
Unranked Second-Order Anti-Unification

Alexander Baumgartner and Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria
{abaumgar,kutsia}@risc.jku.at

Abstract. In this work we study anti-unification for unranked hedges, permit-
ting context and hedge variables. Hedges are sequences of unranked terms. The
anti-unification problem of two hedges s̃ and q̃ is concerned with finding their
generalization, a hedge g̃ such that both s̃ and q̃ are substitution instances of g̃.
Second-order power is gained by using context variables to generalize vertical
differences at the input hedges. Hedge variables are used to generalize horizontal
differences. An anti-unification algorithm is presented, which computes a gener-
alization of input hedges and records all the differences. The computed general-
izations are least general among a certain class of generalizations.

1 Introduction

The anti-unification problem for two terms t1 and t2 requires finding their generaliza-
tion: A term such that both t1 and t2 are instances of it under some substitutions. The
interesting generalizations are least general ones (lggs). Anti-unification algorithms are
supposed to compute lggs.

In 1970, Plotkin [20] and Reynolds [21] independently came up with essentially
the same anti-unification algorithm. It was designed for first-order ranked terms (i.e.,
where function symbols have a fixed arity) in the syntactic case. Since then, a number
of algorithms and their modifications have been developed, addressing the problem in
various theories (e.g., [1, 2, 5, 7, 10, 13, 19]) and from the point of view of different
applications (e.g., [4, 9, 11, 15, 18, 17, 22]).

In this paper, we consider anti-unification for hedges, which are finite sequences of
unranked terms. Such terms are constructed from function symbols that do not have a
fixed arity. We permit two kinds of variables: first-order, for hedges, and second-order,
for contexts. Contexts that we consider here are hedges with a single occurrence of the
distinguished symbol “hole”. They are functions which can apply to another context or
to a hedge, which are then “plugged” in the place of the hole.

Some applications of anti-unification indeed require higher-order features. For in-
stance, reuse of proofs in program verification needs anti-unification with higher-order
variables [18]. A restricted use of higher-order variables in generalizations turned out
to be helpful for analogy making with Heuristic-Driven Theory Projection [15]. Anti-
unification with combinator terms plays a role in replaying program derivations [12].

First-order anti-unification for ranked terms has been used to detect software code
clones [9, 17]. It helps to achieve high-precision for clones obtained, essentially, by
renaming and reformatting, but ranked anti-unification is not strong enough to detect

clones obtained by omitting/inserting pieces of statements in the code. Unranked anti-
unification can detect similarities not only between renamed parts of a hedge, but also
between parts which differ from each other by inserting or omitting subparts, as was
indicated in [16]. These features can be useful also for comparison of XML documents,
which can be abstracted by unranked trees.

However, one important restriction of existing hedge anti-unification algorithms,
such as, e.g., [16, 8, 23], is that the languages used in these algorithms do not permit
higher-order variables. This imposes a natural restriction on solutions: The computed
lggs do not reflect similarities between input hedges, if those similar pieces are located
under distinct heads or at different depths. For instance, fpa, bq and gphpa, bqq are gen-
eralized by a single variable, although both terms contain a and b and a more natural
generalization could be, e.g. Xpa, bq, where X is a higher-order variable. In applica-
tions, it is often desirable to detect these similarities.

This is the problem we address here, permitting the use of context variables to ab-
stract vertical differences between trees, and hedge variables used to abstract horizontal
differences. The algorithm described in this paper first constructs a “skeleton” of a
generalization of the input hedges, which corresponds to a hedge embedded into each
of the input hedges. Next, it inserts context and/or hedge variables into the skeleton,
which are supposed to uniformly generalize (vertical and horizontal) differences be-
tween input hedges, to obtain an lgg (with respect to the given skeleton). The skeleton
computation function is the parameter of the algorithm: One can compute an lgg which
contains, for instance, a constrained longest common subforest [3], or an agreement
subhedge/subtree [14] of the input hedges.

In this paper we focus on the step of computing an lgg of two hedges, when the
skeleton is already constructed. We assume that the latter is given in the form of an
admissible alignment, which is a certain sequence of symbols occurring in both hedges,
together with the positions these symbols occur in. We need to restrict variable occur-
rences in the generalization to guarantee that for each admissible alignment a unique
lgg is computed, leading to the notion of rigid generalizations. We develop an algorithm
which takes two hedges and an admissible alignment and computes a rigid lgg of the
hedges with respect to that alignment. The computed lgg is unique modulo variable re-
naming. Moreover, we can return not only the generalization, but also the differences
between the input hedges, which tells us how one can obtain the original hedges from
the generalization. The algorithm runs in quadratic time and requires linear space with
respect to the size of the input. This result means that, for instance, if the skeleton is
a constrained longest common subhedge of the input hedges in the sense of [24], then
both skeleton and generalization computation can be done in quadratic time, because
the time complexity of computing a constrained lcs is quadratic.

In some cases, the skeleton can be constructed in multiple ways, giving rise to sev-
eral admissible alignments. It requires that the generalizations computed for each align-
ment should be compared to each other, to make the obtained set minimal. This problem
requires matching with context and hedge variables in the minimization step and goes
beyond the scope of this paper.

A prototype implementation of the algorithm is available from http://www.
risc.jku.at/projects/stout/software/urauc.php.

http://www.risc.jku.at/projects/stout/software/urauc.php
http://www.risc.jku.at/projects/stout/software/urauc.php

Example 1. The hedge pXpaq, fpXpgpa, xq, cq, xqq is a generalization of two hedges
phpaq, fphpgpa, b, bq, cq, b, bqq and pa, fpgpa, dq, c, dqq. Dotted and dashed nodes indi-
cate differences, while the solid ones form the admissible alignment. The first hedge
can be obtained from the generalization by replacing the context variable X with the
context hp˝q and the hedge variable xwith the hedge pa, bq. To obtain the second hedge,
we need to replace X with the hole (i.e., to eliminate X) and to replace x by d.

