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Abstract ρLog-prox is a calculus for rule-based programming with strategies,
which supports both exact and approximate computations. Rules are represented
as conditional transformations of sequences of expressions, which are built from
variadic function symbols and four kinds of variables: for terms, hedges, function
symbols, and contexts. ρLog-prox extends ρLog by permitting in its programs fuzzy
proximity relations, which are reflexive and symmetric, but not transitive. We intro-
duce syntax and operational semantics of ρLog-prox, illustrate its work by exam-
ples, and present a terminating, sound, and complete algorithm for the ρLog-prox
expression matching problem.

1 Introduction

ρLog [18] is a calculus for conditional transformation of sequences of expressions,
controlled by strategies. It originated from experiments with extending the language
of Mathematica [26] by a rule-based programming package [17, 19]. Meanwhile
there are some tools based on or influenced by ρLog, such as its implementation
in Mathematica [16], an extension of Prolog, called PρLog [7], or an extension of
Maple, called symbtrans [3].
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ρLog objects are logic terms that are built from function symbols without fixed
arity and four different kinds of variables: for individual terms, for finite sequences
of terms (hedges), for function symbols, and for contexts (special unary higher-order
functions). Rules transform finite sequences of terms, when the given conditions are
satisfied. They are labeled by strategies, providing a flexible mechanism for combin-
ing and controlling their behavior. ρLog programs are sets of rules. The inference
system is based on SLDNF-resolution [15]. Program meaning is characterized by
logic programming semantics. Rules and strategies are formulated as clauses.

ρLog-based/inspired tools have been used in extraction of frequent patterns from
data mining workflows [22], for automatic derivation of multiscale models of arrays
of micro- and nanosystems [27], modeling rewriting strategies [6], etc.

The core of ρLog is a powerful pattern matching algorithm [13]. Matching with
hedge and context variables is finitary: problems might have finitely many different
solutions. In many situations, it can replace recursion, leading to pretty compact and
intuitive code. Nondeterministic computations are modeled naturally by backtrack-
ing.

The computational mechanism of ρLog is based on the assumption that the pro-
vided information is precise and the problems can be solved exactly. However, in
many cases, especially in the areas related to applications of artificial intelligence,
one has to deal with vague information, which increases demand for the correspond-
ing reasoning and computing techniques. Several approaches to this problem pro-
pose methods and tools that integrate fuzzy logic or probabilistic reasoning with
declarative programming, see, e.g., [8–11, 14, 20, 21, 23, 24].

ρLog-prox, described in this paper, is an attempt to address this problem by
combining approximate reasoning and strategic rule-based programming. It extends
ρLog with the capabilities to process imprecise information represented by prox-
imity relations. The latter are binary fuzzy relations, satisfying the properties of
reflexivity and symmetry. We develop a matching algorithm that solves the prob-
lem of approximate equality between terms that may contain variables for terms,
hedges, function symbols and contexts. A particular difficulty is related to the fact
that proximity relations are not transitive. We prove that our matching algorithm
is terminating, sound, and complete, and integrate it in the ρLog-prox calculus.
The integration is transparent: approximate equality is expressed explicitly, no hid-
den fuzziness is assumed. Multiple solutions to matching problems are explored by
nondeterministic computations in the inference mechanism.

The rest of the paper is organized as follows: In Section 2 we introduce the ter-
minology, define our language, and discuss proximity relations. Section 3 is about
the basics of ρLog-prox: its syntax, semantics, and an illustrative example are pre-
sented. In Section 4, we develop an algorithm for solving proximity matching prob-
lems and prove its properties. Section 5 is the conclusion.
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2 Preliminaries

In this section, we introduce the basic notions needed in the rest of the paper.

Terms, hedges, contexts, substitutions

The alphabet A consists of the following pairwise disjoint sets of symbols:

• VT: term variables, denoted by x,y,z, . . .,
• VS: hedge variables, denoted by x,y,z, . . .,
• VF: function variables, denoted by X ,Y,Z, . . .,
• VC: context variables, denoted by X ,Y ,Y , . . .,
• F : unranked function symbols, denoted by f ,g,h, . . ..

