.*;

import com.sun.xml.registry.ebxml.infomodel.*;

import at.ac.uni_linz.risc.mathbroker.registry.infomodel.*;
import at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.*;
import javax.xml.bind.JAXBContext;

import com.sun.msv.grammar.*;

/*%

* The MathBrokerQuery class consists of a main

* method, a makeConnection method a getManagers method,
* a makeSelection method, and executeQuery method. It
* searches a registry for information about

* Mathbroker Object(s)

*

*/
public class MathBrokerQuery {

public MathBrokerRegistryService rs;
public MathBrokerLifeCycleManager mlcm;
public MathBrokerFocusedQueryManager fqm;
MathBrokerDeclarativeQueryManager dqm;
MathBrokerConnection connection=null;
RegistryObject response=null;

// constructor

24

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90

public MathBrokerQuery() {
}

public static void main(String[]l args) {
String queryURL =
"http://perseus.risc.uni-linz.ac.at:8080/ebxmlrr/registry/soap";
MathBrokerQuery mbQuery = new MathBrokerQuery();
mbQuery.makeConnection(queryURL) ;
mbQuery.makeSelection() ;
}

VAL
* Establishes a connection to a registry.
* @param queryUrl the URL of the query registry
*/
public void makeConnection(String queryUrl) {
/*
* Define connection configuration properties.
*/
Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL", queryUrl);
props.setProperty("javax.xml.registry.factoryClass",
"com.sun.xml.registry.ebxml.ConnectionFactoryImpl") ;

try {

// Create the connection, passing it the configuration properties

ConnectionFactory factory =
MathBrokerConnectionFactoryImpl.newInstance();

factory.setProperties (props) ;

connection = (MathBrokerConnection)factory.createConnection();

System.out.println("---Created connection to registry---");

rs = connection.getMathBrokerRegistryService();

mlcm = rs.getMathBrokerLifeCycleManager();

fgqm = rs.getMathBrokerFocusedQueryManager() ;

System.out.println("--Got Mathbroker registry service and managers--");

} catch (Exception e) {
e.printStackTrace();
if (connection != null) {
try {
connection.close();
} catch (JAXRException jaxre) {}

public void makeSelection() {
try {

String argument = null;
BufferedReader in = new BufferedReader (new InputStreamReader(System.in));
System.out.println("Enter selection: 1 to query by Id, 2 to query by Name,
or 3 to query by Classification ");
String str =in.readLine();
StringTokenizer st =new StringTokenizer(str);
int selection=Integer.parselnt(st.nextToken());
switch (selection){
case 1 : System.out.println("Enter id.");
argument = in.readLine();

25

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114

fqm. executeQueryById(argument) ;
break;
case 2 : System.out.println("Enter name. You may use % wildcard.");
argument = in.readLine();
fqm. executeQueryByName (argument) ;
break;
case 3 : System.out.println("Enter classification. You may use % wildcard.");
argument = in.readLine();
fqm.executeQueryByClassification(argument) ;
break;
default: System.out.println("Selections are 1 to 3 only");
}
}catch (I0Exception e){
e.printStackTrace();
}catch (JAXRException jaxre){
jaxre.printStackTrace();
}catch (javax.xml.bind.JAXBException jaxbe){
jaxbe.printStackTrace();
}
}

C MathBroker Registry API

C.1 Interfaces
C.1.1 INTERFACE MathBrokerAlgorithm

DECLARATION

public interface MathBrokerAlgorithm
implements MathBrokerObject

METHODS

o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

C.1.2 INTERFACE MathBrokerConnection
.|

This class represents a connection between a JAXR client and a JAXR provider.

DECLARATION

public interface MathBrokerConnection

26

METHODS

o getMathBrokerRegistryService
public MathBrokerRegistryService getMathBrokerRegistryService()

— Usage
*x Gets the MathBrokerRegistryService interface associated with the Connection. If a
Connection property (e.g. credentials) is set after the client calls
getMathBrokerRegistryService then the newly set Connection property is visible to the
MathBrokerRegistryService previously returned by this call.

— See Also
* MathbrokerRegistryService

C.1.3 INTERFACE MathBrokerDeclarativeQueryManager
L]}

This interface provides the ability to execute declarative queries (e.g. SQL)

DECLARATION

public interface MathBrokerDeclarativeQueryManager

C.1.4 INTERFACE MathBrokerFocusedQueryManager
__|]

This is the interface exposed by the MathBroker Registry Service.