2 Preliminaries

Given pairwise disjoint countable sets of unranked function symbols F (symbols with-
out fixed arity), hedge variables VH, unranked context variables VC, and a special sym-
bol ˝ (the hole), we define terms, hedges, and contexts by the following grammar:

t :“ x | fps̃q | Xps̃q (terms)
s̃ :“ t1, . . . , tn (hedges)
c̃ :“ s̃1, ˝, s̃2 | s̃1, fpc̃q, s̃2 | s̃1, Xpc̃q, s̃2 (contexts)

where x P VH, f P F , X P VC, and n ě 0.
Hedges are finite sequences of terms, constructed over F and VH Y VC. A term can

be seen as a singleton hedge. A context can be seen as a hedge over FYt˝u and VHYVC,
where the hole occurs exactly once. A singleton context is then a term over FYt˝u and
VH Y VC with a single hole in it. To improve readability, we put non-singleton hedges
and contexts between parenthesis.

We use the letters x, y, z for hedge variables and X,Y, Z for context variables.
By f, g, h, a, b, c, d, e we denote function symbols, by s̃, q̃, r̃, g̃, h̃ hedges, by c̃, d̃ arbi-
trary contexts and by 9c, 9d singleton contexts. We use φ, ψ for a context variable or a
function symbol. The empty hedge is denoted by ε. Terms of the form apεq are writ-
ten as just a. Examples of a term, a hedge, and a context are, respectively, fpfpaq, bq,
px,Xpa, xq, fpfpaq, bqq, and px,Xpa, xq, fpfp˝q, bqq.

A context c̃ can apply to a hedge s̃, denoted by c̃rs̃s, obtaining a hedge by replacing
the hole in c̃ with s̃. For example, px,Xpa, xq, fpfp˝q, bqqra,Xpaqs “ px,Xpa, xq,
fpfpa,Xpaqq, bqq. Application of a context to a context is defined similarly.

The length of a hedge s̃, denoted |s̃|, is the number of elements in it. We denote
by s̃|i the ith element of s̃ and by s̃|ji the subhedge ps̃|i, . . . , s̃|jq. If i ą j then s̃|ji is
the empty hedge. The set of all function symbols which appear in a hedge s̃ (resp., in a
context c̃) is denoted by Fps̃q (resp., by Fpc̃q). We overload the notation FpAq for the
set of all function symbols which appear in a set of hedges and contexts A.

A substitution is a mapping from hedge variables to hedges and from context vari-
ables to contexts, which is identity almost everywhere. When substituting a context
variable X by a context, the context will be applied to the argument hedge of X . The
symbols σ, ϑ are used to denote a substitution. Substitutions can be applied to hedges
and contexts in the usual way. We use postfix notation for application, writing, e.g., s̃σ
for the application of σ to s̃. For example, if σ “ tx ÞÑ ε, y ÞÑ pa, xq, X ÞÑ gp˝qu is a
substitution, then pXpxq, y, fpXpyq, cqqσ “ pg, a, x, fpgpa, xq, cqq. The notion range
of a substitution σ is standard and denoted by Ranpσq.

A hedge s̃ is the instance of a hedge q̃ if there exists a substitution σ with q̃σ “ s̃.
We say that q̃ is more general than s̃ if s̃ is an instance of q̃ and denote this by q̃ ĺ s̃. If
q̃ ĺ s̃ and s̃ ĺ q̃, then we write q̃ » s̃. If q̃ ĺ s̃ and q̃ fi s̃, then we say that q̃ is strictly
more general than s̃ and write q̃ ă s̃. A hedge g̃ is a generalization of the hedges s̃ and
q̃ if s̃ and q̃ are instances of g̃.

The word representation ωps̃q of a hedge s̃ is defined by the concatenation of the
depth-first pre-order traversal of the constituent terms. For instance, afgagbbc is the
word representation of pa, fpgpa, gpb, bqq, cqq. Generalizations contain a common sub-
sequence of the word representation of the input hedges. We will use this property in the
formulation of our anti-unification algorithm. Observe, e.g., the hedges from example 1:

p hpaq, fp hpgpa,b, bq, cq,b, bqq
p a , fp gpa,d q, c ,d qq

pXpaq, fpXpgpa,x q, cq,x qq

The set of positions of a hedge s̃ “ pt1, . . . tnq, denoted posps̃q, is a set of strings of
positive integers. It is defined as posps̃q :“

Ťn
i“1ti¨p | p P posTptiqu, where ¨ stands for

concatenation. posTptq is defined as posTpxq :“ tλu and posTpφpq̃qq :“ tλuYpospq̃q,
where λ is the empty string. For example, pospfpa, gpb, cqqq “ t1, 1¨1, 1¨2, 1¨2¨1, 1¨2¨2u
and pospa, fpb, gpcqq, dq “ t1, 2, 2¨1, 2¨2, 2¨2¨1, 3u. In the latter hedge, the symbol g
stands at the position 2¨2 and c occurs at the position 2¨2¨1.

– Two symbols s1, s2 P FYVHYVC of a hedge are horizontal consecutive if the corre-
sponding positions Is1 ¨is1 and Is2 ¨is2 are in the relation Is1 “ Is1 and is1 ` 1 “ is2 .

– Two symbols s1, s2 P F Y VH Y VC of a hedge s̃ are in a vertical chain if their
positions Is1 and Is2 are in the relation Is1 ¨1 “ Is2 and Is1 ¨2 R posps̃q.

For example, in pa, fpXpa, bqqq, the occurrence of a at position 1 and the occurrence of
f at 2 are horizontal consecutive, as well as a at 2¨1¨1 and b at 2¨1¨2. The occurrence of
f at 2 and the occurrence of X at 2¨1 are in vertical chain.

Withăwe denote the (strict) lexicographic ordering and with Ă the (strict) ancestor
relation on positions, e.g., 1¨2¨1 ă 1¨2¨2, 1¨2¨1 ă 1¨2¨1¨2, and 1¨2¨1 Ă 1¨2¨1¨2. The
relation Ď is defined as Ă Y “.

Given three positions I1, I2 and I3, the ternary relation ’ is defined as

I1 ’I3 I2 :ðñ there is I4 ‰ λ such that I4 Ă I1 and I4 Ă I2 and I4 Ă I3 and
I1, I2, I3 are pairwise not in Ď .

This relation tests whether I1 and I2 have a common ancestor which is not an ancestor
of I3. None of these positions should be an ancestor of another. For instance, 1¨1 ’2 1¨2,
but not 1 ’3 2, 1¨1 ’2 1¨1¨2, 1¨1 ’2 1¨1, and 1¨1 ’1¨3 1¨2. A real world example of
this relation would be two sisters and one of their uncles.