Besides, A contains also auxiliary symbols such as parenthesis and comma, and a
special constant ◦, called hole. A variable is an element of the set V = VT ∪VS ∪
VF ∪VC. A functor, denoted by F , is a common name for a function symbol or a
function variable.

We define terms, hedges, contexts, and other syntactic categories over A as fol-
lows:

t ::= x | f (s̃) | X(s̃) | X(t) Term
t̃ ::= t1, . . . , tn (n≥ 0) Term sequence
s ::= t | x Hedge element
s̃ ::= s1, . . . ,sn (n≥ 0) Hedge

C ::= ◦ | f (s̃1,C, s̃2) | X(s̃1,C, s̃2) | X(C) Context

Hence, hedges are sequences of hedge elements, hedge variables are not terms,
term sequences do not contain hedge variables, contexts (which are not terms either)
contain a single occurrence of the hole. We do not distinguish between a singleton
hedge and its sole element.

We denote the set of terms by T (F ,V ), hedges by H (F ,V ), and contexts by
C (F ,V ). Ground (i.e., variable-free) subsets of these sets are denoted by T (F ),
H (F ), and C (F ), respectively.

We make a couple of conventions to improve readability. We put parentheses
around hedges, writing, e.g., ( f (a),x,b) instead of f (a),x,b. The empty hedge is
written as (). The terms of the form a() and X() are abbreviated as a and X , re-
spectively, when it is guaranteed that terms and symbols are not confused. For
hedges s̃ = (s1, . . . ,sn) and s̃′ = (s′1, . . . ,s

′
m), the notation (s̃, s̃′) stands for the hedge

(s1, . . . ,sn,s′1, . . . ,s
′
m). We use s̃ and r̃ for arbitrary hedges, while t̃ is reserved for

term sequences.
Below we will also need anonymous variables for each variable category. They

are variables without name, well-known in declarative programming. We write the
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single underscore for anonymous term and function variables, and the double un-
derscore for anonymous hedge and context variables. The set of anonymous vari-
ables is denoted by VAn.

A syntactic expression (or, just an expression) is an element of the set F ∪V ∪
T (F ,V )∪H (F ,V )∪C (F ,V ). We denote expressions by E.

We also introduce two notations: V (E) denotes the set of variables occurring in
expression E, and V (E,{p1, ..., pn}), where pi’s are positions in E, is defined as
V (E,{p1, ..., pn}) = ∪n

i=1V (E|pi), where E|pi is the standard notation for a subex-
pression of E at position pi.

Contexts can apply to contexts or terms. This meta-operation is denoted by C1[C2]
or C1[t] and is obtained from C1 by replacing the hole in it by C2 or t, respectively.
Thus, C1[C2] is a context and C1[t] is a term.

Substitution is a mapping σ from V to T (F ,V )∪H (F ,V )∪C (F ,V )∪F ∪
VF, defined as

σ(x) ∈T (F ,V ), σ(x) ∈H (F ,V ),

σ(X) ∈F ∪VF, σ(X) ∈ C (F ,V ),

such that σ(v) = v for all but finitely many term, hedge, and function variables v,
and X = X(◦) for all but finitely many context variables X .

Substitutions are denoted by Greek letters σ , ϑ , ϕ . The identity substitution is
denoted by Id.

A substitution σ may apply to elements of the set T (F ,V )∪H (F ,V )∪
C (F ,V )∪F ∪VF in the following way:

xσ = σ(x), F(s̃)σ = (Fσ)(s̃σ), X(t)σ = σ(X)[tσ ],

xσ = σ(x), (s1, . . . ,sn)σ = (s1σ , . . . ,snσ), Xσ = σ(X), f σ = f ,

◦σ = ◦, F(s̃1,C, s̃2)σ = (Fσ)(s̃1σ ,Cσ , s̃2σ), X(C)σ = σ(X)[Cσ ].

