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Abstract. The interface between the Theorema system and external
automated deduction systems is described. It provides a tool to access
external provers within a Theorema session in the same way as “internal”
Theorema provers. Currently 11 external systems are supported. The
design of the interface allows combining external systems with each other
as well as with “internal” Theorema provers.

1 Introduction

The Theorema system [7] is an integrated environment for proving, solving and
computing built on the top of mathematical software system Mathematica [26].
It was designed by Bruno Buchberger [5,6] and provides a front end for com-
posing formal mathematical text consisting of a hierarchy of axioms, definitions,
propositions, algorithms etc. in a common logic frame with user-extensible syn-
tax, a library of both well-established and new provers, solvers and simplifiers
for proving, solving and simplifying mathematical formulae.

The interface described in this paper implements a link providing Theorema
users with a tool for using automated deduction systems (“external” systems)
within Theorema session in the same way as “internal” Theorema, provers. Cur-
rently, the following 11 external systems are supported: provers - Bliksem [19],
EQP [17], E [21], Gandalf [23], Otter [16], Scott [12], Setheo [15], Spass [24],
Vampire [20], Waldmeister [4] and a finite model and counter-example searcher
Mace [18].

The interface consists of two types of links - direct and indirect - from The-
orema to an external system. The indirect link is established with Setheo, Scott
and Waldmeister - using first an intermediate translation into TPTP [22] format,
and then the TPTP2X converter which converts TPTP format files into a for-
mat of the specified external system. All the other provers are linked directly to
Theorema, without any intermediate routine, translating input from Theorema
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syntax directly into the syntax of an external system. It is relatively easy to add
an indirect link to a new prover, but is has also disadvantages compared with
the direct link - the user has less control over the system and more intermediate
routines are needed.

All the external provers can be used as black box provers within Theorema
session, without translating their output into Theorema syntax. The link to
Otter has an additional feature - back translator, which transforms an Otter
proof into Theorema format. The design of the interface makes it possible to
combine various external systems with each other or with Theorema provers.

2 Direct Link

The interface implements two types of direct links from Theorema to external
systems: black box style and white box style links. A black box style direct link
consists of two parts: the translator component and the linking component. The
components and the sequence of operations are illustrated in Figure 1. A white
box style direct link consists of the translator, the linking component and the
back translator. The architecture is shown in Figure 2.

The black box style link works as follows: first, the translator gets the The-
orema goal, knowledge base and options and translates them into the prover
format thus preparing the input for the prover call. The linking component gets
the translated string and options, writes the string in a temporary file and calls
the prover with the options. Finally, the prover output is passed back to Theo-
rema. The user has a full control over the external system using prover options.

The sequence of operations performed by the white box style direct link is
the same as those of the black box style link until the external prover output
is passed back. Here the back translation component gets the prover output,
transforms it into Theorema syntax and places into the Theorema proof object.
Finally, the Theorema style proof is shown in the proof notebook. Note that if the
prover failed to prove the goal, the back translation component does not affect
the output and the link behaves like a black box style link. Currently Theorema,
has black box style links with Otter, Spass, EQP, Gandalf, Bliksem, Vampire,
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Fig. 3. Black box style proof notebook Fig.4. White box style proof notebook

E and Mace and the white box style link with Otter only. Thus, Otter has both
types of direct links to Theorema, with the black box style link as the default
option. The notebooks on the figures above show the black box and the white
box outputs of the Otter call to prove that every Robbins algebra satisfying
idempotence of addition is a Boolean algebra ([25]). In both cases, the output in
Otter syntax can be shown in a new notebook which pops up if one clicks on the
corresponding hyperlink in the proof notebook. In the back translated output
each inference rule used in the proof has a hyperlink to the definition of it.

3 Indirect Link

All indirect links from Theorema to external systems are of the black box
style. An indirect link consists of three parts: the translator into TPTP format,
the linking component to TPTP2X and the linking component to the external
prover. We have chosen the TPTP format for the intermediate translation be-
cause of the tptp2X converter, which can convert a TPTP format file into a
format of many automated provers. The indirect link works as follows: the The-
orema Prove call invokes the translator into TPTP format which translates the
goal and knowledge base into TPTP format and puts the result into a temporary
file. Next, the linking component to TPTP2X calls the script tptp2X provided
with the TPTP library on the file with the command line options relevant to the
prover. The obtained result is passed to the linking component to the prover to-
gether with the options. The linking component calls the prover, gets the result
back and locates it into the Theorema proof object. It is relatively easy to add
an indirect link to a new prover, but is has also disadvantages comparing with
the direct link - the user has less control over the system and an intermediate



translation/linkage is needed. In future, We intend to replace indirect links with
direct ones. The indirect link is established with Setheo, Scott and Waldmeister.

4 Combination of Systems

The design of the interface allows combining various external systems with each
other or with “internal” Theorema provers in the similar way as the “internal”
provers can be combined with each other. To demonstrate this capability we
combined Otter and Mace into the Theorema user prover OtterMace (not the
prover from Argonne), which first runs Otter on a problem, and if it fails to
prove the goal, Mace tries to find a countermodel. Another example of such a
combination is the Theorema experimental user prover PLOtter, which combines
Otter and the predicate logic prover of Theorema.

5 Related Work and Conclusion

The problem of integrating software/reasoning systems has been studied inten-
sively in the recent years (e.g. [2], [3], [10], [11], [13], [14]). There are several
platforms which try to provide a general solution to the problem ([1], [8], [9])-
The interface described in this paper is not an attempt to provide such a gen-
eral solution. We tried to make an interface which is simple, easy to implement,
maintain and use and which links reasoning systems directly, without intermedi-
ate routines (we still have indirect links for experimental reasons but we intend
to replace them with direct ones). The interface allows using external systems
in a Theorema session as “internal” Theorema provers.
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