3 The Skeletons: Admissible Alignments

In this section we introduce the concept of admissible alignments, which are used later
as skeletons to compute corresponding generalizations. For simplicity, we formulate all
the notions and the algorithm for two hedges. The extension to more hedges is straight-
forward. Hedges to be generalized are assumed to be variable disjoint.

Given two hedges s̃ and q̃, an alignment is a sequence of the form a1xI1, J1y . . .
amxIm, Jmy such that I1 ă ¨ ¨ ¨ ă Im, J1 ă ¨ ¨ ¨ ă Jm, and ak is the symbol at position
Ik in s̃ and at position Jk in q̃ for all 1 ď k ď m.

An alignment represents common function symbols inside of two hedges with the
corresponding positions, respecting the ordering ă. It is a common subsequence of
the word representation of those hedges with some additional information about the
positions. The empty alignment is denoted by e.

Collisions in an alignment a of two hedges are defined as follows:

– A collision appears at two elements akxIk, Jky, alxIl, Jly of a if either pIk Ă Il
and Jk Ă Jlq or pIk Ă Il and Jk Ă Jlq.

– A collision appears at three elements akxIk, Jky, alxIl, Jly, anxIn, Jny of a if
Ik ’In Il and Jl ’Jk

Jn.

For instance, the alignment fx2, 1ybx2¨1, 1¨2ycx2¨2, 2y of the hedges pa, fpb, cqq and
pfpa, bq, cq contains a collision at the two elements fx2, 1y and cx2¨2, 2y. The alignment
ax1, 1¨1ybx2¨1, 1¨2ycx2¨2, 2y of the same hedges has a collision at its three elements.

An alignment a is called admissible if there are no collisions in it. Note that for any
two elements akxIk, Jky, alxIl, Jly of an admissible alignment a, Ik ă Il iff Jk ă Jl
and Ik Ă Il iff Jk Ă Jl.

Admissible alignments are related to generalization by the following theorem:

Theorem 1. Let a “ a1xI1, J1y . . . amxIm, Jmy be an alignment of s̃ and q̃ such that
for all 1 ď k ď m the function symbol ak is unique in s̃ and unique in q̃. a is admissible
iff there exists a generalization g̃ of s̃ and q̃ with Fpg̃q “ ta1, . . . , amu.

Notice that requiring uniqueness of the function symbols a1, . . . , am in theorem 1
does not impose a loss of generality. One can simply rename those symbols with fresh
ones and restore the original function symbols afterwards.

From this theorem, we get that for any admissible alignment a of two hedges there
exists a generalization g̃ of those hedges which contains all the corresponding function
symbols. The other direction is also true: For any generalization g̃ of two hedges there
exists their admissible alignment containing all the function symbols which appear in g̃.

We call such a g̃ a supporting generalization of s̃ and q̃ with respect to a.

Example 2. Let s̃ “ pa, apb, bqq and q̃ “ papapbpbqqq, b, bq.
– bx2¨2, 1¨1¨1y ax1, 1y is not an alignment of s̃, q̃.
– ax1, 1y ax2, 1¨1y bx2¨1, 1¨1¨1y bx2¨2, 3y is a non-

admissible alignment of s̃, q̃.
– ax1, 1¨1y bx2¨1, 2y bx2¨2, 3y is an admissible

alignment of s̃, q̃, with pXpapxqq, Y pb, bqq be-
ing a corresponding supporting generalization.

– px, apy, Y pbqq, zq is a supporting generalization
of s̃, q̃, with respect to ax2, 1y bx2¨2, 1¨1¨1¨1y.

4 Computing Least General Rigid Generalizations

We aim at solving the following problem: Given two hedges s̃ and q̃ and their admis-
sible alignment a, compute a least general supporting generalization g̃ of s̃ and q̃ with
respect to a. However, least general supporting generalizations might not be unique.
For instance, for pa, b, aq and pb, cq with the admissible alignment bx2, 1y, we have two
supporting lggs px, b, x, yq and px, b, y, xq.

Therefore, we are interested in a special class of supporting generalizations, which
we call rigid generalizations. Given two hedges s̃, q̃ and their admissible alignment a, a
hedge g̃ is called a rigid generalization of s̃ and q̃ with respect to a, if g̃ is a supporting
generalization of s̃ and q̃ with respect to a such that the following conditions hold:

– There exist substitutions σ, ϑ with g̃σ “ s̃ and g̃ϑ “ q̃ such that all the contexts in
σ and ϑ are singleton contexts.

– No context variable in g̃ applies to the empty hedge.
– g̃ doesn’t contain horizontal consecutive hedge variables.
– g̃ doesn’t contain vertical chains of variables.
– g̃ doesn’t contain context variables with a hedge variable as the first or the last

argument (i.e., no subterms of the form Xpx, . . . q and Xp. . . , xqq.

This definition puts some restrictions on the usage of the variables. Especially, our
very general concept of context variables demands for some restrictions. For instance,
Xpa, bq is a rigid generalization of fpgpa, b, cqq and pa, bq with respect to ax1¨1¨1, 1y
bx1¨1¨2, 2y, while Xpa, b, xq and XpY pa, bqq are not rigid generalizations.

A rigid generalization g̃ of s̃ and q̃ with respect to a is called a rigid lgg of s̃ and q̃
with respect to a, if there is no rigid generalization h̃ of s̃ and q̃ with respect to a which
satisfies g̃ ă h̃.

Note that two hedges might have a supporting generalization which is less gen-
eral than their rigid lgg with respect to the same admissible alignment. For instance,
Xpaq ă XpXpaqq and both of them are generalizations of fpfpaqq and gpgpgpgpaqqqq
with respect to ax1¨1¨1, 1¨1¨1¨1¨1y, but only Xpaq is a rigid generalization.

From now on, we concentrate on computing least general rigid generalizations of
two variable-disjoint hedges with respect to an admissible alignment.

An anti-unification problem (AUP) is a triple of the form x: s̃ fi q̃;X: c̃ fi d̃; a, where

– x is a hedge variable and s̃, q̃ are hedges,
– X is a context variable and c̃, d̃ are contexts,
– a is an admissible alignment of s̃ and q̃.

We present our anti-unification algorithm as a rule-based algorithm that works on
triples P ; S; σ, where the problem set P is a set of AUPs, the store S is a set of AUPs
with empty alignments, σ is a substitution which keeps track of the generalization com-
puted so far, and for all pairs of AUPs tx: s̃1 fi q̃1; X: c̃1 fi d̃1; a1, y: s̃2 fi q̃2; Y :
c̃2 fi d̃2; a2u Ď P Y S holds x ‰ y and X ‰ Y .

