
Supporting the Design Pattern

“Object Structures as Plain Values”∗

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University Linz, Austria
Wolfgang.Schreiner@risc.uni-linz.ac.at

September 25, 2009

Abstract

We sketch the principles of a type system for an object-oriented lan-
guage such as Java which allows to statically ensure that an object struc-
ture is not modified by a method call, if the primary reference of that
object structure is stored in a local variable of the method and this vari-
able does not syntactically occur in the call. The object structure thus
behaves like a “plain value”, say a machine number, stored in a local
variable in that no hidden side-effects can change it. We call the corre-
sponding design pattern “object structures as plain values”. The model
is presented in an informal style; its validity still remains to be shown by
a formal definition and soundness proof.

Contents

1 Introduction 2

2 Notions 4

3 Typechecking Plain Values 7

4 Related Work and Conclusions 15

∗Supported by the Austrian Academic Exchange Service (ÖAD) under the contract
HU 14/2009.

1

1 Introduction

Our goal is to investigate which constraints are sufficient in order to consider an
object structure as a “plain value”. By this, we mean the following: if one de-
clares in a method a local variable “x” of a primitive datatype and subsequently
calls some method “m”, e.g.

int x = . . . ;
. . .
r = o .m(y)
. . .

one can be sure that, if the name “r” of the result variable is different from “x”,
the value of “x” remains unchanged. In other words, the effect of the execution
of “m” is restricted to its output variable r and any global variables to which
m has access (such as “static” class variables); if the programming language
supports “inout” parameters (“call by reference”), also variable “y” may be
affected. In any case, “x” is “protected” from the execution of “m” by being a
local variable that is not syntactically mentioned in the method call.

However, the situation changes if we consider objects represented by pointers
(as is the case in most object-oriented languages such as Java or C#). If “x”
denotes some object o (i.e. “x” contains a pointer to o), e.g. as in

C x = . . . ; // c l a s s C { . . . }
. . .
r = o .m(y)

one can in general not be sure any more that o is unaffected by the call of “m”
because of the following issues:

Referencing If some argument of “m” is “x” itself, “m” might (even in a
language that supports only “input” parameters, i.e. “call by value”) up-
date the content of o (respectively the content of any object reachable via
the fields of o, i.e. any object denoted by some expression o.f1.fn for
corresponding object variables f1, . . . , fn).

Aliasing Even if all arguments of “m” are different from “x”, some might
contain a pointer to o and thus update the content of o (or of any object
reachable via the fields of o). Consequently, an expression “x.f” (for any
variable “f” of object o) might have a different value after the call of “m”
than before the call, even if “x” is not mentioned in the call.

Sharing Even if no argument of “m” does not contain a pointer to “o” itself,
some might contain a pointer to some object o′ reachable via the fields of
o and thus update this object. Consequently, an expression “x.f.g” (for
any variable “g” of the object denoted by “x.f”) might have a different
value after the call of “m” than before.

We are going to investigate these issues in more detail.

Referencing This issue is an immediate consequence of the fact that objects
represented by pointers have “reference semantics” rather than “value seman-
tics”. Actually, the issue can be handled in a quite-straight forward way, without
sacrificing the view of objects as “plain values”, by treating the corresponding

2

parameters of “m” as “inout” parameters” (rather than as input parameters),
which only slightly complicates the corresponding reasoning: in a call

r = o .m(x , y , z)

each argument denoting an object must appear as an assignable variable; after
the call of m, each of these variables has a new value (in addition to the result
variable “r”). However, to prevent the subsequent “aliasing” issue, no object
may appear in multiple argument positions of m, i.e. a call

r = o .m(. . . , x , . . . , x , . . .)

is prohibited.

Aliasing This issue arises from all statements where an object pointer is
copied from one variable to another such that the same object may be denoted
by different expressions. In particular, the issue arises in assignment statements

y = x

where subsequently both y and x refer to the same object o and in method calls

r = o .m(x)

provided that “x” represents a variable to which also “m” has access. This may
be e.g. a class variable of any class D

class D
{

stat ic C c ; // c l a s s C { . . . }
. . .