Proximity relations

Basic notions about proximity relations are defined following [11].
A binary fuzzy relation on a set S is a mapping from S× S to the real interval

[0,1]. If R is a fuzzy relation on S and λ is a number 0 ≤ λ ≤ 1, then the λ -cut of
R on S, denoted Rλ , is an ordinary (crisp) relation on S defined as Rλ := {(s1,s2) |
R(s1,s2)≥ λ}.

A fuzzy relation R on a set S is called a proximity relation, if it reflexive and
symmetric:

Reflexivity: R(s,s) = 1 for all s ∈ S;
Symmetry: R(s1,s2) = R(s2,s1) for all s1,s2 ∈ S.

In this paper we consider only strict proximity relations:

Strictness: For all s1,s2 ∈ S, if R(s1,s2) = 1 then s1 = s2.
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A proximity relation is characterized by a set Λ = {λ1, . . . ,λn | 0 < λi ≤ 1} of
approximation levels. They express the degree of relationship of the related ele-
ments. We say that a value λ ∈ Λ is a cut value. The λ -cut of R, defined as
Rλ = {(s1,s2) | R(s1,s2) ≥ λ} is a usual two-valued tolerance (i.e., reflexive and
symmetric) relation.

A T-norm ∧ is an associative, commutative, non-decreasing binary operation on
[0,1] with 1 as the unit element. In the rest of the paper, we take minimum in the
role of T-norm.

The proximity class of level λ > 0 of s ∈ S in a relation R (a λ -class of s in R)
is a set pc(s,R,λ ) = {s′ |R(s,s′)≥ λ}.

Our proximity relations are defined on the set of function symbols F . We require
them to be defined in such a way that the proximity class for each symbol is finite.
Given a proximity relation R defined on F , we extend it to F ∪V ∪T (F ,V )∪
H (F ,V )∪C (F ,V ):

• For variables, V ∈ V :

– R(V,V ) = 1.

• For terms, t, t ′ ∈T (F ,V ):

– If t and t ′ have the same number of arguments, e.g., t = F(s1, . . . ,sn) and
t ′ = F ′(s′1, . . . ,s

′
n), then R(t, t ′) = R(F,F ′)∧R(s1,s′1)∧·· ·∧R(sn,s′n).

• For hedges, s,s′ ∈H (F ,V ):

– If s̃ and s̃′ have the same number of elements, e.g., s̃ = (s1, . . . ,sn) and s̃′ =
(s′1, . . . ,s

′
n), then R(s̃, s̃′) = R(s1,s′1)∧·· ·∧R(sn,s′n).

• For contexts, C,C′ ∈ C (F ,V ):

– R(◦,◦) = 1.
– If C and C′ have the same number of arguments and their context arguments

appear in the same position, e.g., C = F(s1, . . . ,si−1,C1,si+1, . . . ,sn) and
C′ = F ′(s′1, . . . ,s

′
i−1,C

′
1,s
′
i+1 . . . ,s

′
n), then R(C,C′) = R(F,F ′)∧R(s1,s′1)∧

·· ·R(si−1,s′i−1)∧R(C1,C′1)∧R(si+1,s′i+1)∧R(sn,s′n).

• In all other cases, R(E,E ′) = 0 for two syntactic expressions E,E ′ ∈ V ∪
T (F ,V )∪H (F ,V )∪C (F ,V ).

When R is strict on F , its extension to F ∪ V ∪T (F ,V ) ∪H (F ,V ) ∪
C (F ,V ) is also strict.

The notion of proximity class extends to elements of F ∪ V ∪T (F ,V ) ∪
H (F ,V )∪C (F , V ). It is easy to see that each proximity class in this set is also
finite.
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3 ρLog-prox: ρLog with proximity relations

Syntactic matching and proximity matching problems

A syntactic matching atom is a formula of the form E1 � E2. It is solved if the
expressions E1 and E2 are identical, i.e., if E1 = E2. A substitution σ is a solution
(or a matcher) of a matching atom E1� E2 iff E1σ = E2.