As all the AUPs in S have the empty alignment, we write x : s̃ fi q̃; X : c̃ fi d̃
instead of x : s̃ fi q̃; X : c̃ fi d̃; e for an AUP of S. In the rules below, we use the
symbols Y,Z for fresh context variables and y, z for fresh hedge variables. The brackets
r s, as before, are used for context application. The symbol Ÿ stands for disjoint union.
Furthermore, i - - denotes i´ 1 and i`` denotes i` 1.

Spl-H: Split Hedge
tx : s̃ fi q̃; X : c̃ fi d̃; a1xi1¨I1, j1¨J1y . . . akxik¨Ik, jk¨Jky
ak`1xik`1¨Ik`1, jk`1¨Jk`1y . . . amxim¨Im, jm¨Jmyu ŸP ; S; σ ùñ

ty : s̃|iki1 fi q̃|jkj1 ; Y : ˝ fi ˝; a1xpi1 ´ i
- -
1 q¨I1, pj1 ´ j

- -
1 q¨J1y . . .

akxpik ´ i
- -
1 q¨Ik, pjk ´ j

- -
1 q¨Jkyu Y

tz : s̃|im
i``
k

fi q̃|jm
j``
k

; Z : ˝ fi ˝; ak`1xpik`1 ´ ikq¨Ik`1, pjk`1 ´ jkq¨Jk`1y . . .

amxpim ´ ikq¨Im, pjm ´ jkq¨Jmyu Y P ;

tx : ε fi ε; X : c̃rs̃|
i - -
1
1 , ˝, s̃|

|s̃|

i``
m
s fi d̃rq̃|

j - -
1
1 , ˝, q̃|

|q̃|

j``
m
su Y S; σtx ÞÑ pY pyq, Zpzqqu,

If i1 ‰ ik`1 and j1 ‰ jk`1, and, moreover, i1 “ ik or j1 “ jk, for 1 ď k ă m.

Abs-L: Abstract Left Context
tx : ps̃l, φps̃q, s̃rq fi q̃; X : c̃ fi d̃; a1xi¨I1, J1y . . . amxi¨Im, Jmyu ŸP ; S; σ ùñ
tx : s̃ fi q̃; X : c̃rs̃l, φp˝q, s̃rs fi d̃; a1xI1, J1y . . . amxIm, Jmyu Y P ; S; σ,

where I1 ‰ λ, φps̃q is the term at position i in ps̃l, φps̃q, s̃rq, and s̃l, s̃r are hedges.

Abs-R: Abstract Right Context
tx : s̃ fi pq̃l, φpq̃q, q̃rq; X : c̃ fi d̃; a1xI1, j¨J1y . . . amxIm, j¨Jmyu ŸP ; S; σ ùñ
tx : s̃ fi q̃; X : c̃ fi d̃rq̃l, φp˝q, q̃rs; a1xI1, J1y . . . amxIm, Jmyu Y P ; S; σ,

where J1 ‰ λ, φpq̃q is the term at position j in pq̃l, φpq̃q, q̃rq, and q̃l, q̃r are hedges.

App-A: Apply Alignment
tx : ps̃l, a1ps̃q, s̃rq fi pq̃l, a1pq̃q, q̃rq; X : c̃ fi d̃;
a1xi, jya2xi¨I2, j¨J2y . . . amxi¨Im, j¨Jmyu ŸP ; S; σ ùñ

ty : s̃ fi q̃; Y : ˝ fi ˝; a2xI2, J2y . . . amxIm, Jmyu Y P ;
tx : ε fi ε; X : c̃rs̃l, ˝, s̃rs fi d̃rq̃l, ˝, q̃rsu Y S; σtx ÞÑ a1pY pyqqu,

where a1ps̃q, a1pq̃q are the terms at the positions i, j and s̃l, s̃r, q̃l, q̃r are hedges.

Sol-H: Solve Hedge
tx: s̃ fi q̃; X: ˝ fi ˝; eu ŸP ; S; σ ùñ P ; tx: s̃ fi q̃; X: ˝ fi ˝u Y S; σtX ÞÑ ˝u.

Res-C: Restore Context
P ; tx : ε fi ε; X : ps̃l, 9c, s̃rq fi pq̃l, 9d, q̃rqu ŸS; σ ùñ

P ; tx : ε fi ε; X : 9c fi 9d, y : s̃l fi q̃l; Y : ˝ fi ˝, z : s̃r fi q̃r; Z : ˝ fi ˝u Y S;
σtX ÞÑ py,Xp˝q, zqu,

if not ε “ s̃l “ s̃r “ q̃l “ q̃r. 9c, 9d are singleton contexts.

Mer-S: Merge Store
P ; tx1 : s̃ fi q̃; X1 : c̃ fi d̃, x2 : s̃ fi q̃; X2 : c̃ fi d̃u ŸS; σ ùñ
P ; tx1 : s̃ fi q̃; X1 : c̃ fi d̃u Y S; σtx2 ÞÑ x1, X2 ÞÑ X1u.

Clr-S: Clear Store
P ; tx : ε fi ε; X : ˝ fi ˝u ŸS; σ ùñ P ; S; σtx ÞÑ ε,X ÞÑ ˝u.

The idea of the store is to keep track of already solved AUPs in order to generalize
the same AUPs in the same way, as it is illustrated in the Mer-S rule.

To compute generalizations of s̃ and q̃ with respect to an admissible alignment a,
the procedure starts with tx : s̃ fi q̃; X : ˝ fi ˝; au; H; ε, where x and X are fresh
variables, and applies the rules exhaustively. We denote this procedure by G. The intu-
ition is that at i’s step of such a derivation, Xpxqσi is supposed to be a generalization
of s̃ and q̃, with the idea that when the process stops with σ in the last step, then Xpxqσ
is a rigid lgg of s̃ and q̃ with respect to a.

Before discussing the properties of G, we briefly explain informally what the rules
do. At each step, each AUP x : s̃ fi q̃; X : c̃ fi d̃; a in P represents the hedges c̃rs̃s
and d̃rq̃s which are to be generalized, such that the generalization contains the function
symbols from a. They are split according to the occurrences of alignment elements: All
symbols from a are in s̃ and q̃. None of them appear in c̃ and d̃.