}
because both D.c and the method parameter denote o. Aliasing complicates
reasoning about programs a lot because the effect of updating an aliased object

x . f = . . .

cannot be contained to the variable “x” but might also affect a syntactically
unrelated local variable “y” or class variable “D.c”. To deal with this problem
one either has to add numerous “non-aliasing” constraints to the specifications
of methods and classes or resort to special approaches to program reasoning
such as separation logic [5].

Sharing This issue arises if not only plain variables can receive object pointers
but also objects themselves contain object pointers, e.g. as in

class D
{

C c ; // c l a s s C { . . . }
. . .

}
Assume that “y” is a variable of type “D”. After an assignment

y . c = x

both y.c and x refer to the same object and in method calls

r = o .m(y . c)

3

both y.c and the parameter of m refer to the same object. Consequently an
update

x . f = . . .

may have an effect on a syntactically unrelated object field “y.c.f” in an object
o′ reachable from “y”. Different object structures may thus share substructures
such that an update on one object structure has also an effect on another; fur-
thermore from a class representing a data structure a pointer to a substructure
may “leak” to some user of the class such that the user may directly update the
substructure bypassing the interface provided by the class.

Object Structures as Plain Values Our goal is now to set up a framework
which allows one to ensure by static modular reasoning on the program text
that in a code pattern of form

C x = . . . // c l a s s C { . . . }
. . .
r = o .m(y)

the call of method “m” does not affect “x” provided that “x” does syntactically
not appear as argument variable “y” or result variable “r” (respectively, if y
and r denote expressions, within “r” and “y”). We call this the design pattern
“object structures as plain values” (which is however not among the classical
design patterns [1]).

2 Notions

To make our elaboration reasonably precise, we introduce a couple of notions.

Definition (Source Code Expression). A source code expression (short expres-
sion) is a syntactic phrase in a program that may denote a value (possibly an
object).

Definition (Access Path). An access path is an expression e a1 . . . an with
n ≥ 0 such that e is an expression and each selector ai is either of the form
.vi (object field access with field variable vi) or of the form [ei] (array element
access with index expression ei).

Remark (Access Paths and Pattern Matching). In the following, when we refer
to an “access path e a1 . . . an”, we always implicitly assume that e that e does
not end in a selector. Consequently, the individual elements, e, a1, . . . , an are
uniquely defined.

Definition (Reachability). An object o′ is reachable from object o, if there is
some expression e that denotes o and some access path e a1 . . . an that denotes o′.

Remark (Reflexivity of Reachability). Every object denoted by some program
expression is reachable from itself.

Definition (Encapsulation). An object o′ is encapsulated by object o, if for
every access path e a1 . . . an that denotes o′ some access path e a1 . . . ai with
i ≤ n denotes o.

4

o

o’

Figure 1: Object o′ is encapsulated by the closed object o

Remark (Transitivity of Encapsulation). If object o′ is encapsulated by object
o and object o′′ is encapsulated by o′, then o′′ is also encapsulated by o.

Definition (Closedness). An object o is closed, if every object o′ reachable from
o is encapsulated by o.

The idea of above definitions is illustrated in Figure 1 where o denotes a
closed object and the triangle denotes the set of objects reachable from (and
thus encapsulated by) o. Every access path to an object o′ in this set must pass
through o. As a result, no object outside the set may directly refer to an object
inside and the whole object o behaves like an “atomic” value.

Definition (Plain Value). An object o is a plain value if

1. o is closed, and

2. there exists at most one variable that contains a reference to o.

While the first condition hides the fact that a plain value o may contain
references to objects, the second condition hides the fact that o itself is an
object represented by a reference.

Definition (Local Objects). An object o is a local if only local variables (method
parameters or variables declared inside a method) contain references to o.

Proposition (Uniqueness of Local Plain Values). If a plain value o is local,
then there exists at most one access path denoting o, namely a reference x to
some local variable x.

Proof. The proposition is self-evident.