DECLARATION

public interface MathBrokerFocusedQueryManager
implements MathBrokerQueryManager

METHODS

o cexecuteQueryByClassification
public void executeQueryByClassification(java.lang.String concept)

o cxecuteQueryByld
public void executeQueryById(java.lang.String id)

o cxecuteQueryByName
public void executeQueryByName(java.lang.String name)

o findMathBrokerObjectByName
public Key findMathBrokerObjectByName(java.lang.String name)

o findMathBrokerObjectByName
public boolean findMathBrokerObjectByName(java.lang.String name,
java.lang.String type)

C.1.5 INTERFACE MathBrokerImplementation
__|]

27

DECLARATION

public interface MathBrokerImplementation
implements MathBrokerObject

METHODS

o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

C.1.6 INTERFACE MathBrokerLifeCycleManager
__|]

This is the interface exposed by the Registry Service that implements the life cycle management
functionality of the Registry.

DECLARATION

public interface MathBrokerLifeCycleManager

METHODS

o createMathBrokerAlgorithm
public MathBrokerAlgorithm createMathBrokerAlgorithm(InternationalString name,
InternationalString description, javax.xml.registry.infomodel.Classification
classification, javax.activation.DataHandler repltem)

o createMathBrokerAssociations
public Collection createMathBrokerAssociations(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, monet.openmath.lang.impl.ImplementationImpl element)

o createMathBrokerImplementation
public MathBrokerImplementation createMathBrokerImplementation(
InternationalString name, InternationalString description,
javax.xml.registry.infomodel.Classification classification,
javax.activation.DataHandler repltem)

o createMathBrokerMachine
public MathBrokerMachine createMathBrokerMachine(InternationalString mname,
InternationalString description, javax.xml.registry.infomodel.Classification
classification, javax.activation.DataHandler repltem)

o createMathBrokerProblem
public MathBrokerProblem createMathBrokerProblem(InternationalString mname,
InternationalString description, javax.xml.registry.infomodel.Classification
classification, javax.activation.DataHandler repltem)

o createMathBrokerService
public MathBrokerService createMathBrokerService(InternationalString mname,
InternationalString description, javax.xml.registry.infomodel.Classification
classification, javax.activation.DataHandler repltem)

28

deleteIncomingAssociations

public void deleteIncomingAssociations(

at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, java.lang.String uid)

deleteMathBrokerObject

public void deleteMathBrokerObject(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerFocusedQueryManagerImpl
fgm, java.lang.String mname, java.lang.String type)
deleteMathBrokerObjectAndAssociations

public void deleteMathBrokerObjectAndAssociations(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, java.lang.String wuid)

delete OutgoingAssociations

public void deleteQutgoingAssociations(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, java.lang.String uid)

publishMathBrokerObject

public void publishMathBrokerObject (
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, javax.activation.DataHandler repltem)

saveMathBrokerAlgorithm

public void saveMathBrokerAlgorithm (
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, monet.openmath.lang.impl.AlgorithmImpl element, javax.xml.bind.JAXBContext
context, java.lang.String wuri, java.lang.String uid)

saveMathBrokerImplementation

public void saveMathBrokerImplementation (
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fqm, monet.openmath.lang.impl.ImplementationImpl element,
javax.xml.bind.JAXBContext context, java.lang.String wuri, java.lang.String uid)

saveMathBrokerMachine

public void saveMathBrokerMachine (
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, at.ac.unilinz.risc.mathbroker.lang.impl.MachineHardwareImpl element,
javax.xml.bind.JAXBContext context, java.lang.String wuri, java.lang.String wuid)

saveMathBrokerQObject

public void saveMathBrokerObject(

at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, java.lang.Object element, javax.xml.bind.JAXBContext context,
java.lang.String wuri, java.lang.String uid, java.lang.String type)
saveMathBrokerProblem

public void saveMathBrokerProblem (
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, monet.openmath.lang.impl.ProblemImpl element, javax.xml.bind.JAXBContext
context, java.lang.String wuri, java.lang.String uid)

saveMathBrokerService

public void saveMathBrokerService(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, monet.openmath.lang.impl.ServiceImpl element, javax.xml.bind.JAXBContext
context, java.lang.String wuri, java.lang.String uid)