Such an AUP can be transformed by one of the first four rules: Spl-H, Abs-L,
Abs-R, or App-A. The eventual goal of these transformations is to reach the occur-
rences of the first alignment element in s̃ and q̃. In the course of the transformation, c̃
and d̃ are getting extended with contexts above those occurrences.

When the symbols in a are distributed in more than one term both in s̃ and in q̃, then
we use the Spl-H rule to select subhedges of s̃ and q̃ which contain all the alignment el-
ements. (The other parts of s̃ and q̃ are moved to the store, since they will not contribute
a symbol to the generalization.) Furthermore, by this rule, each of these subhedges are
split into two smaller subhedges: From the s̃ side these are s̃|iki1 and s̃|im

i``
k

, and from the

q̃ side they are q̃|jkj1 and q̃|jm
j``
k

. The split point k is decided by the following criteria:

– s̃|iki1 and q̃|jkj1 contain the first k ą 0 elements of a.
– s̃|im

i``
k

and q̃|jm
j``
k

contain the elements of a starting from k ` 1. There exists at least
one such element.

– s̃|iki1 or q̃|jkj1 is a term (a singleton hedge), and the k ` 1’st element of a does not
belong to it.

The process will continue by generalizing s̃|iki1 and q̃|jkj1 with respect to the first k-
element prefix of a, and generalizing s̃|im

i``
k

and q̃|jm
j``
k

with respect to the elements of a

starting from k ` 1. Note that in the next step Spl-H is not applicable to the AUP with
s̃|iki1 and q̃|jkj1 . This is because at least one of them is a single term which completely
contains the alignment elements. Therefore either Abs-L, Abs-R, or App-A applies.

Consider the hedges pgpaq, fpa, gpbqq, c, gpbq, eq and pe, e, hpa, eq, fpbq, a, c, d, bq
and the admissible alignment ax2¨1, 3¨1ybx2¨2¨1, 4¨1ycx3, 6ybx4¨1, 8y of them.

f

a g

b

h

a be

eeg c

b

e a c d bg

a

f

The dashed nodes in the figure above denote the parts which are moved into the store.
The dashed rectangle denotes s̃|iki1 and q̃|jkj1 and the dotted one denotes s̃|im

i``
k

and q̃|jm
j``
k

.
When all symbols in a belong to one term in s̃ or in q̃ (or maybe both), but the root

of that term is not the symbol a1 from the first element of a, then an attempt is made to

get deeper to that term, to reach the subterm whose top symbol is the a1 from a. This
descent is carried out by Abs-L or Abs-R, depending whether we are searching for the
subterm with a1 in the top in s̃ or in q̃.

When all symbols in a belong to one term in s̃ and one term in q̃, and these terms
have the same root symbol which is exactly the a1 from the first element of a, then
a1 is moved to the generalization. This is what the App-A rule does. The process will
continue with generalizing the hedges under the occurrences of a1 in s̃ and q̃.

When the alignment is empty in x : s̃ fi q̃; X : c̃ fi d̃; e in P , then the hedge there
will not contribute a symbol in the generalization. Moreover, both c̃ and d̃ are holes,
because only App-A can make the alignment empty, and it makes the contexts in the
obtained AUP the hole. Such AUPs are considered solved, as their generalization is
just x they contain. They should be put in the store, which keeps information about the
differences between the hedges to be generalized. At the same time, the context variable
X can be deleted, as it just stand for the hole. This is what the Sol-H rule does.

The other three rules work on the store. Clr-S removes the empty AUP from the
store and eliminates the corresponding variables form the generalization. Mer-S guar-
antees that the same AUPs are generalized with the same variables, making sure that
the same differences in the input hedges are generalized uniformly. Finally, the Res-C
rule guarantees that each context variable in the generalization generalizes singleton
contexts in the input hedges: A property required for rigid generalizations.

We define two substitutions obtained by a set S of AUPs:

σLpSq ::“ tx ÞÑ s̃, X ÞÑ c̃ | x : s̃ fi q̃; X : c̃ fi d̃; a P Su

σRpSq ::“ tx ÞÑ q̃, X ÞÑ d̃ | x : s̃ fi q̃; X : c̃ fi d̃; a P Su

Example 3. Let s̃ “ fpa, fpb, bqq and q̃ “ pb, fpa, bq, bq be the input hedges with the
admissible alignment a “ fx1, 2yax1¨1, 2¨1ybx1¨2¨1, 2¨2y. Then the algorithm G starts
with the initial system

tx: fpa, fpb, bqq fi pb, fpa, bq, bq; X: ˝ fi ˝; fx1, 2yax1¨1, 2¨1ybx1¨2¨1, 2¨2yu; H; ε

and computesH;S;σ, where

S “ ty: ε fi ε; Y : fp˝, bq fi ˝, z: ε fi b; Z: ˝ fi ˝u,

σ “ tx ÞÑ pz, fpa, Y pbqq, zq, X ÞÑ ˝, . . .u.

Xpxqσ “ pz, fpa, Y pbqq, zq generalizes s̃ and q̃ with respect to a. From the store S we
can read σLpSq “ tz ÞÑ ε, Y ÞÑ fp˝, bq, . . .u and σRpSq “ tz ÞÑ b, Y ÞÑ ˝, . . .u. Then
we have XpxqσσLpSq “ s̃ and XpxqσσRpSq “ q̃.

Now we turn to discussing the properties of G. Termination is the first of them:

Theorem 2 (Termination of G). The system G terminates on any input.

The substitutions σLpSq and σRpSq are used to characterize the invariant of G:

Lemma 1 (Generalization Invariant). Let P0; S0; σ0 such that for all x0 : s̃0 fi q̃0;
X0 : c̃0 fi d̃0; a0 P P0 the variables x0, X0 only appear together as term X0px0q in
σ0. If P0; S0; σ0 ùñ

˚ Pn; Sn; σn is a derivation in G then for all x0 : s̃0 fi q̃0; X0 :
c̃0 fi d̃0; a0 P P0 Y S0 holds

– X0px0qσ0σLpP0 Y S0q “ X0px0qσnσLpPn Y Snq,
– X0px0qσ0σRpP0 Y S0q “ X0px0qσnσRpPn Y Snq.