Definition (Modification). An object o is modified by a method call, if for
some expression e denoting o some access path e a has after the call a value
that is different from the value before the call.

5

Definition (Effect). An object o is affected by a method call, if some object
that is reachable by o is modified by the call.

Remark (Modification and Effect). If some access path e a1 . . . an denotes an
object that is modified by a method call, then the objects denoted by the access
paths e, e a1, . . . , e a1 . . . an−1 are affected by the call.

The behavior of method calls is captured by the following axiom.

Axiom (Method Execution). For a method call

e r = e o .m(e 1 , . . . , e n)

every object modified by the method call is reachable by an object that is denoted
by a “static” class variable or by some expression that appears among (or as a
subexpression within some of) the expressions er, e0, e1, . . . , en.

Remark (Static Methods). This definition easily generalizes to the execution of
a static method of class C

e r = C.m(e 1 , . . . , e n)

by taking e0 as the “empty” expression. The following proposition thus also
applies to static methods.

The following proposition captures the core idea of this paper.

Proposition (Local Plain Values and Method Calls). Take a method call

e r = e o .m(e 1 , . . . , e n)

and a local variable x such that

• x denotes a plain value, and

• x does not occur (possibly as a subexpression) among the expressions
er, e0, e1, . . . , en.

Then the object denoted by x is not affected by the method call.

Proof. Take the plain value o denoted by x; since x is a local variable, o is local.
We assume that o is affected by the method call and show a contradiction. From
the definition of “effect”, we know that some object o′ that is reachable from o
is modified by the call. From the definition of “reachability”, we know that o′ is
denoted by some access path x a1 . . . an. From the axiom “method execution”,
we know that o′ is also reachable from some object o′′ that is denoted by some
expression e′′ = e′′′ b1 . . . bm which is either a reference to a static class variable
or appears (possibly as a subexpression) among the er, e0, e1 . . . , en. Thus there
also exists an access path e′′′ b1 . . . bm+p that denotes o′.

Since o is a plain value and o′ is reachable from o, by the definition of “plain
value”, o′ is encapsulated by o. Thus, since o′ is denoted by e′′′ b1 . . . bm+p,
we know that some access path e′′′ b1 . . . bi with i ≤ m + p denotes o. Since
o is a local plain value denoted by x, this implies that x equals e′′′ b1 . . . bi

and thus i = 0, e′′′ = x, and e′′ = x b1 . . . bm. Since x does neither denote a
static class variable nor does it occur (possibly as a subexpression) among the
er, e0, e1 . . . , en, this contradicts our knowledge about e′′.

Our problem is thus reduced to ensuring that a variable x denotes a plain
value. The remainder of the paper deals with this problem.

6

3 Typechecking Plain Values

In order to ensure by static modular reasoning (“type checking”) that a variable
denotes a plain value, we introduce a class annotation value

/∗ va lue ∗/ class T
{

. . .
}
which indicates that every instance of T (respectively of a subclass of T) is a
plain value. Every instance of class T thus receives implicitly type value T
(which is different from a normal class type T).

Likewise, we introduce a class annotation local

/∗ l o c a l ∗/ class T
{

. . .
}
which indicates that every instance of T (respectively of a subclass of T) is en-
capsulated by some plain value. Every instance of class T thus receives implicitly
type local T (which is different from a normal class type T).

Since arrays also have object behavior, but are instances of a builtin “array”
type, we also value and local to appear in array types as

/∗ va lue ∗/ T []
/∗ l o c a l ∗/ T []

indicating arrays that are plain values respectively arrays that are encapsulated
by a plain value. To create such arrays, we generalize the array creation operator
new T[...] to the two variants

new /∗ va lue ∗/ T [. . .]
new /∗ l o c a l ∗/ T [. . .]

Furthermore we allow local to appear as a type modifier such that for a
value class T the type expression

/∗ l o c a l ∗/ T

denotes type local T.
There are various constraints for the occurrences of value/local types:

1. A (static) class variable cannot have a local type.

2. Any other kind of variable can have a local type only, if the variable is
declared within a value or a local class.

3. In a value or local class, all (non-static) object variables that denote a
reference to an object/array must have value or local types.