29

C.1.7 INTERFACE MathBrokerMachine
.|

The MathBrokerMachine interface is used to represent machine elements in the Mathbroker information
model

DECLARATION

public interface MathBrokerMachine
implements MathBrokerObject

METHODS

o setRepositoryltem
public void setRepositoryltem(javax.activation.DataHandler repltem)

C.1.8 INTERFACE MathBrokerObject
__|]

DECLARATION

public interface MathBrokerObject

METHODS

o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

e showContent
public void showContent()
— Usage
* Shows the contents of the repository item using the JAXB generated MSDL APIL
— See Also
* null

C.1.9 INTERFACE MathBrokerProblem
.|

DECLARATION

public interface MathBrokerProblem
implements MathBrokerObject

METHODS

o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

30

C.1.10 INTERFACE MathBrokerQueryManager
__|]

This is the interface exposed by the MathBroker Registry Service.

DECLARATION

public interface MathBrokerQueryManager

METHODS

o getMathBrokerRegistryService
public MathBrokerRegistryService getMathBrokerRegistryService()

C.1.11 INTERFACE MathBrokerRegistryService
L]}

DECLARATION

public interface MathBrokerRegistryService

METHODS

o getMathBrokerDeclarativeQueryManager
public MathBrokerDeclarativeQueryManager getMathBrokerDeclarativeQueryManager()

— Usage
*x Returns the DeclarativeQueryManager interface implemented by the JAXR provider.

o getMathBrokerFocusedQueryManager
public MathBrokerFocusedQueryManager getMathBrokerFocusedQueryManager()

— Usage
* Returns the MathBrokerQueryManager interface implemented by the JAXR provider

o getMathBrokerLifeCycleManager
public MathBrokerLifeCycleManager getMathBrokerLifeCycleManager()
— Usage
* Returns the MathBrokerLifeCycleManager interface implemented by the JAXR provider
— See Also
* LifeCycleManager

C.1.12 INTERFACE MathBrokerService
.|

DECLARATION

public interface MathBrokerService
implements MathBrokerObject

31

METHODS

o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

C.2 Classes

C.2.1 (Crass MathBrokerAlgorithmImpl
L]}

DECLARATION

public class MathBroker AlgorithmImpl
extends at.ac.uni linz.risc.mathbroker.registry.informodel.impl.MathBrokerObjectImpl
implements at.ac.unilinz.risc.mathbroker.registry.infomodel. MathBrokerAlgorithm

CONSTRUCTORS

o MathBrokerAlgorithmImpl
public MathBrokerAlgorithmImpl(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlcm)

o MathBrokerAlgorithmImpl
public MathBrokerAlgorithmImpl(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
lem, ExtrinsicObjectType tEobj)

METHODS

o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

o showContent
public void showContent()

METHODS INHERITED FROM CLASS
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerObjectImpl

(in C.2.9, page 42)
o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

C.2.2 (Crass MathBrokerConnectionFactoryImpl
L]}

Class Declaration

DECLARATION

public class MathBrokerConnectionFactoryImpl
extends ConnectionFactoryImpl

32

CONSTRUCTORS

o MathBrokerConnectionFactoryImpl
public MathBrokerConnectionFactoryImpl()

METHODS

o createConnection
public Connection createConnection()

— Usage
* Create a named connection. Such a connection can be used to communicate with a JAXR
provider.

o createMathBrokerConnection
public MathBrokerConnection createMathBrokerConnection()

e newlnstance
public static ConnectionFactory newlInstance()

C.2.3 (Crass MathBrokerConnectionImpl
__|]

MathBrokerConnectionImpl

DECLARATION

public class MathBrokerConnectionImpl
extends ConnectionImpl
implements at.ac.unilinz.risc.mathbroker.registry.infomodel.MathBrokerConnection

CONSTRUCTORS

o MathBrokerConnectionImpl
public MathBrokerConnectionImpl(ConnectionFactoryImpl factory)

METHODS

o getMathBrokerRegistryService
public MathBrokerRegistryService getMathBrokerRegistryService()

— Usage
*x Gets the MathBrokerRegistryService interface associated with the Connection.
— See Also