This lemma has a corollary which states that for the invariant, the initial substitution
is irrelevant:

Corollary 1. If P0; S0; ϑ0 ùñ
˚ Pn; Sn; ϑ0ϑ1 . . . ϑn is a derivation in G then for all

x0 : s̃0 fi q̃0; X0 : c̃0 fi d̃0; a0 P P0 Y S0 holds

– X0px0qσLpP0 Y S0q “ X0px0qϑ1 . . . ϑnσLpPn Y Snq,
– X0px0qσRpP0 Y S0q “ X0px0qϑ1 . . . ϑnσRpPn Y Snq.

The soundness theorem shows that G indeed computes rigid generalizations. Be-
sides, the store keeps the information which indicates how to obtain the initial hedges
from the generalization:

Theorem 3 (Soundness of G). Let P be a set of AUPs of the form tx : s̃ fi q̃; X : ˝ fi
˝; au. Every exhaustive rule application in G yields a derivation P ; H; ε ùñ` H; S;
σ where g̃ “ Xpxqσ is a rigid generalization of s̃ and q̃ with respect to a and the store
S records all the differences such that g̃σLpSq “ s̃ and g̃σRpSq “ q̃.

The next theorem is the Completeness Theorem. It, essentially, says that for the
given alignment, a rigid generalization G computes is least general among all rigid
generalizations of the input hedges.

Theorem 4 (Completeness of G). Let g̃ be a rigid generalization of s̃ and q̃ with re-
spect to a. Then there exists a derivation tx : s̃ fi q̃; X : ˝ fi ˝; au; H; ε ùñ` H; S;
σ obtained by G such that g̃ ĺ Xpxqσ.

There is a nondeterminism in the algorithm. The Uniqueness Theorem says that
different transformations compute generalizations which are equivalent modulo », i.e.,
differ from each other only by variable renaming:

Theorem 5 (Uniqueness modulo »). Let a be an admissible alignment of s̃ and q̃. If
tx1 : s̃ fi q̃; X1 : ˝ fi ˝; au; H; ε ùñ` H; S1; σ1 and tx2 : s̃ fi q̃; X2 : ˝ fi ˝;
au; H; ε ùñ` H; S2; σ2 are two exhaustive derivations in G, then X1px1qσ1 »
X2px2qσ2.

Finally, the complexity analysis reveals that the algorithm runs in quadratic time
and requires linear space:

Theorem 6 (Complexity of G). The anti-unification algorithm G has Opn2q time
complexity and Opnq space complexity, where n is the number of symbols in the input.

Acknowledgments

This research has been supported by the Austrian Science Fund (FWF) under the project
SToUT (P 24087-N18).

Bibliography

[1] M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda. A modular equational gener-
alization algorithm. In M. Hanus, editor, LOPSTR, volume 5438 of Lecture Notes
in Computer Science, pages 24–39. Springer, 2008. ISBN 978-3-642-00514-5.

[2] M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda. Order-sorted generalization.
Electr. Notes Theor. Comput. Sci., 246:27–38, 2009.

[3] A. Amir, T. Hartman, O. Kapah, B. R. Shalom, and D. Tsur. Generalized LCS.
Theor. Comput. Sci., 409(3):438–449, 2008.

[4] E. Armengol and E. Plaza. Bottom-up induction of feature terms. Machine Learn-
ing, 41(3):259–294, 2000.

[5] F. Baader. Unification, weak unification, upper bound, lower bound, and gener-
alization problems. In R. V. Book, editor, RTA, volume 488 of Lecture Notes in
Computer Science, pages 86–97. Springer, 1991. ISBN 3-540-53904-2.

[6] A. Baumgartner and T. Kutsia. Unranked Second-Order Anti-
Unification. Technical report, RISC, JKU Linz, March 2014. URL
http://www.risc.jku.at/publications/download/risc_
4966/Baumgartner_Kutsia_2014.pdf.

[7] A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret. A variant of higher-order
anti-unification. In F. van Raamsdonk, editor, RTA, volume 21 of LIPIcs, pages
113–127. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. ISBN 978-
3-939897-53-8.

[8] H. Boley. Finite domains and exclusions as first-class citizens. In R. Dyckhoff,
editor, ELP, volume 798 of Lecture Notes in Computer Science, pages 37–61.
Springer, 1993. ISBN 3-540-58025-5.

[9] P. E. Bulychev, E. V. Kostylev, and V. A. Zakharov. Anti-unification algorithms
and their applications in program analysis. In A. Pnueli, I. Virbitskaite, and
A. Voronkov, editors, Ershov Memorial Conference, volume 5947 of Lecture
Notes in Computer Science, pages 413–423. Springer, 2009. ISBN 978-3-642-
11485-4.

[10] J. Burghardt. E-generalization using grammars. Artif. Intell., 165(1):1–35, 2005.
[11] A. L. Delcher and S. Kasif. Efficient parallel term matching and anti-unification.

J. Autom. Reasoning, 9(3):391–406, 1992.
[12] R. W. Hasker. The Replay of Program Derivations. PhD thesis, University of

Illionois at Urbana-Champaign, 1995.
[13] G. Huet. Résolution d’équations dans des langages d’ordre 1, 2, . . . , ω. PhD

thesis, Université Paris VII, September 1976.
[14] M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. An even faster and more

unifying algorithm for comparing trees via unbalanced bipartite matchings. J.
Algorithms, 40(2):212–233, 2001.

[15] U. Krumnack, A. Schwering, H. Gust, and K.-U. Kühnberger. Restricted higher-
order anti-unification for analogy making. In M. A. Orgun and J. Thornton, ed-
itors, Australian Conference on Artificial Intelligence, volume 4830 of Lecture

http://www.risc.jku.at/publications/download/risc_4966/Baumgartner_Kutsia_2014.pdf
http://www.risc.jku.at/publications/download/risc_4966/Baumgartner_Kutsia_2014.pdf

Notes in Computer Science, pages 273–282. Springer, 2007. ISBN 978-3-540-
76926-2.

[16] T. Kutsia, J. Levy, and M. Villaret. Anti-unification for unranked terms and
hedges. J. Autom. Reasoning, 52(2):155–190, 2014.

[17] H. Li and S. J. Thompson. Similar code detection and elimination for Erlang
programs. In M. Carro and R. Peña, editors, PADL, volume 5937 of Lecture Notes
in Computer Science, pages 104–118. Springer, 2010. ISBN 978-3-642-11502-8.

[18] J. Lu, J. Mylopoulos, M. Harao, and M. Hagiya. Higher order generalization and
its application in program verification. Ann. Math. Artif. Intell., 28(1-4):107–126,
2000.