We are now going to present the type compatibility rules with respect to
the three types T , value T , local T . We call T the base type of these three
types. The usual subtyping rules of an object-oriented language are preserved
i.e. whenever a base type T is expected, also a base type T ′ may appear, provided
that T is an ancestor of T ′ in the inheritance hierarchy.

7

1. A variable x of type T may only receive a value of type T (not of type
value T and not of type local T).

2. A variable x of type value T may only receive a value of type value T
(not T or local T). Furthermore, it must be possible to statically ensure
that, before the object referenced by x is used the next time (i.e. a field of
the object is dereferenced or a method of the object is called), that there
exists only one reference to o (see below).

3. A variable x of type local T may only receive a value of type local T
or value T (not T). In the later case, it must be possible to statically
ensure that, before the object referenced by x is used the next time (i.e.
a field of the object is dereferenced or a method of the object is called),
that there exists only one reference to o (see below).

Rules 1–3 above also apply to the parameters of methods (here x denotes
the function parameter) and to the return value of a method (here x rep-
resents all variables that may receive the return value). We will elaborate
later further what this means in detail for methods whose parameters
respectively return values are local or value types.

4. For an object o that is different from this and has a value type, the use
of an access path . . . o . . . s with at least one selector s at the end of the
path is prohibited, if the type of the value denoted by the whole path is a
local type or a value type, i.e. if one of the following conditions holds:

(a) s is a reference .x to a (non-static) object variable x of a local or
value type,

(b) s denotes the access [. . .] to an array element of a local or value
type,

(c) s is a method call .m(. . .) of a method m whose return type is a
local or value type.

We give an example that type-checks correctly according to above rules. In
the presented code, an object of type IntArrayList is a plain value that encap-
sulates multiple doubly linked IntArrayNode objects each of which encapsulates
an IntArray plain value which in turn encapsulates an int[] plain value.

/∗ va lue ∗/ class IntArray /∗ encap su l a t e s the array a ∗/
{

/∗ va lue ∗/ int [] a = new /∗ va lue ∗/ int [1 0 0] ;
int p = 0 ;
void add (int i)
{

i f (p == 100) return ; a [p] = i ; p++;
}

}

/∗ l o c a l ∗/ class IntArrayNode /∗ encap su l a t e s the array o b j e c t ∗/
{ /∗ the node re f e r enced by next i s ∗/

IntArray array ; /∗ encapsu la t ed by the owner o f t h i s node ∗/
IntArrayNode next ;
IntArrayNode prev ; /∗ doub ly l i n k e d l i s t ∗/

8

IntArrayNode (IntArray a , IntArrayNode n)
{

array = a ; next = n ; n . prev = this ;
}

}

/∗ va lue ∗/ class In tArrayL i s t
{

IntArrayNode head = null ; /∗ encap su l a t e s the head o b j e c t ∗/
void i n s e r t (IntArray a) /∗ a i s encapsu la t ed by t h i s l i s t ∗/
{

head = new IntArrayNode (a , head) ;
}
IntArray remove (int n) /∗ r e s u l t i s removed from t h i s l i s t ∗/
{

IntArrayNode node = head ;
for (int i =0; i<n ; i++) node = node . next ;
IntArray array = node . array ;
node . array = null ;
return array ;

}
}

class Main
{

stat ic void main ()
{

In tArrayL i s t l i s t = new In tArrayL i s t () ; /∗ a p l a i n va lue ∗/
IntArray array = new IntArray () ; /∗ a p l a i n va lue a ∗/
array . i n s e r t (5) ;
l i s t . i n s e r t (array) ; /∗ l i s t i s a p l a i n va lue ∗/
array = new IntArray () ; /∗ a p l a i n va lue b ∗/
array . i n s e r t (5) ;
array = l i s t . remove (0) ; /∗ a i s r e t r i e v e d again ∗/

}
}

We also give some examples that do not type-check correctly:

