Semantic Querying of Mathematical Web
Service Descriptions*

Rebhi Baraka and Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
{rbaraka,schreine}@risc.uni-linz.ac.at

Abstract. This paper describes a semantic extension to the Mathemati-
cal Services Query Language (MSQL). MSQL is a language for querying
registry-published mathematical Web service descriptions expressed in
the Mathematical Services Description Language (MSDL). The seman-
tic extension allows queries in MSQL to be based on the underlying se-
mantics of service descriptions; the MSQL engine processes these queries
with the help of an automated reasoner.

1 Introduction

Semantic-based discovery of Web services is one of the crucial issues that are
currently receiving considerable attention in the field of the Semantic Web. In
the case of mathematical Web services, this issue is more subtle due to the fact
that they operate within semantically rich domains on objects that need proper
encoding and specification.

A mathematical Web service is a Web service that offers the solution to a
mathematical problem (based on e.g. a computer algebra system or on an au-
tomated theorem prover). In the MathBroker project [13], we have developed a
framework for mathematical services based on standards such as XML, SOAP,
WSDL, and OpenMath. We have developed the XML-based Mathematical Ser-
vices Description Language (MSDL) [8] to adequately describe mathematical
services and their constituent entities. The description of a mathematical ser-
vice in MSDL may contain information related to the type of the problem, the
algorithm(s) used to solve the problem, related problems, machines executing the
problem, etc. A skeleton of a service description in MSDL is shown in Figure 1.

To facilitate the process of publishing and discovering mathematical services,
we have developed a mathematical registry [3] where MSDL descriptions of ser-
vices are published such that clients can discover them by browsing or querying
the registry. Since the querying facilities of the registry do not support content-
based querying, we have developed the content-based Mathematical Services
Query Language (MSQL) [1,5] which is able to perform queries at the syntac-
tical structure of a MSDL service description. However, mathematical objects

* This work was sponsored by the FWF Project P17643-NO4 “MathBroker II: Bro-
kering Distributed Mathematical Services”.

<monet:definitions>
<mathb:machine_hardware name="perseus">

</mathb:machine_hardware>
<monet :problem name="integration">

</monet :problem>
<monet:algorithm name="RischAlg">

</monet:algorithm>
<monet:implementation name="RImpl">

<monet :hardware href=".../perseus"/>
<monet:algorithm href=".../RischAlg"/>
</monet:implementation>

<monet :service name="RRISC">

<monet :problem href=".../integration"/>
<monet:implementation href=".../RImpl"/>
</monet:service>

</monet:definitions>

Fig. 1. A Skeleton of a Service Description

respectively their MSDL descriptions are semantically rich and MSQL does not
capture these semantic structures and their relations. This limits the effective-
ness of service discovery since it is not based on the semantic information con-
tained in MSDL descriptions. In this paper we present an extension to MSQL
that addresses the semantic information contained in service descriptions. This
extension adds a number of constructs to the language in order to express predi-
cate logic formulas and adds a semantic evaluator to the MSQL engine to process
these formulas with the help of an automated reasoner. The rest of this paper
briefly describes the syntactic structure of MSQL (Section 2), the semantic ex-
tension to MSQL (Section 3), the MSQL engine architecture and implementation
(Section 4), and finally reviews related work (Section 5).

2 The MSQL Syntactic Structure

The Mathematical Services Query Language is a language designed and imple-
mented to query registry-published services based on the contents of their MSDL
descriptions. It provides the functionality to interface to a registry and retrieve
service descriptions on which queries are performed. Its implementation is based
on a formally defined semantics [1].

The Query Structure
A query in MSQL conforms to the following syntax:

SELECT EVERY|SOME <entity>

FROM <classificationConcept>

WHERE <expression>

ORDERBY <expression> ASCENDING|DESCENDING

The query has four main clauses:

— The SELECT clause selects EVERY or SOME description of the type spec-
ified by entity from a given classification scheme in the registry. The entity
types defined by MSDL are problem, algorithm, implementation, realization,
and machine.