[19] F. Pfenning. Unification and anti-unification in the calculus of constructions. In
LICS, pages 74–85. IEEE Computer Society, 1991.

[20] G. D. Plotkin. A note on inductive generalization. Machine Intel., 5(1):153–163,
1970.

[21] J. C. Reynolds. Transformational systems and the algebraic structure of atomic
formulas. Machine Intel., 5(1):135–151, 1970.

[22] U. Schmid. Inductive Synthesis of Functional Programs, Universal Planning,
Folding of Finite Programs, and Schema Abstraction by Analogical Reasoning,
volume 2654 of Lecture Notes in Computer Science. Springer, 2003. ISBN 3-
540-40174-1.

[23] A. Yamamoto, K. Ito, A. Ishino, and H. Arimura. Modelling semi-structured doc-
uments with hedges for deduction and induction. In C. Rouveirol and M. Sebag,
editors, ILP, volume 2157 of Lecture Notes in Computer Science, pages 240–247.
Springer, 2001. ISBN 3-540-42538-1.

[24] K. Zhang. Algorithms for the constrained editing problem between ordered la-
beled trees and related problems. Pattern Recognition, 28:463–474, 1995.

A Appendix

We first illustrate, step by step, how the algorithm G computes the rigid lgg for the
anti-unification problem in Example 3:

tx: fpa, fpb, bqq fi pb, fpa, bq, bq; X: ˝ fi ˝; fx1, 2yax1¨1, 2¨1ybx1¨2¨1, 2¨2yu; H; ε

ñApp-A ty1: pa, fpb, bqq fi pa, bq; Y1: ˝ fi ˝; ax1, 1ybx2¨1, 2yu;

tx: ε fi ε; X: ˝ fi pb, ˝, bqu; tx ÞÑ fpY1py1qqu

ñRes-C ty1: pa, fpb, bqq fi pa, bq; Y1: ˝ fi ˝; ax1, 1ybx2¨1, 2yu;

tz1: ε fi b; Z1: ˝ fi ˝, z2: ε fi b; Z2: ˝ fi ˝u; tx ÞÑ pz1, fpY1py1qq, z2q, X ÞÑ ˝u

ñMer-S ty1: pa, fpb, bqq fi pa, bq; Y1: ˝ fi ˝; ax1, 1ybx2¨1, 2yu;

tz1: ε fi b; Z1: ˝ fi ˝u; tx ÞÑ pz1, fpY1py1qq, z1q, X ÞÑ ˝u

ñ
Spl-H
Clr-S ty2: a fi a; Y2: ˝ fi ˝; ax1, 1y, y3: pfpb, bqq fi b; Y3: ˝ fi ˝; bx1¨1, 1yu;

tz1: ε fi b; Z1: ˝ fi ˝u; tx ÞÑ pz1, fpY2py2q, Y3py3qq, z1q, X ÞÑ ˝u

ñ
App-A
Clr-S ty4: ε fi ε; Y4: ˝ fi ˝; e, y3: pfpb, bqq fi pbq; Y3: ˝ fi ˝; bx1¨1, 1yu;

tz1: ε fi b; Z1: ˝ fi ˝u; tx ÞÑ pz1, fpapY4py4qq, Y3py3qq, z1q, X ÞÑ ˝u

ñ
Sol-H
Clr-S ty3: fpb, bq fi b; Y3: ˝ fi ˝; bx1¨1, 1yu;

tz1: ε fi b; Z1: ˝ fi ˝u; tx ÞÑ pz1, fpa, Y3py3qq, z1q, X ÞÑ ˝u

ñAbs-L ty3: pb, bq fi b; Y3: fp˝q fi ˝; bx1, 1yu;

tz1: ε fi b; Z1: ˝ fi ˝u; tx ÞÑ pz1, fpa, Y3py3qq, z1q, X ÞÑ ˝u

ñApp-A ty5: ε fi ε; Y5: ˝ fi ˝; eu; ty3: ε fi ε; Y3: fp˝, bq fi ˝, z1: ε fi b; Z1: ˝ fi ˝u;

tx ÞÑ pz1, fpa, Y3pbpY5py5qqqq, z1q, X ÞÑ ˝u

ñ
Sol-H
Clr-S H; ty3: ε fi ε; Y3: fp˝, bq fi ˝, z1: ε fi b; Z1: ˝ fi ˝u;

tx ÞÑ pz1, fpa, Y3pbqq, z1q, X ÞÑ ˝u.

The proofs of the properties (e.g. termination, soundness, completeness and unique-
ness) of G can be found in the technical report [6]. Here we give only the proof of
theorem 1 and the complexity result.

Theorem 1. Let a “ a1xI1, J1y . . . amxIm, Jmy be an alignment of s̃ and q̃ such that
for all 1 ď k ď m the function symbol ak is unique in s̃ and unique in q̃. a is admissible
iff there exists a generalization g̃ of s̃ and q̃ with Fpg̃q “ ta1, . . . , amu.

Proof. Let a “ a1xI1, J1y . . . amxIm, Jmy be an alignment of s̃ and q̃ such that for all
1 ď k ď m the function symbol ak is unique in s̃ and unique in q̃.

(ð) Assume g̃ is a generalization of s̃ and q̃ with Fpg̃q “ ta1, . . . , amu. We will
prove by contradiction that there are no collisions in a (see definition of admissible
alignment). Furthermore we assume that there are at least two elements in a because
the other cases are trivial by definition.

Case 1: Assume there is a collision at two elements of a. Then there exists ai, aj P
ta1, . . . , amu such that ai is an ancestor of aj in s̃ while it is not an ancestor of aj in q̃.
We know that g̃ contains both symbols ai and aj .

Case 1.1: ai is an ancestor of aj in g̃. Then we have aipr̃1, t, r̃2q being a subterm of
g̃ where t is the term which contains aj and r̃1, r̃2 are arbitrary hedges. By assumption
there exists a substitution σ with ai, aj R FpRanpσqq such that ai is not an ancestor
of aj in g̃σ but by the rule of substitution application aipr̃1, t, r̃2qσ “ aipr̃1σ, tσ, r̃2σq
the ancestor-descendant relation is preserved which is a contradiction.