* null

C.2.4 (Crass MathBrokerDeclarativeQueryManagerImpl
L]}

Class Declaration

33

DECLARATION

public class MathBrokerDeclarativeQueryManagerImpl
extends DeclarativeQueryManagerImpl
implements at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerDeclarativeQueryManager

CONSTRUCTORS

o MathBrokerDeclarative QueryManagerImpl
public MathBrokerDeclarativeQueryManagerImpl(RegistryServiceImpl regService,
BusinessLifeCycleManagerImpl lcm)

o MathBrokerDeclarative QueryManagerImpl
public MathBrokerDeclarativeQueryManagerImpl(RegistryServiceImpl regService,
BusinessLifeCycleManagerImpl lcm,
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerRegistryServiceImpl
mRegService,
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlem)

C.2.5 Crass MathBrokerFocusedQueryManagerImpl
L]}

Class Declaration

DECLARATION

public class MathBrokerFocusedQueryManagerImpl
extends at.ac.uni linz.risc.mathbroker.registry.infomodel.impl.MathBrokerQueryManagerImpl
implements at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager

CONSTRUCTORS

o MathBrokerFocusedQueryManagerImpl
public MathBrokerFocusedQueryManagerImpl(RegistryServiceImpl regService,
BusinessLifeCycleManagerImpl lcm,
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerRegistryServiceImpl
mRegService,
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlcm)

METHODS

o cexecuteQueryByClassification
public void executeQueryByClassification(java.lang.String concept)

— Usage
x Searches for Mathbroker objects corresponding to the given math classification concept
and displays information about them from each coressponding repository item.

— Parameters

34

* concept - is /urn:uuid:£2552642-97a3-4e40-95da-b3ef92ab34ab/Entities/” +typename
typename can be problem, algorithm, service, implementation, or machine.
— Exceptions
* JAXRException. -
* JAXBException. -
* I0Exception. -

o cxecuteQueryByld
public void executeQueryBylId(java.lang.String id)

— Usage
* Searches for Mathbroker object corresponding to the given id and displays information
about it from the coressponding repository item.
— Parameters
*x id - = key.getId().
— Exceptions
* JAXRException. -

* JAXBException. -
* I0Exception. -

o cxecuteQueryByName
public void executeQueryByName(java.lang.String name)

— Usage
* Searches for Mathbroker object corresponding to the given name and displays information
about it from the coressponding repository item.
— Parameters
* name - is formed from the targetNamespace, ” /7, and the name of the element to be found.

— Exceptions
* JAXRException. -
* JAXBException. -
* I0Exception. -

o findMathBrokerObjectByName
public Key findMathBrokerObjectByName(java.lang.String name)

— Usage
* Finds the math object that matchs the name specified by the parameter of this call.
Parameters

* name - is formed from the targetNamespace, ” /7, and the name of the element to be found.
Returns - Key of the found object.

— Exceptions
* JAXRException. -
o findMathBrokerObjectByName
public boolean findMathBrokerObjectByName(java.lang.String name,
java.lang.String type)

— Usage
* Searches for Mathbroker object corresponding to the given parameters and displays
information about it from the coressponding repository item.
— Parameters

* name - is formed from the targetNamespace, ” /7, and the name of the element to be found.
* type - is problem, algorithm, implementation, service, or machine.

— Exceptions
* JAXRException. -
* JAXBException. -
* I0Exception. -

35

METHODS INHERITED FROM CLASS
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerQueryManagerImpl

(in C.2.11, page 43)
o getMathBrokerRegistryService
public MathBrokerRegistryService getMathBrokerRegistryService()

C.2.6 CrAss MathBrokerImplementationImpl

DECLARATION

public class MathBrokerImplementationImpl
extends at.ac.uni linz.risc.mathbroker.registry.infomodel.impl.MathBrokerObjectImpl
implements at.ac.unilinz.risc.mathbroker.registry.infomodel.MathBrokerImplementation

CONSTRUCTORS

o MathBrokerImplementationImpl
public MathBrokerImplementationImpl(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlcm)

e MathBrokerImplementationImpl
public MathBrokerImplementationImpl(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlcm, ExtrinsicObjectType tEobj)

METHODS

o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

o showContent
public void showContent()