— The FROM clause determines the classification scheme from which the spec-
ified description is to be selected. Every service respectively its description in
the registry is classified according to predefined classification schemes in the
registry. The FROM clause limits the range of descriptions to be retrieved
for querying to those classified under ClassificationConcept.

— The WHERE clause applies its expression parts to each candidate document
retrieved from the registry. The expression of the WHERFE clause is a logical
condition: if it is evaluated to true, the document is considered as (part of)
the result of the query.

— The ORDERBY clause sorts the resulting documents in ASCENDING or
DESCENDING order based on the comparison criteria resulting from the
evaluation of its expression on each document.

MSQL is designed such that it has a minimal set of expressions that are
sufficient to construct logical statements on the contents of the target MSDL
descriptions and that it is able to address the structure of such descriptions.
MSQL expressions include: path expressions that can access every part of an
MSDL document; expressions involving logical, arithmetic, and comparative op-
erators; conditional expressions; quantified expressions; functions; and variable
bindings. The following is a sample MSQL query that illustrates the usage of
some of these expressions.

Example 1. Find every service in “/GAMS/Symbolic Computation” such that,
if it has an implementation, it runs on a machine called “perseus” and otherwise
its interface is on this machine.

SELECT EVERY service
FROM /GAMS/Symbolic Computation
WHERE
if not (/servicel[empty(//implementation)])
then
let $d := doc(//implementation/@href) in
$d/hardware [contains(@name, "perseus")]
else
//service-interface-description[contains(@href, "perseus")]
ORDERBY /service/@name descending

This query asks for every service description classified under “/GAMS/Symb-
olic Computation” that satisfies the WHERE expression. The resulting doc-
uments are to be sorted in descending order according to their names. The
conditional expression (if .. then .. else) is used to decide if the current service
document node has an implementation. If this is the case, it takes from the ser-
vice document the URI of such implementation document, retrieves it from the
registry (let $d := doc(//implementation/@href)), and checks if this imple-
mentation is related to the machine perseus. If this is not the case, it checks in
the else branch, if the service has its interface on the said machine. The let
clause is used to assign a document to the variable d which is then used as part
of the path expression. The doc function returns the root node of the document
whose name appears as its argument. Its argument is a URI that is used as the
address of the required document in the registry. The contains function returns
true if its first argument value contains as part of it its second argument value.

Although MSQL provides the functionality to express and perform queries
on the syntactic structure of MSDL descriptions, it does not provide the func-
tionality to express and perform queries on their semantic content. In the next
section, we present an extension to MSQL that addresses this limitation.

3 A Semantic Extension to MSQL

The Mathematical Services Description Language (MSDL) is capable of repre-
senting not only syntactic structures, but also semantic information. This in-
formation is expressed in OpenMath [18], an XML-based standard format for
representing mathematical objects in a semantics-preserving way. To illustrate
this approach, we first present a sample description to show the underlying se-
mantics of MSDL and then show how a query can be constructed that operates
on this semantics.

Consider a description of the mathematical problem of indefinite integration
(Figure 2). It consists of the following pieces of semantic information:

— Input: f : R — R (lines 3 to 13) which expresses the type R — R of the
input and gives it the local name f.

— Output: i : R — R which expresses the type R — R of the output and gives
it the local name .

— Post-condition: i = indefint(f) (lines 17 to 28) which states that the output
i equals the indefinite integral of the input f.

The semantic information expressed in this problem description can be used
as a basis for discovering suitable services published in the mathematical registry.
Suppose a client wants to solve a problem with the following specification:

— Input: a: R—> R

— Output: b: R - R

— Post-condition: diff (b)) = a (which states that the differentiated output
equals the input).

1 <problem name="indefinite-integration">
2 <body>

3 <input name="f">

4 <signature>

5 <0OMOBJ>

6 <OMA>

7 <OMS cd="sts" name="mapsto"/>
8 <OMS cd="setnamel" name="R"/>
9 <OMS cd="setnamel" name="R"/>
10 </0MA>

1 </0MOBJ>

12 </signature>

13 </input>

14 <output name="i">

15 .