/∗ va lue ∗/ class IntArray /∗ encap su l a t e s the array a ∗/
{

. . .
/∗ va lue ∗/ int [] l e ak ()
{

/∗ INVALID (Rule 2) : o b j e c t s t i l l r e f e r s to a ∗/
return a ;

}

/∗ va lue ∗/ int [] e x t r a c t ()
{

/∗ va lue ∗/ int [] b = a ;
a = null ;

/∗ CORRECT: o b j e c t does not r e f e r to b any more ∗/
return b ;

9

}
}

class Main
{

stat ic void main ()
{

. . .
IntArray array = new IntArray () ;
array . i n s e r t (5) ;
l i s t . i n s e r t (array) ;

/∗ INVALID (Rule 2) : array used a f t e r passed to l i s t . i n s e r t () ∗/
array . i n s e r t (5) ;
. . .

/∗ INVALID (Rule 4) : array . a has a va lue type ∗/
array . a [0] = 1 ;

}
}

Above examples do not use the access specifier private to protect the fields
of value or local types. While one might/should actually do so, the effect of
declaring a (non-static) object variable with a value or local type is different
from annotating it with private:

• On the one hand, declaring a field x in class C as private does not prevent
an object o of type C to access (in the body of an object method m of
class C) the field o′.x of a different object o′ (which is prohibited by Rule
4, if the type of x is a value type).

• On the other hand, given an object o of type C, declaring a field x in C
with a local type D still allows to acess the field from another class as
o.x (which is prohibited, if the declaration of x is tagged as private).

Above description of the type system leaves two issues open:

1. A plain value passed as a method argument is always assumed to be
“grabbed” by the method (i.e. it is assumed that the receiver object of the
method retains a reference to the object). Consequently, the value cannot
be used further by the caller of the method who thus has to duplicate the
argument even if the method does actually not grab it.

2. The phrase “it must be possible to statically ensure that, before the object
referenced by x is used the next time (i.e. a field of the object is deref-
erenced or a method of the object is called), that there exists only one
reference to o” needs to be explicated.

We are now going to address these.

Borrowed Types To overcome the first issue, we introduce a type annotation
borrowed such that the type expression

/∗ borrowed ∗/ T

10

with value type T indicates that, for any variable x declared with this annota-
tion, no reference to the object o denoted by x (or to any object reachable from
x) may be stored in a static class variable or in an non-static object variable.
The type of x becomes borrowed T ′ (where T ′ is the base type of T); this type
behaves exactly like value T ′ (and is subject to the corresponding constraints
of that type) except for the following:

• Only a local variable in a method or a method parameter or a method
return value may have a borrowed type.

• A variable of type borrowed T may receive a value of type borrowed T
or of type value T .

• A value of type borrowed T may be only stored in a variable of type
borrowed T (neither in a variable of type value T nor in a variable of
type local T).

As a consequence, the call of a method with an argument v of type value T for
a parameter declared as borrowed T does not invalidate any subsequent use of
v after the method call; however, it still invalidates any other use of v during
the method call, i.e., it must not appear as (part of) another method argument.

Thus for instance the following piece of code is legal:

/∗ va lue ∗/ class Counter
{

int x = 1 ;
void add (/∗ borrowed ∗/ Counter c)
{

x = x+c . x ;
}

}

class Main
{

stat ic void main ()
{

Counter c1 = new Counter () ;
Counter c2 = new Counter () ;
c1 . add (c2) ;
c1 . add (c2) ; /∗ l e g a l , c2 was j u s t borrowed by c1 ∗/

}
}

Ensuring Reference Uniqueness In the following, discuss how to ensure
the second issue i.e. making sure that objects of value type are uniquely ref-
erenced. For this purpose, we give a simple algorithm that checks programs
to satisfy this constraint; however, due to its simplicity it also rejects correct
programs. More sophisticated analysis techniques [4] are needed to develop a
checker that delivers more precise results.

The following is the syntax of the commands of a simple object-oriented
language that is input to the checker. The checker takes a method body (a
command); if the checker returns true, the execution of the method body does
not construct a (permanent) duplicate reference to a value object; in particular,

11

to every method invoked by the current method at most one reference to every
value object is visible.