METHODS INHERITED FROM CLASS
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerObjectImpl

(in C.2.9, page 42)
o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

C.2.7 (Crass MathBrokerLifeCycleManagerImpl

DECLARATION

public class MathBrokerLifeCycleManagerImpl
extends LifeCycleManagerImpl
implements at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerLifeCycleManager

36

METHODS

o createMathBrokerAlgorithm
public MathBrokerAlgorithm createMathBrokerAlgorithm(InternationalString name,
InternationalString description, javax.xml.registry.infomodel.Classification
classification, javax.activation.DataHandler repltem)

— Usage
*x Creates a MathBrokerAlgorithm instance using the specified parameters.
— Parameters

* name - is extracted from the repository item.
* description - is extracted from the repository item.
* classification - is specified by:
/urn:uuid:2552642-97a3-4e40-95da-b3ef92ab34ab /Entities/” +algorithm
— Returns - the MathBrokerAlgorithm instance created.

— Exceptions
* JAXRException - if the JAXR provider encounters an internal error

o createMathBrokerAssociations
public Collection createMathBrokerAssociations(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, monet.openmath.lang.impl.ImplementationImpl element)

— Usage
*x Adds outgoing association(s) to the given Implementation source object based on the hrefs
included in the element and using the given parameters.

— Exceptions
* JAXRException -

o createMathBrokerImplementation
public MathBrokerImplementation createMathBrokerImplementation(
InternationalString name, InternationalString description,
javax.xml.registry.infomodel.Classification classification,
javax.activation.DataHandler repltem)

— Usage
* Creates a MathBrokerImplementation instance using the specified parameters.
— Parameters

* name - is extracted from the repository item.

* description - is extracted from the repository item.

* classification - is specified by:
Jurn:uuid:f2552642-97a3-4e40-95da-b3ef92ab34ab /Entities/” +implementation

* repositoryItem - the DataHandler for the repository item. Must not be null.

— Returns - the MathBrokerImplementation instance created.

— Exceptions
* JAXRException. -

o createMathBrokerMachine
public MathBrokerMachine createMathBrokerMachine(InternationalString name,
InternationalString description, javax.xml.registry.infomodel.Classification
classification, javax.activation.DataHandler repltem)

— Usage
* Creates a MathBrokerMachine instance using the specified parameters.

— Parameters

37

* name - is extracted from the repository item.

description - is extracted from the repository item.

* classification - is specified by by:
Jurn:uuid:2552642-97a3-4e40-95da-b3ef92ab34ab/Entities/” + machine

* repositoryltem- the DataHandler for the repository item. Must not be null.

*

— Returns - the MathBrokerMachine instance created

— Exceptions
* JAXRException - if the JAXR provider encounters an internal error

o createMathBrokerProblem
public MathBrokerProblem createMathBrokerProblem(InternationalString name,
InternationalString description, javax.xml.registry.infomodel.Classification
classification, javax.activation.DataHandler repltem)

— Usage
* Creates a MathBrokerProblem instance using the specified parameters.
Parameters

* name - is extracted from the repository item.

* description - is extracted from the repository item.

* classification - is specified by:
Jurn:uuid:2552642-97a3-4e40-95da-b3ef92ab34ab /Entities/” +problem

* repositoryItem- the DataHandler for the repository item. Must not be null.

Returns - the MathBrokerProblem instance created

Exceptions
* JAXRException - if the JAXR provider encounters an internal error

o createMathBrokerService
public MathBrokerService createMathBrokerService(InternationalString name,
InternationalString description, javax.xml.registry.infomodel.Classification
classification, javax.activation.DataHandler repltem)

— Usage
* Creates a MathBrokerService instance using the specified parameters.
— Parameters

* name - is extracted from the repository item.
* description - is extracted from the repository item.
* classification - is specified by:
Jurn:uuid:£2552642-97a3-4e40-95da-b3ef92ab34ab/Entities/” +algorithm
* repositoryItem- the DataHandler for the repository item. Must not be null.
— Returns - the MathBrokerService instance created

— Exceptions
* JAXRException. -

e deleteIncomingAssociations
public void deleteIncomingAssociations(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fqm, java.lang.String wuid)

— Usage

* Delete all associations where the element is a target object using the given parameters.
— Parameters

* uid - is formed from the target name space + ”/” + the name of the element.