16 </output>

17 <post-condition>

18 <0OMOBJ>

19 <OMA>
20 <OMS cd="relationl" name="eq"/>
21 <OMV name="i"/>
22 <0OMA>
23 <OMS cd="calculusl" name="indefint"/>
24 <OMV name="f"/>
25 </0MA>
26 </0OMA>
27 </0MOBJ>
28 </post-condition>
29 </body>
30 </problem>

Fig. 2. An MSDL Problem Description

The client would thus like to find some service which solves a problem p such
that

type(inputy,) =R —- R A (1)
type(output,) =R - R A (2)
VaeR—R,beR — R (post,(a,b) = diff (b) = a) (3)

where formulas (1) and (2) state that the types of the input and output shall
be R — R and the universally quantified subformula (3) states that the post-
condition post, of the problem p implies that the differentiation of the output
b equals the input a. The truth of this statement depends on knowledge avail-
able about the operation diff, e.g. a knowledge base may contain the formula
diff (indefint(a)) = a which semantically relates the operators diff and indefint.

To express such a formula in MSQL, we extended the grammar of MSQL as
shown in Figure 3 by adding two clauses:

<msqlQuery> ::= ’SELECT’ (’EVERY’ | ’SOME’) <entity>
(’FROM’ <classification>)7
(’WHERE’ <msqlExpr>)7
(’ORDERBY’ <msqlExpr)7?;
<msqlExpr> ::= | <typematch> | <semanticExpr>;
<typematch> ::= ’typematch’ (omObjExpr, omObjExpr);
<semanticExpr> ::= ’satisfy’ (<omObjExpr>);
<omObjExpr> ::= <omApplication> | <omAttribution> | <omBinding>
| <omInt> | <omVar> | <omString> | <omSymbol>
| <var>;
<omApplication> ::= ’oma’ ’(’ <omObjExpr> (, <omObjExpr>)* (
<varReplacement>)? ’)’;
<omAttribution> ::= ’omattr’ ’(’ <omObjExpr>, (<omObjExpr>

<omObjExpr>) (, (<omObjExpr> <omObjExpr>))*
(<varReplacement>)?)’
<omBinding> ::= ’ombind’ ’(’ <omObjExpr> ’[’ <omBoundVariable>
(, omBoundVariable)* ’]’ <omObjExpr>
(<varReplacement>)? ’)’;

<omBoundVariable> ::= ’omvar’ ’:’ (<var> | <omVar>) ’@’ ’(’<omObjExpr>,
<omObjExpr> (<varReplacement>)7 ’)’;
<varReplacement> ::= ’[’ <omObjExpr> ’/’ <var> (, <omObjExpr> ’/’
<var>)*x ’]7;
<omInt> ::= ’omi’ ’:’ <number>;
<omVar> ::= ’omv’ ’:’ (<letter> | <var>);
<omString> ::= ’omstr’ ’:’ <letter> ;
<omSymbol> ::= ’oms’ ’:’ <letter> ’:’ <letter>;
<var> ::= ’$’ <letter>;

Fig. 3. The MSQL Semantic Extension Grammar

— The clause ‘typematch(a,b)’ states that type a matches (i.e. equals or is a
special version of) type b.

— The clause ‘satisfy e’ states that the semantic interpretation of the predicate
logic formula e (encoded as an OpenMath expression) yields true.

The <semanticExpr> rule and its subrules define the grammar of predicate
logic formulas based on the classification of OpenMath objects into basic objects
and compound objects [18]. Basic objects include Integers, Strings, Variables,
and Symbols. Compound objects include Application, Attribution, and Binding.
The syntax is defined such that expressions are written in a prefix notation which
is internally transformed to OpenMath syntax. For instance the <omBinding>
subrule (see also Example 2) expresses an OpenMath Binding object which is
constructed from an OpenMath object (the binder), and from zero or more vari-
ables (the bound variables) followed by another OpenMath object (the body).
The MSQL expression

oma(oms:relationl:eq, oma(oms:calculusl:diff, omv:b), omv:a)

is thus transformed to the OpenMath XML object

<0OMA>
<0MS name="eq" cd="relationl"/>
<0MA>
<0OMV name="diff" cd="calculusl1"/>
<0OMV name="b"/>
</0MA>
<0MV name="a"/>
</0MA>