We assume in the analysis that every reference x to a (non-static) object
method has been previously expanded to this.x.

Furthermore, some commands have to be previously annotated by the type
checker (assignment statements with the types of the assigned values and method
calls with the types of the method parameters.

B ∈ Body
C ∈ Command
E ∈ Exp
Es ∈ Exps
R ∈ Ref
T ∈ Type
Ts ∈ Types
I ∈ Ident
B := C

C :=
R =T E | return | return E
| Eo.ITs(Es) | R =T Eo.ITs(Es)
| C1;C2 | if (E) C | if (E) C1 else C2 | while (E) C

E := null | new T (Es) | R
R := this | I | R.I
T := . . .

Es := Es E |
Ts := Ts T |

The subsequent algorithm is based on the following domains:

RefSet := P(Ref)
RefSetPair := RefSet × RefSet
Error := {()}
isValue(T) :⇔ ∃T ′ : T = value T ′

isBorrowed(T) :⇔ ∃T ′ : T = borrowed T ′

The algorithm consists of several relations/functions which process syntactic
phrases (the name [. . .] is overloaded to denote all functions, which function is
uniquely determined by the types of the arguments of the function call):

[] ⊆ Body
[] : Command× RefSet → RefSet + Error
[] : Exp → RefSet
[] : Ref → RefSet
[] : Exps → RefSet
[] : Exps× Types× RefSetPair → RefSetPair + Error

The top-level relation application [C] takes a method body C and calls the
function [C] on commands which takes a set of object references that have to
be assigned a new object such that the application of the command is valid
(initially empty) and returns such a set. If the result set is empty, the method
body passes the check.

12

[] ⊆ Body
[C]⇔ [C]∅ = ∅

Before describing the function [C] on commands, we turn our attention to
the other auxiliary functions.

A function application [E] returns the set of all references contained in the
expression E, likewise [R] returns all (sub)references in reference R, and [Es]
returns all references in the expression sequence Es:

[] : Exp → RefSet
[null] = ∅
[new T (Fs)] = [Fs]
[R] = [R]
[] : Ref → RefSet
[this] = {this}
[I] = {I}
[R.I] = [R] ∪ {R.I}
[] : Exps → RefSet
[Es E] = [Es] ∪ [E]
[] = ∅

The function application [C]rs, takes the set of references that have to
receive a new value before the object denoted by these references may be used;
if C violates this constraint, the function returns an Error value, otherwise it
results in another set of references that must receive a new value before the
denoted objects may be used.

The definition of this function is based on the constraint, that there may at
every time at most two references to a value object one of which is contained in
rs. In an assignment R =T E, no subreference of R and no reference in E must
be in rs; by the assignment R receives a new value E and is thus removed on
the set. If E denotes a reference r, every occurrence of r (also as a subreference)
in rs is replaced by R and r itself is added to the set:

[] : Command× RefSet → RefSet + Error
[R =T E]rs =

if [R] ∩ rs\{R} 6= ∅ ∨ [E] ∩ rs 6= ∅ then
isError()

else case E of
Ref(r) :

if ¬isValue(T)
then rs[R/r]
else (rs\{R})[R/r] ∪ {r}

otherwise : rs\{R}
Above algorithm is restricted in that is assumes that in an assignment R := r

always the reference r has to be invalidated; a more general version might keep
track of all aliases of r and make sure that all but one are eliminated before the
denoted object is used. Likewise, we replace in rs every occurrence of r (also as
a subreference in other references) by R rather than keeping track of reference
equalities in a more general way. Nevertheless the approach suffice to detect
e.g. in a sequence of assignments

13

node . next . va l = node . va l ; // rs = { node . v a l }
temp = node ; // rs = { temp . v a l }
node = node . next ; // rs = { temp . v a l }
temp . va l = null ; // rs = { }
with object field val of some value type that the temporary duplicate reference
to the value is deleted.