Example 1. The syntactic matching atom

(X(a),x,Y (X(x,y)),z)� ( f (a),g(b, f (b), f (a, f (b))),b,c)

has two solutions:

σ1 = {X 7→ f , x 7→ (), Y 7→ g(b,◦, f (a, f (b))), y 7→ b, z 7→ (b,c)}
σ2 = {X 7→ f , x 7→ (), Y 7→ g(b, f (b), f (a,◦)), y 7→ b, z 7→ (b,c)}

A syntactic matching problem is a finite set of syntactic matching atoms. Its
solution is a substitution which solves each of the atoms in the problem.

Given a proximity relation R and a cut value λ , an (R,λ )-proximity atom is a
formula E1�R,λ E2 for the expressions E1 and E2. Its solution is a substitution σ

such that R(E1σ ,E2)≥ λ . A solution with the proximity degree α is a substitution
σ such that R(E1σ ,E2) = α≥ λ .

Example 2. Let the proximity relation R be given by the following:

R(g1,h1) = R(g2,h1) = 0.4
R(g1,h2) = R(g2,h2) = 0.5
R(g2,h3) = R(g3,h3) = 0.6
R(a,b) = 0.7

Let the proximity atom be

P = f (x,x,Y (x),z)�R,λ f (g1(a),g2(b), f (g3(a))).

Consider the approximation levels Λ = {0.4,0.5,0.6,0.7}. We get the following
solutions to P: (In all cases, the proximity degrees of solutions coincide with λ .)

λ = 0.4 :

σ1 = {x 7→ (),x 7→ h1(a),Y 7→ ◦,z 7→ f (g3(a))}
σ2 = {x 7→ (),x 7→ h2(a),Y 7→ ◦,z 7→ f (g3(a))}
σ3 = {x 7→ (),x 7→ h1(b),Y 7→ ◦,z 7→ f (g3(a))}
σ4 = {x 7→ (),x 7→ h2(b),Y 7→ ◦,z 7→ f (g3(a))}
σ5 = {x 7→ (),x 7→ h1(a),Y 7→ ◦,z 7→ f (g3(b))}



Extending the ρLog calculus with proximity relations 7

σ6 = {x 7→ (),x 7→ h2(a),Y 7→ ◦,z 7→ f (g3(b))}
σ7 = {x 7→ (),x 7→ h1(b),Y 7→ ◦,z 7→ f (g3(b))}
σ8 = {x 7→ (),x 7→ h2(b),Y 7→ ◦,z 7→ f (g3(b))}
σ9 = {x 7→ (),x 7→ h1(a),Y 7→ ◦,z 7→ f (h3(a))}

σ10 = {x 7→ (),x 7→ h2(a),Y 7→ ◦,z 7→ f (h3(a))}
σ11 = {x 7→ (),x 7→ h1(b),Y 7→ ◦,z 7→ f (h3(a))}
σ12 = {x 7→ (),x 7→ h2(b),Y 7→ ◦,z 7→ f (h3(a))}
σ13 = {x 7→ (),x 7→ h1(a),Y 7→ ◦,z 7→ f (h3(b))}
σ14 = {x 7→ (),x 7→ h2(a),Y 7→ ◦,z 7→ f (h3(b))}
σ15 = {x 7→ (),x 7→ h1(b),Y 7→ ◦,z 7→ f (h3(b))}
σ16 = {x 7→ (),x 7→ h2(b),Y 7→ ◦,z 7→ f (h3(b))}
σ17 = {x 7→ g1(a),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ18 = {x 7→ g1(a),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}
σ19 = {x 7→ g1(b),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ20 = {x 7→ g1(b),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}
σ21 = {x 7→ h1(a),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ22 = {x 7→ h1(a),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}
σ23 = {x 7→ h1(b),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ24 = {x 7→ h1(b),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}
σ25 = {x 7→ h2(a),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ26 = {x 7→ h2(a),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}
σ27 = {x 7→ h2(b),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ28 = {x 7→ h2(b),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}

λ = 0.5 :