Example 2. Our request to find some service with problem p such that the type
checks (1) and (2) and the subformula (3) are satisfied can be expressed by the
following MSQL query:

SELECT SOME service
FROM /GAMS/Symbolic Computation
WHERE let $p:= doc(//problem/Ghref) in

$a:= $p//input/@name,
$b:= $p//output/@name,
$ta:= $p//input/signature/0MOBJ,
$tb:= $p//output/signature/0OMOBJ,

$post:= $p//post-condition/OMOBJ in
(typematch(oma(oms:sts:mapsto(oms:setnamel:R,
oms:setnamel:R)), $ta)) and
(typematch($tb, oma(oms:sts:mapsto(oms:setnamel:R,
oms:setnamel:R)))) and
(satisfy(ombind(oms:quantl:forall
[omvar:$a@(oms:sts:type, $ta),
omvar:$b@(oms:sts:type, $tb)]
oma(oms:logicl:implies, $post,
oma(oms:relationl:eq,
oma(oms:calculusl:diff, omv:$b), omv:$a)))))

Variable $p represents the problem description of the service retrieved from
the registry by the doc function according to the problem href provided as part
of the service description. Variables $a and $b represent the names of the input
and the output of the problem. Variables $ta and $tb represent the types of
the input and the output of the problem. Variable $post represents the post-
condition of the problem.

The two typematch expressions correspond to formulas (1) and (2). They
check if type R — R matches the type $ta of the input and if the type $tb of
the output matches type R — R.

The satisfy expression corresponds to the universally quantified subfor-
mula (3).

In the next section, we explain how the query is handled by the query engine.

4 The MSQL Architecture And Implementation

MSQL including its semantic extension has been implemented as a query en-
gine [1,5] and has been incorporated into the MathBroker framework [13] for

service publication and discovery.

Architecture

Figure 4 illustrates the architecture of the MSQL engine which consists of the

following components:

Knowledge Base Client
| | I)
.) MSQL
A ‘ L ‘ MSDL
LXIomS Declarations query results
v v
Syntactic Result -
Expression ry Quantifier Registry
Evaluator Processor and Sorter query
Semantic . Candidate
Expression ﬁ:%'g;‘g MSDL
Evaluator . d ts
MSQL Englne peumen

Semantic expression
in OpenMath

Reasoner Interface

T

Semantic expression
in Reasoner syntax

‘ Automated Reasoner

— The MSQL Query Engine which has the MSQL query functionality. It
consists of the following components:

o The Query Processor which receives the query from the client, decom-
poses it into processable parts, and hands each part to the corresponding
component.

e The Parser receives the query from the processor and parses it according
to the MSQL syntax. If the query does not comply with the syntax, an
error message is returned to the processor which forwards the message
to the client.

Fig. 4. The MSQL Engine Architecture

Query
Manager

Registry

—__ @@
Repository

e The Registry Handler receives from the processor the entity and clas-
sificationConcept parts of the query. It composes a registry query to
retrieve EVERY /SOME description document of the given entity type
classified under the given classificationConcept.

e The Syntactic Expression Evaluator receives from the Query Proces-
sor the syntactic expression part of the query and evaluates it against
each description document retrieved from the registry. It returns to
Query Processor those documents for which the expression evaluates
to true.

e The Semantic Expression Evaluator receives from the Query Proces-
sor the semantic expression part of the query and evaluates it against
each description document retrieved from the registry. It returns to the
Query Processor those documents for which the expression evaluates to
true. Unlike the Syntactic Expression Evaluator, the Semantic Expres-
sion Evaluator does not perform the whole evaluation by itself. It rather
takes the semantic expression, converts it into OpenMath format (see
Figure 5), retrieves from the Knowledge Base the axiom(s) and type dec-
laration(s) needed to reason about the semantic expression and sends all
of them to the Reasoner Interface. As required by the Reasoner Interface,
the axioms are represented in OpenMath format and the declarations are
represented in OMDoc [17] format.

e The Result Quantifier and Sorter receives from the Query Proces-
sor SOME/EVERY document filtered by the two evaluators, orders (if
needed) the documents according to the ORDERBY expression, and
returns them as the query result to the Client.