— Exceptions
* JAXRException -

38

o deleteMathBrokerObject
public void deleteMathBrokerObject(
at.ac.uni linz.risc.mathbroker.registry.infomodel.impl.MathBrokerFocusedQueryManagerImpl
fgm, java.lang.String name, java.lang.String type)

— Usage
* Delets a MathBrokerObject using the specified parameters.

— Exceptions
* JAXRException. -

o deleteMathBrokerObjectAndAssociations
public void deleteMathBrokerObjectAndAssociations(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager

fqm, java.lang.String wuid)

— Usage
* Delete mathbroker element and its incoming/outgoing associations based on the given
parameters.
— Parameters
* uid - is formed from the target name space + the name of the element.

— Exceptions
* JAXRException -

o deleteOQutgoingAssociations
public void deleteOutgoingAssociations(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager

fqm, java.lang.String wuid)
— Usage
* Delete all associations where the element is a source objec using the given parameters.

— Parameters
* uid - is formed from the target name space + ”/” + the name of the element.

— Exceptions
* JAXRException -

o publishMathBrokerObject
public void publishMathBrokerObject (
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, javax.activation.DataHandler repltem)

— Usage
* Publishes a MathBroker object instance using the specified parameters. It takes an xml
repository item which should conform to mathbroker schema definition, unmarshals it,
processes and determines each mathbroker element and forms a unique name for each
mathbroker element/entity. The unique name/identifier (uid) is formed by concatenating
the element name to the target name space. It creates individaul xml repository items for
each element and calls the saveMathbrokerObject method to save the newly created
element and repository item in the registry.
— Parameters
* repositoryIltem - the DataHandler for the repository item. Must not be null.
— Returns - the MathBrokerService instance created.
— Exceptions
* JAXRException - if the JAXR provider encounters an internal error.
* JABException. -

39

* I0Exception. -

saveMathBrokerAlgorithm

public void saveMathBrokerAlgorithm (

at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, monet.openmath.lang.impl.AlgorithmImpl element, javax.xml.bind.JAXBContext
context, java.lang.String wuri, java.lang.String uid)

— Usage
* Saves a MathBrokerAlgorithm instance using the specified parameters. if the object
already exits in the registry it updates that object.
— Exceptions
* JABException. -
* JAXRException. -
* FileNotFoundException. -
* javax.xml.bind.PropertyException -

saveMathBrokerImplementation

public void saveMathBrokerImplementation (
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, monet.openmath.lang.impl.ImplementationImpl element,
javax.xml.bind.JAXBContext context, java.lang.String wuri, java.lang.String uid)

— Usage
* Saves a MathBrokerImplementation instance using the specified parameters. if the object
already exits in the registry it updates that object.
— Exceptions
* JABException. -
JAXRException. -
FileNotFoundException. -
javax.xml.bind.PropertyException -

* K ¥

saveMathBrokerMachine

public void saveMathBrokerMachine (

at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, at.ac.unilinz.risc.mathbroker.lang.impl.MachineHardwareImpl element,
javax.xml.bind.JAXBContext context, java.lang.String wuri, java.lang.String uid)

— Usage
* Saves a MathBrokerMachine instance using the specified parameters. if the object already
exits in the registry it updates that object.
— Exceptions
* JABException. -
JAXRException. -
FileNotFoundException. -
javax.xml.bind.PropertyException -

* ¥ ¥

saveMathBrokerObject

public void saveMathBrokerObject(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, java.lang.Object element, javax.xml.bind.JAXBContext context,
java.lang.String wuri, java.lang.String uid, java.lang.String type)

— Usage
* Saves a MathBroker object instance using the specified parameters. if the object already
exits in the registry it updates that object.