Case 1.2: ai is not an ancestor of aj in g̃. Then we have pr̃1, t1, r̃2, t2, r̃3q being
a subhedge of g̃ where t1 is the term which contains ai, t2 is the term which contains
aj and r̃1, r̃2, r̃3 are arbitrary hedges. By assumption there exists a substitution σ with
ai, aj R FpRanpσqq such that ai is an ancestor of aj in g̃σ but this contradicts the rule
of substitution application pr̃1, t1, r̃2, t2, r̃3qσ “ pr̃1σ, t1σ, r̃2σ, t2σ, r̃3σq again.

Case 2: A collision appears at three elements. Let ai, aj , ak be those elements.
Without loss of generality, assume that ai, aj have a common ancestor φ which is not
an ancestor of ak in s̃ and let aj , ak have a common ancestor ψ which is not an ancestor
of ai in q̃. By assumption, g̃ contains all three symbols exactly once. It follows that
there are substitutions σ1, σ2 with ai, aj , ak R FpRanpσ1q Y Ranpσ2qq where g̃σ1 “ s̃
and g̃σ2 “ q̃. By assumption, we know that g̃σ1 contains a subhedge ptij , s̃kq, with
tij being the term which contains the symbols φ, ai, aj , and s̃k being a hedge which
contains the symbol ak. This implies that g̃ contains either φ or a context variable which
can be instantiated to introduce φ. It follows that g̃ also contains a subhedge pt1ij , s̃

1
kq,

with t1ij being the term which contains the symbols ai, aj and s̃1k being a hedge which
contains the symbol ak. Similarly g̃σ2 contains a subhedge pq̃i, tjkq, with q̃i being a
hedge which contains the symbol ai and tjk being the term which contains the symbols
ψ, aj , ak. Further on g̃ either contains ψ or a context variable, say X , which can be
instantiated to introduce ψ. Let us call this metavariable χ. As ψ is an ancestor of both,
aj and ak in q̃, χ has to be above t1ij . This is a contradiction to the assumption that ψ is
not an ancestor of ai in q̃.

(ñ) Proof by construction of an algorithm which computes such a generalization
for a given admissible alignment of two hedges. In section 4 we described this algorithm
and proved its properties. [\

Theorem 6 (Complexity of G). The anti-unification algorithm G hasOpn2q time com-
plexity and Opnq space complexity, where n is the number of symbols in the input.

Proof. Let P0; S0; σ0 “ tx : s̃ fi q̃; X : ˝ fi ˝; au; H; ε be the initial state of G and
Pi´1; Si´1; σi´1 ùñ Pi; Si; σi an arbitrary rule application. By theorem 5 we can
arrange the rule applications as we like to obtain a maximal derivation. First the rules
Spl-H, Abs-L/R, App-A and Sol-H are applied exhaustively. This are the only rules
that operate on Pi´1 and furthermore they do not have conditions on Si´1 or σi´1 such
that P0; S0; σ0 ùñ

` H; Sj ; σj , for some j. Afterwards they are not applicable again
and Res-C is applied exhaustively H; Sj ; σj ùñ

˚
Res-C H; Sk; σk. It transforms all

the contexts in the store to terms. The rules Clr-S and Mer-S operate on Sk but they
only remove AUPs from there, such that Res-C will not be applicable again. Finally
we postpone the application of Mer-S to the very end, leading to a partial derivation
H; Sk; σk ùñ

˚
Clr-S H; Sl; σl ùñ

˚
Mer-S H; Sn; σn where no more rule is applicable

because Mer-S does not introduce any AUPs, to which another rule could apply.
Now we analyze the first phase P0; S0; σ0 ùñ

` H; Sj ; σj . The rule Spl-H splits
an AUP into two AUPs and moves some parts into the store. The space overhead for

one application is constant because the two new AUPs in Pi and the one in Si together
exactly cover the original one from Pi´1, and four new variables are introduced. It can
be applied Opnq many times because both of the new AUPs are nonempty. It needs lin-
ear time (by the length of the alignment) to check for applicability and find the position
for splitting the AUP. Also the context application needs linear time. The rules Abs-L/R
are also applicableOpnqmany times. They strictly reduce the size of a hedge in Pi. The
space overhead is zero. The test for applicability, the context application as well as the
operations on the alignment need linear time. App-A is applicable Opnq many times
as well and one application needs linear time and constant space. It strictly reduces the
size of a hedge in Pi and one application needs linear time, for the same reasons as the
above rules. As Spl-H is applicable at most Opnqmany times and doubles the elements
of Pi at each application and all the other rules do not increase the length of Pi, Sol-H
is applicable Opnq many times too. It follows that the number of introduced variables
is Opnq and the size of Sj is also bound by Opnq.

We compose the substitution σi immediately, but we only keep the mappings for x
and X in σi, such that σi “ tx ÞÑ r̃i, X ÞÑ c̃iu, for some r̃i, c̃i. As all the introduced
variables in Spl-H and App-A are fresh, they only appear once in r̃i or c̃i. This invariant
of the first phase leads to Opnq size of σi as well as Opnq time for the substitution
composition in Spl-H, App-A and Sol-H. All together we get Opn2q time complexity
and Opnq space complexity for the first phase.

The second phase isH; Sj ; σj ùñ
˚
Res-C H; Sk; σk. The rule Res-C is applicable

only once per AUP leading to Opnq many applications. The space overhead is con-
stant at each application, introducing four fresh variables. It needs linear time at each
application. We again compose σi immediately and for similar reasons as above, the
substitution composition in Res-C only needs Opnq time, leading to an overall time
complexity of Opn2q and space complexity Opnq.

From the Opnq size of the store, it follows that also the store cleaning rule is appli-
cable Opnq many times and the overall time complexity of this phase is Opn2q, as we
compose substitutions immediately like before. The space overhead for Clr-S is zero.

It remains to show that H; Sl; σl ùñ
˚
Mer-S H; Sn; σn only needs Opn2q time.

Therefore we postpone the substitution composition. Comparing Opnq ˚Opnq AUPs in
the store needs Opn2q time and removing an AUP from the store needs constant time
using a linked list. As the size of the store is bound by Opnq and Mer-S removes one
AUP at each application, there are Opnq postponed substitution compositions. Each of
them of constant size as they all are just variable renamings. This leads to linear space
overhead and we have to compose Opnq substitutions where each composition needs
Opnq time. This concludes our complexity analysis where we showed that the algorithm
runs in Opn2q time using Opnq space. [\

	Unranked Second-Order Anti-Unification
	Introduction
	Preliminaries
	The Skeletons: Admissible Alignments
	Computing Least General Rigid Generalizations
	Appendix