— The Registry which stores a collection of published MSDL documents of dif-
ferent entity types and classifies them according to some registry-predefined
classification schemes. Query requests to the registry are handled by the
Query Manager of the registry.

— The Reasoner Interface receives from the Semantic Expression Evaluator
the semantic expression part of the query in OpenMath, the axiom(s) in
OpenMath, and the declaration(s) in OMDoc and converts each one to the
format required by the Automated Reasoner and hands them to the rea-
soner. It gets the answer from the reasoner and sends it to the Semantic
Expression Evaluator. The Reasoner Interface used is a component of the
RISC ProofNavigator [20].

— The Automated Reasoner reasons about semantic expressions based on
the axiom(s) and declaration(s) given and returns the answer to the Rea-
soner Interface. The Automated Reasoner currently used is the Cooperating
Validity Checker Lite (CVCL) [6].

— The Knowledge Base holds declarations of OpenMath symbols that may
be used in semantic queries together with axioms that describe the semantics
of that symbols.

Performing the Semantic Query

Based on this architecture, we summarize the actions taken to perform the query
in Example 2:

— The Query Engine receives the query from the Client and hands it to the
Query Processor

— The Query Processor asks the Parser to parse the query according to the
MSQL syntax. If the query does not comply with the MSQL syntax, an error
message is returned to the user.

— The Query Processor decomposes the query to processable parts. It hands
the registry-related part (the entity service and the classificationConcept
“/GAMS/Symbolic Computation”) to the registry handler.

— The Registry Handler forms a registry query based on the entity and the
classification Concept, connects to the Registry and hands the registry query
to the Query Manager of the Registry which performs the query and returns
a set of candidate service documents to the Registry Handler.

— The Query Processor asks the Syntactic Expression Evaluator to evaluate
the syntactic expression part on the current service document. The Syntactic
Expression part consists of a let expression which has six assignment subex-
pressions. The evaluations of these subexpressions assign values to variables
$a, $b, $ta, $tb, and $post representing input, output, input type, output
type, and post-condition respectively. These variables are used in the se-
mantic expression of the query.

— The Query Processor asks the Semantic Expression Evaluator to evaluate
the semantics expression against the (same) current service document. The
Semantic Evaluator performs the following steps:

e It performs the type checking required by the two typematch expressions.
If the result of the check is true it proceeds to the next step. Otherwise
it returns false and the Query Processor proceeds to perform the query
on the next candidate document.

e It converts the satisfy expression to OpenMath format. The Open-
Math representation of the satisfy expression is shown in Figure 5. The
conversion also takes care of variable substitution (e.g., variable $a is
substituted by the input name f).

e It retrieves from the Knowledge Base the declarations of the symbols
diff and indefint represented in OMDoc. The two symbols occur in the
OpenMath representation of the satisfy formula after variable substi-
tution. The declaration of the diff symbol is shown in Figure 6. The
indefint symbol has a similar declaration.

o It retrieves from the Knowledge Base the axiom diff (indefint(a)) = a.
This axiom is represented by the following quantified formula in Open-
Math format (similar to the OpenMath format of the satisfy expression)

VfeR—R (indefint(diff (f)) = f)

10

1 <OMOBJ>

2 <OMBIND>

3 <OMS name="forall" cd="quant1"/>

4 <OMBVAR>

5 <OMATIR> Lines 5 to 15 represent the conversion of
6 <OMATP> . .