σ1 = {x 7→ (),x 7→ h2(a),Y 7→ ◦,z 7→ f (g3(a))}
σ2 = {x 7→ (),x 7→ h2(b),Y 7→ ◦,z 7→ f (g3(a))}
σ3 = {x 7→ (),x 7→ h2(a),Y 7→ ◦,z 7→ f (g3(b))}
σ4 = {x 7→ (),x 7→ h2(b),Y 7→ ◦,z 7→ f (g3(b))}
σ5 = {x 7→ (),x 7→ h2(a),Y 7→ ◦,z 7→ f (h3(a))}
σ6 = {x 7→ (),x 7→ h2(b),Y 7→ ◦,z 7→ f (h3(a))}
σ7 = {x 7→ (),x 7→ h2(a),Y 7→ ◦,z 7→ f (h3(b))}
σ8 = {x 7→ (),x 7→ h2(b),Y 7→ ◦,z 7→ f (h3(b))}
σ9 = {x 7→ g1(a),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
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σ10 = {x 7→ g1(a),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}
σ11 = {x 7→ g1(b),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ12 = {x 7→ g1(b),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}
σ13 = {x 7→ h2(a),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ14 = {x 7→ h2(a),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}
σ15 = {x 7→ h2(b),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ16 = {x 7→ h2(b),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}

λ = 0.6 :

σ1 = {x 7→ g1(a),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ2 = {x 7→ g1(a),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}
σ3 = {x 7→ g1(b),x 7→ h3(a),Y 7→ f (◦),z 7→ ()}
σ4 = {x 7→ g1(b),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}

λ = 0.7 : No solutions.

A proximity matching problem is a set of proximity atoms. A substitution σ is a
solution of a proximity matching problem {A1, . . . ,An} (with proximity degree α),
if σ is a solution of each atom Ai (with proximity degree αi and α= α1∧·· ·∧αn).

Note that because of strictness, syntactic matching can be seen as special prox-
imity matching for an arbitrary R with the lambda-cut equal to 1. Therefore, for
simplicity, below we will talk only about proximity matching problems and refer to
them briefly as proximity problems.

ρLog-prox programs and proximity relations

ρLog-prox programs consist of conditional rules for hedge transformations. A trans-
formation is an atomic formula (an atom) of the form =⇒ (t,〈s̃1〉,〈s̃2〉), where =⇒
is a ternary predicate symbol and 〈·〉 is a function symbol (which appears neither in
t nor in s̃1 and s̃2). Such an atom is usually written as t :: s̃1 =⇒ s̃2. Intuitively, it
means that the hedge s̃1 is transformed into the hedge s̃2 by the strategy t. Atoms
are denoted by A and B.

A ρLog-prox query is a conjunction of atoms, written as B1, . . . ,Bn. A ρLog-
prox clause has a form A← Q, where ← is the inverse implication sign, A is an
atom, called the head of the clause, and Q is a query, called the body of the clause.
ρLog-prox programs are finite sets of ρLog-prox clauses.

We assume that for each program there is an associated proximity relation defined
on the set of function symbols. For such a relation R, the set of ( f ,g) pairs with
R( f ,g)> 0 is finite.

A special predefined strategy is prox, which takes a single argument, a number
from the real interval (0,1]. The atom prox(λ ) :: s̃1 =⇒ s̃2 is true iff the proxim-
ity problem s̃2 �R,λ s̃1 is solvable for the given R. When λ = 1, prox coincides
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with the identity strategy id of the original ρLog [18] (the strictness assumption is
important here).

For the original version of ρLog, semantics of programs can be defined in the
same way as it is done for logic programming [1, 15]. Having defined proximity
strategies as ρLog-prox atoms, we can do the same for our version of ρLog-prox
programs.

Note that the same strategy can be defined by several clauses, which are treated
as alternatives.

Now we introduce the inference system of ρLog-prox calculus with proximity
relations. It has two rules: resolution and proximity factoring. A program and a
proximity relation R are given.