40

— Exceptions
* JABException. -
* JAXRException. -

o saveMathBrokerProblem
public void saveMathBrokerProblem (
at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, monet.openmath.lang.impl.ProblemImpl element, javax.xml.bind.JAXBContext
context, java.lang.String wuri, java.lang.String uid)

— Usage
* Saves a MathBrokerProblem instance using the specified parameters. if the object already
exits in the registry it updates that object.
— Exceptions
* JABException. -
JAXRException. -
FileNotFoundException. -
javax.xml.bind.PropertyException -

* % ¥

o saveMathBrokerService
public void saveMathBrokerService(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.MathBrokerFocusedQueryManager
fgm, monet.openmath.lang.impl.ServiceImpl element, javax.xml.bind.JAXBContext
context, java.lang.String wuri, java.lang.String uid)

— Usage
x Saves a MathBrokerService instance using the specified parameters. if the object already
exits in the registry it updates that object.
— Exceptions
* JABException. -
JAXRException. -
FileNotFoundException. -
javax.xml.bind.PropertyException -

* ¥ *

o saveObject
public void saveObject(java.util.Collection mathbrokerObjects)

— Usage
* Does the actual saving when called by the saveMathBroker element methodes using the
specified parameters.

— Exceptions
* JAXRException. -

C.2.8 (CrAss MathBrokerMachinelmpl
__|]

DECLARATION

public class MathBrokerMachineImpl
extends at.ac.uni linz.risc.mathbroker.registry.infomodel.impl.MathBrokerObjectImpl
implements at.ac.unilinz.risc.mathbroker.registry.infomodel.MathBrokerMachine

41

CONSTRUCTORS

o MathBrokerMachineImpl
public MathBrokerMachineImpl(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlcm)

o MathBrokerMachineImpl
public MathBrokerMachineImpl(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlcm, ExtrinsicObjectType tEobj)

METHODS

o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

e showContent
public void showContent()

METHODS INHERITED FROM CLASS
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerObjectImpl

(in C.2.9, page 42)
o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

C.2.9 Crass MathBrokerObjectImpl
L]}

DECLARATION

public abstract class MathBrokerObjectImpl
extends ExtrinsicObjectImpl
implements at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerObject

CONSTRUCTORS

o MathBrokerObjectImpl
public MathBrokerObjectImpl(LifeCycleManagerImpl Ilcm)

e MathBrokerObjectImpl
public MathBrokerObjectImpl(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlcm, ExtrinsicObjectType tEobj)

METHODS

e setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

C.2.10 CrAss MathBrokerProblemImpl
__|]

42

DECLARATION

public class MathBrokerProblemImpl
extends at.ac.uni linz.risc.mathbroker.registry.infomodel.impl.MathBrokerObjectImpl
implements at.ac.uni linz.risc.mathbroker.registry.infomodel. MathBrokerProblem

CONSTRUCTORS

o MathBrokerProblemImpl
public MathBrokerProblemImpl(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlcm)

o MathBrokerProblemImpl
public MathBrokerProblemImpl(
at.ac.uni-linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlem, ExtrinsicObjectType tEobj)

METHODS

o setRepositoryltem
public void setRepositoryltem(javax.activation.DataHandler repltem)

o showContent
public void showContent()

METHODS INHERITED FROM CLASS
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerObjectImpl

(in C.2.9, page 42)
o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

C.2.11 Crass MathBrokerQueryManagerImpl
L]}

DECLARATION

public abstract class MathBrokerQueryManagerImpl
extends BusinessQueryManagerImpl
implements at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerQueryManager

CONSTRUCTORS

o MathBrokerQueryManagerImpl
public MathBrokerQueryManagerImpl(RegistryServiceImpl regService,
BusinessLifeCycleManagerImpl Icm,
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerRegistryServiceImpl
mRegService,
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
mlcm)

43

METHODS

o getMathBrokerRegistryService
public MathBrokerRegistryService getMathBrokerRegistryService()

C.2.12 Curass MathBrokerRegistryServiceImpl
__|]

Class Declaration

DECLARATION

public class MathBrokerRegistryServiceImpl
extends RegistryServiceImpl
implements at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerRegistryService

CONSTRUCTORS

o MathBrokerRegistryServiceImpl
public MathBrokerRegistryServiceImpl(ConnectionImpl c¢)

METHODS

o getMathBrokerConnection
public MathBrokerConnectionImpl getMathBrokerConnection()

— Usage
* Returns the MathBroker connection.

o getMathBrokerDeclarativeQueryManager
public MathBrokerDeclarativeQueryManager getMathBrokerDeclarativeQueryManager()

— Usage
* Returns the MathBrokerDeclarativeQueryManager interface implementation.

o getMathBrokerFocusedQueryManager
public MathBrokerFocusedQueryManager getMathBrokerFocusedQueryManager()

— Usage
* Returns the MathBrokerFocusedQueryManager interface implementation.

o getMathBrokerLifeCycleManager
public MathBrokerLifeCycleManager getMathBrokerLifeCycleManager()

— Usage
*x Returns the MathBrokerLifeCycleManager interface implementation.