7 <OMS name="type" cd="sts"/> the binder expression

8 <OMA>

9 <OMS name="mapsto" cd="sts"/> omvar:$a@(oms:sts:type, $ta)

10 <0MS name="R" cd="setnamel"/>

11 <0MS name="R" cd="setnamel"/>

12 </0MA> with the variables $a and $b substituted
13 </OMATP> . i} e .
12 <OMV name="£"/> by their values. It represents the declaration
15 </OMATTR>

16 <OMATTR> f:R—R

17

18 <OMV name="i"/>

19 </OMATTR>

20 </OMBVAR>

21 <OMA>

22 <OMS name="implies" cd="logici"/> Lines 21 to 39 represent the conversion of
23 <OMA> the satisfy subexpression

24 <0MS name="eq" cd="relationi"/>

25 <OMV name="i"/>

26 <OMA> oma(oms:logicl:implies, $post,

27 <0OMV name="indefint" cd="calculusl"/> oma (oms:relationi: eq,

28 <OMV name="f"/> .

29 </OMA> oma(oms:calculusl:diff,

30 </0MA> omv:$b), omv:$a))

31 <OMA>

32 <0MS name="eq" cd="relationl"/>

33 <OMA> 4 / with the variables $post, $a, and $b ap-
34 <OMV name="diff" cd="calculus1"/> propriately substituted by their values. It
35 <OMV name="i"/> . s

6 </oma> represents the implication

37 <0OMV name="f"/>

38 </0MA> S) —

oSG i = indefint(f) = diff i) = f

40 </OMBIND>
41 </0MOBJ>

Fig. 5. OpenMath Representation of the satisfy Expression in Example 2

e It hands the satisfy expression (in OpenMath), the declarations (in OM-
Doc), and the axiom (in OpenMath) to the Reasoner Interface which
converts each of them to the syntax required by the reasoner. The rea-
soner decides about the truth value of the expression based on the given
axiom and declarations and returns the answer to the RISC ProofNavi-
gator which in turn returns the answer to the Semantic Expression Eval-
uator.

— If the evaluation of the semantic expression yields true, the Query Processor
returns the current service document to the Result Quantifier and Sorter
which returns it to the Client as the ultimate result (because of the SOME
clause) of the query. If the evaluation is false the Query Processor proceeds to
process the query on the next candidate service document. If the evaluation
is false for all candidate documents, then no document is returned as a result
of the query.

11

<omdoc: omgroup>
<omdoc:symbol kind="object" name="calculusl_diff">
<omdoc:type system="simply_typed"
xml:id="calculusl_diff_type">
<om:(0OMA>
<om:0MS cd="sts" name="mapsto"/>
<om:(0OMA>
<om:0MS cd="sts" name="mapsto"/>
<om:0MS cd="setnamel" name="R"/>
<om:0MS cd="setnamel" name="R"/>
</om:0MA>
<om:0MA>
<om:0MS cd="sts" name="mapsto"/>
<om:0MS cd="setnamel" name="R"/>
<om:0MS cd="setnamel" name="R"/>
</om:0MA>
</om:0OMA>
</omdoc:type>
</omdoc: symbol>
</omdoc: omgroup>

Fig. 6. The diff variable declaration

A Prototype Implementation

A prototype of the architecture has been implemented in Java making use of
the ebXML registry standard [10] as a basis for the Registry [4], a component of
the RISC ProofNavigator [20] as the Reasoner Interface, and the Cooperating
Validity Checker Lite (CVCL) [6] as the Automated Reasoner.

The implementation of the MSQL engine is based on a formal definition [1]
using denotational semantics [21]. The implementation consists of a set of eval-
uation classes with a set of methods each of which corresponds to one equation
in the denotational semantics. The signature of a method corresponds to the
signature of the semantic function. For example, the equation

E[V] d n r = lookup(d, [V])
with the semantic function
E : Expression x Declaration x Node x Registry — Value
is implemented by the Java method

static private Value evaluateVariableExpr (ChildAST expr,
Declaration declaration,
Node node) throws MsqlException {
VarExpr varExpr = (VarExpr)expr;
return declaration.lookup(varExpr);

}

12

The prototype implementation of the MSQL engine including its API can be
found in [2].