A return statement must make sure that all duplicate references are deleted
(more general, we could ignore duplicate references stored in local variables of
the method):

[return]rs =
if rs = ∅ then ∅ else isError()

[return E]rs =
if rs = ∅ then ∅ else isError()

Before a method is called, no duplicate variable references may exist (again,
more general, we might ignore duplicate references stored in local variables of
the method). Furthermore, we need to collect the set ra of all references to
value objects used as object parameters for subsequent invalidation; from this
set we may remove the elements rb of all references to value objects passed as
borrowed parameters, and R itself (if it denotes a value object):

[E.ITs(Es)]rs =
if rs 6= ∅ then

isError()
else case [Es][Ts] ∅ of

inError() : isError()
inRefSetPair(ea, eb) : ea\eb

[R =T E.ITs(Es)]rs =
if rs 6= ∅ then

isError()
else case[Es][Ts] ∅ of

inError() : isError()
inRefSetPair(ea, eb) :

let rs = ea\eb in
if [R] ∩ rs\{R} 6= ∅ then

isError()
else if ¬isValue(T) then

rs
else

rs\{R}
A function application [Es][Ts]〈ea, eb〉 takes the set of all references of

value objects used as arguments in the current method call and the correspond-
ing set of all borrowed values and updates these with respect to the remaining
method arguments Es with corresponding types Ts of method parameters:

14

[] : Exps× Types× RefSetPair → RefSetPair + Error
[][]esp = esp
[Es E][Ts T]esp =

case [Es][Ts]esp of
in Error() : isError()
in RefSetPair(ea, eb) :

else if [E] ∩ ea 6= ∅ then
isError()

else if isBorrowed(T) then
〈ea ∪ {E}, eb ∪ {E}〉

else if isValue(T) then
〈ea ∪ {E}, eb〉

else
〈ea, eb〉

The following composed commands are checked in the expected way:

[C1;C2]rs =
case [C1]rs of

inError() : isError()
inRefSet(rs ′) : [C2]rs ′

[if (E) C]rs =
if [E] ∩ rs 6= ∅ then isError() else [C]rs

[if (E) C1 else C2] rs =
if [E] ∩ rs 6= ∅ then

isError()
else case [C1]rs of

inError() : isError()
inRefSet(rs1) :

case [C2]rs of
inError() : isError()
inRefSet(rs2) : rs1 ∪ rs2

The treatment of loops is restricted in that, before the loop body C is en-
tered, no value object must be aliased, and that, after the execution of C, also
any temporary aliasing must be resolved:

[while (E) C]rs =
if rs 6= ∅ ∨ [E] ∩ rs 6= ∅ then

isError()
else case[C]∅ of

inError() : isError()
inRefSet(rs) : if rs 6= ∅ then isError else ∅

4 Related Work and Conclusions

The work described in this paper has been essentially inspired by the “owner-
ship” model developed by Peter Müller and developed in numerous papers, see
e.g. [2]. His model is more general by supporting a methodology of multiple nest-
ings of object structures using rep pointers from one level to the next and peer
pointers within a level. The model was later refined to allow transfer of objects
between different named contexts introduced by context declarations [3].

15

The model described in this paper is more restricted in that only the issue of
“object structures” as plain values is considered. However, by having uniquely
referenced object structures, we can easily transfer values from one context to
another (by passing and subsequently invalidating a pointer). So for this par-
ticular purpose, our model seems appealing. However, we should note that in
this paper the model has been only informally sketched; so the results should
be taken with great care. The validity of the model still remains to be inves-
tigated by a formal definition of the type system and corresponding formalized
soundness proofs.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Pearson Education, 1995.

[2] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular In-
variants for Layered Object Structures. Science of Computer Programming,
62(3):253–286, 2006.

[3] Peter Müller and Arsenii Rudich. Ownership Transfer in Universe Types.
In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy
L. Steele Jr., editors, Proceedings of the 22nd Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada,
pages 461–478. ACM, 2007.

[4] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis, 2005.

[5] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In 17th Annual IEEE Symposium on Logic in Computer Science,
pages 55–74, Copenhagen, Denmark, July 22–25, 2002. IEEE.

16