C.2.13 Crass MathBrokerServiceImpl

44

DECLARATION

public class MathBrokerServiceImpl
extends at.ac.uni linz.risc.mathbroker.registry.infomodel.impl.MathBrokerObjectImpl
implements at.ac.uni linz.risc.mathbroker.registry.infomodel.MathBrokerService

CONSTRUCTORS

o MathBrokerServiceImpl
public MathBrokerServiceImpl(
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
Icm)

o MathBrokerServiceImpl
public MathBrokerServiceImpl(
at.ac.uni-linz.risc.mathbroker.registry.infomodel.impl.MathBrokerLifeCycleManagerImpl
lem, ExtrinsicObjectType tEobj)

METHODS

o setRepositoryltem
public void setRepositoryltem(javax.activation.DataHandler repltem)

o showContent
public void showContent()

METHODS INHERITED FROM CLASS
at.ac.uni_linz.risc.mathbroker.registry.infomodel.impl.MathBrokerObjectImpl

(in C.2.9, page 42)
o setRepositoryltem
public void setRepositoryItem(javax.activation.DataHandler repltem)

References

[1] Olga Caprotti and Wolfgang Schreiner. Towards a Mathematical Service Description
Language. In International Congress of Mathematical Software ICMS 2002, Bejing, China,
August 17-19, 2002. World Scientific Publishing, Singapore.

[2] Mike Dewar, David Carlisle, and Olga Caprotti. Description Schemes for Mathematical Web
Services. In EuroWeb 2002: The Web and the Grid: From e-Science to e-Business, Oxford,
UK, December 2002. Britisch Computer Society Electronic Workshops in Computing.

[3] ebXML Registry Information Model v2.0. OASIS, December 2001.
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRIM.pdf.

[4] ebXML Registry Services Specification v2.0. OASIS, April 2002.
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRS.pdf.

[6] Java Architecture for XML Binding (JAXB). Sun microsystems, April 2004.
http://java.sun.com/xml/jaxb/.

45

[6]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

Java API for XML Registries (JAXR) v0.9. Sun microsystems, April 2002.
http://java.sun.com/xml/jaxr/.

Java Web Services Developer Pack (JWSDP). Sun microsystems, April 2004.
http://java.sun.com/webservices/webservicespack.html.

MathBroker — A Framework for Brokering Distributed Mathematical Services. Reseach
Institute for Symbolic Computation (RISC), April 2004.
http://www.risc.uni-linz.ac.at/projects/basic/mathbroker.

MONET — Mathematics on the Web. The MONET Consortium, April 2004.
http://monet.nag.co.uk.

Mathematical Services Description Language (MSDL). Reseach Institute for Symbolic
Computation (RISC), April 2004.
http://poseidon.risc.uni-linz.ac.at:8080/mathbroker /results/xsd.html.

Mathematical Services Description Language Library API. Reseach Institute for Symbolic
Computation (RISC), April 2004.
http://poseidon.risc.uni-linz.ac.at:8080 /results/xsd /monet-based /api/index.html.

Mathematical Services Description Language (MSDL) Schema. Reseach Institute for
Symbolic Computation (RISC), April 2004.
http://poseidon.risc.uni-linz.ac.at:8080 /results/xsd /monet-based /mathbroker.xsd.

MathBroker Registry API. Reseach Institute for Symbolic Computation (RISC), April 2004.
http://poseidon.risc.uni-linz.ac.at:8080 /results/registry /M Bregistry API/.

MathBroker Samples. Reseach Institute for Symbolic Computation (RISC), April 2004.
http:/ /perseus.risc.uni-linz.ac.at:8080/openmath/.

Semantic Web. World Wide Web Consortium, March 2004. http://www.w3.org/2001/sw.

Apache Tomcat. The Apache Jakarta project, April 2004.
http://jakarta.apache.org/tomcat/.

UDDI Version 2.04 API Specification. OASIS, July 2002.
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf.

46