5 Related work

Service discovery is a crucial phase in the service life cycle. Apart from the
MathBroker project, two other projects have focused on the description and
discovery of mathematical Web services.

The MONET [14] project defines a set of ontologies to model service descrip-
tions (which are basically ontological conversions of MSDL [9, 15] descriptions)
as well as queries on those descriptions. These ontologies are written in OWL [19]
and are used by a component within the MONET architecture called Instance
Store [12]. Instance Store uses the Description Logic reasoner RACER [11] for
matching queries to appropriate services.

MONET uses two classes of ontologies: those describe models internal to
MONET (e.g., problem and software ontologies) and those describe models ex-
ternal to MONET (e.g., OpenMath and GAMS ontologies). Individual ontolo-
gies of both classes are imported into one MONET ontology. When a service is
submitted to the MONET broker, its description is presented in MSDL. This de-
scription is transformed to the OWL Abstract Syntax [7] by means of an XSLT
stylesheet. Service matching is then performed by submitting a query to the
Instance Store in the form of an OWL description. The Instance Store answers
the query by using a combination of Description Logic reasoning and database
queries. The reasoning process in the case of MONET is based on a restricted
form of first order logic which is more tractable for automated reasoning but
strictly less expressive. In our semantic queries, we use full predicate logic which
is a highly expressive language.

A matching-based discovery approach [16] to registry-published mathemat-
ical services performs matchmaking between representations of tasks (client re-
quests) and capabilities (service descriptions). The approach applies a normal-
ization process on a task. It then compares the normalized task with a registered
capability calculating a similarity value that is used in the matchmaking process.
Task normalization amounts to carrying out a sequence of transformations on the
task description rewriting all logical parts in disjunctive normal form, flattening
arguments of n-associative operations, and consistent variable renaming.

The similarity value is calculated based on the matching of the capability
precondition (or the task postcondition) and the capability postcondition (or the
task precondition). Matchmaking is performed by: registering capabilities in the
database, taking a description of a task normalizes it, and returns an ordered list
of the capabilities from the registry database based on their calculated similarity.

The matching process used in the discovery is ultimately based on the syn-
tactic similarity traced between tasks and capabilities. In our case, the decision
is based on logical implications between statements extracted from descriptions,
which is strictly more general.

13

6 Conclusion

The Mathematical Services Query Language (MSQL) is a language developed
for querying mathematical descriptions given in the Mathematical Services De-
scription Language (MSDL) and published in the MathBroker registry. MSQL
supports syntax-based queries on the syntactic structure of mathematical service
specifications. The semantic extension of MSQL enables it to support semantic-
based queries on the underlying semantical structures of such mathematical ser-
vice specifications. The query engine of MSQL performs semantic-based queries
with the help of an automated reasoner which takes predicate logic formulas,
decides their validity, and returns the answer to the engine.

A future extension to the presented framework may involve service composi-
tions: when a client submits a service request, a broker agent determines suitable
service compositions satisfying the client request and returns the description of
a composition rather than that of a single service. To find the suitable candidate
services, the agent might form MSQL queries based on information contained
in the client request, send them to the query engine, and make composition
decisions based on the results returned by the query engine.

References

1. Rebhi Baraka. Mathematical Services Query Language: Design, Formalization,
and Implementation. Technical report, Research Institute for Symbolic Compu-
tation (RISC), Johannes Kepler University, Linz, Austria, September 2005. See
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/.

2. Rebhi Baraka. Mathematical Services Query Language (MSQL) APIL
Research Institute for Symbolic Computation (RISC), Johannes Kepler
University, Linz, Austria, September 2005. See http://poseidon.risc.uni-
linz.ac.at:8080/results/msql/doc/index.html.

3. Rebhi Baraka, Olga Caprotti, and Wolfgang Schreiner. A Web Registry for Pub-
lishing and Discovering Mathematical Services. In Proceedings of IEEE Conference
on e-Technology, e-Commerce, and e-Service, Hong Kong Baptist University, Hong
Kong, March 29 — April 1, 2005. IEEE Computer Society, Los Alamitos, CA.

4. Rebhi Baraka, Olga Caprotti, and Wolfgang Schreiner. A Web Registry for Pub-
lishing and Discovering Mathematical Services. In EFEE, pages 190-193. IEEE
Computer Society, 2005.

5. Rebhi Baraka and Wolfgang Schreiner. Querying Registry-Published Mathemati-
cal Web Services. In Proceedings of The IEEE 20th International Conference on
Advanced Information Networking and Applications (AINA 2006), Vienna, Austria
April 18 — April 20, 2006. IEEE Computer Society.

6. Clark W. Barrett and Sergey Berezin. CVC Lite: A New Implementation of the
Cooperating Validity Checker Category B. In Proceedings of 16th International
Conference on Computer Aided Verification, Boston, MA, USA, July 13-17, 2004.

Springer.

7. Sean Bechhofer, Peter F. Patel-Schneider, and Daniele Turi. OWL
Web Ontology Language Concrete Abstract Syntax. Technical re-
port, The University of Manchester, UK, December 2003. See

http://owl.man.ac.uk/2003/concrete/latest /.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Olga Caprotti and Wolfgang Schreiner. Towards a Mathematical Service Descrip-
tion Language. In International Congress of Mathematical Software ICMS 2002,
Bejing, China, August 17-19, 2002. World Scientific Publishing, Singapore.

Mike Dewar, David Carlisle, and Olga Caprotti. Description Schemes for Mathe-
matical Web Services. In FuroWeb 2002: The Web and the Grid: From e-Science
to e-Business, Oxford, UK, December 2002. British Computer Society Electronic
Workshops in Computing.

ebXML Registry Services Specification v2.0. OASIS, April 2002. http://www.oasis-
open.org/committees/regrep/documents/2.0/specs/ebRS.pdf.

Volker Haarslev and Ralf Moller. Description of the RACER system and its ap-
plications. In Automated reasoning: First International Joint Conference, IJCAR
2001, Siena, Itally, June 18-23, 2001. volume 2083 of Lecture Notes in Artificial
Intelligence, New York, NY, USA, 2001. Springer Verlag Inc.

Instance Store - Database Support for Reasoning over Individuals. The University
of Manchester, 2002. See http://instancestore.man.ac.uk/instancestore.pdf.

MathBroker II: Brokering Distributed Mathematical Services. Re-
search Institute for Symbolic Computation (RISC), Johannes Ke-
pler University, Linz, Austria, April 2006. See http://www.risc.uni-

linz.ac.at/research/parallel/projects/mathbroker2/.

MONET — Mathematics on the Web. The MONET Consortium, April 2004.
http://monet.nag.co.uk.

Mathematical Services Description Language (MSDL). Research Institute for Sym-
bolic Computation (RISC), Johannes Kepler University, Linz, Austria, April 2004.
http://poseidon.risc.uni-linz.ac.at:8080 /mathbroker /results/xsd.html.

William Naylor and Julian Padget. Semantic Matching for Mathematical Services.
In Proceedings of the Forth International conference on Mathematical Knowledge
Management, Bremen, Germany, 15 — 17 July, 2005. Springer.

OMDoc: A Standard for Open Mathematical Documents. MathWeb.org, Septem-
ber 2005. See http://www.mathweb.org/omdoc/.

The OpenMath Standard. The OpenMath Society, April 2006. See
http://www.openmath.org/cocoon/openmath/index.html.

OWL Web Ontology Language Reference. W3C, February 2004. See
http://www.w3.org/TR/2004/REC-owl-ref-20040210/ .

The RISC ProofNavigator. Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria, March 2006. See http://www.risc.uni-
linz.ac.at/research /formal /software /ProofNavigator/.

David A. Schmidt. Denotational Semantics — A Methodology for Language Devel-
opment. Allyn and Bacon, Boston, 1986.

15