Resolution takes a query with an atom selected in it and a renamed copy of a pro-
gram clause and performs the inference step, producing a new query as follows:

strq :: lhsq =⇒ rhsq,Q strp :: lhsp =⇒ rhsp← Body
(Body, prox(1) :: rhsp =⇒ rhsq, Q)σ

,

where σ is a solution of the proximity problem {strp �R,1 strq, lhsp �R,1 lhsq}.
The strategy strq does not have the form prox(λ ).

Proximity factoring takes a query, in which an atom with the proximity strategy is
selected, and produces a new query:

prox(λ ) :: lhsq =⇒ rhsq, Q
Qσ

,

where σ is a solution of the proximity problem {rhsq�R,λ lhsq}.

A derivation of a query Q from a program P (with respect to a proximity relation
R) is a sequence of queries Q0,Q1, . . ., where Q0 = Q and Qi is obtained from Qi−1
by resolution or proximity factoring. A derivation is successful if it ends with the
empty query. In this case, the union of substitutions computed along the derivation,
restricted to variables from Q, is called the answer computed for Q via P. A deriva-
tion is failed, if none of the inference rules can apply to the last query, which is
nonempty. Like for the original ρLog, the inference system is sound: the computed
answers are also correct with respect to the declarative semantics. It is not complete
in general due to the leftmost query selection strategy. Completeness is ensured for
queries with terminating derivations.

We can allow negations of atoms in queries and clause bodies, as in normal logic
programs [1, 2, 15]. Literal is a common name for an atom and its negation. We use
the letter L to denote them. To deal with negative literals, the inference system can
be extended by the well-known negation-as-failure rule.

In order to guarantee that inference in ρLog-prox is performed by matching and
not unification (because the latter problems may have infinitely many solutions [5,
12]), we work with well-moded programs and queries.
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Definition 1 (Well-moded clauses, programs, queries). Let C be a (normal) clause

str0 :: r̃0 =⇒ s̃n+1← L1, . . . ,Ln,

where for each 1≤ i≤ n, the literal Li is either an atom stri :: s̃i =⇒ r̃i or a negation
of an atom stri :: s̃i \=⇒r̃i. C is well-moded if for all 1≤ i≤ n+1, we have

• V (stri)∪V (s̃i)⊆ V (str0)∪
⋃i−1

j=0 V (r̃)\VAn, and
• if Li is a negative literal, then V (r̃i)⊆ V (str0)∪

⋃i−1
j=0 V (r̃)∪VAn.

A (normal) ρLog-prox program is well-moded if all clauses in it all well-moded.
A (normal) query L1, . . . ,Ln is well-moded if the clause A← L1, . . . ,Ln is well-

moded, where A is a dummy ground atom.

Example 3. In this rather extended example we illustrate ρLog-prox clauses, strate-
gies, and evaluation mechanism. We borrow the material from [7] and adapt it to
ρLog-prox.

An instance of a transformation is finding duplicated elements in a hedge and
removing one of them. Let us call this process the merging of duplicates. The fol-
lowing strategy implements the idea:

merge duplicates :: (x, x, y, x, z) =⇒ (x, x, y, z).

merge duplicates is the strategy name. The clause is obviously well-moded. It
says that if the hedge in lhs contains duplicates (expressed by two copies of the
variable x) somewhere, then from these two copies only the first one should be kept
in rhs. That “somewhere” is expressed by three hedge variables, where x stands
for the subhedge before the first occurrence of x, y takes the subhedge between
two occurrences of x, and z matches the remaining part. These subhedges remain
unchanged in the rhs.

One does not need to code the actual search process of duplicates explicitly. The
matching algorithm is supposed to do the job instead, looking for an appropriate
instantiation of the variables. There can be several such instantiations.

Now one can ask, e.g., to merge duplicates in a hedge (a, b, c, b, a):

merge duplicates :: (a, b, c, b, a) =⇒ x.

To this query, ρLog-prox returns two answer substitutions: {x 7→ (a, b, c, b)}
and {x 7→ (a, b, c, a)}. Both are obtained from (a, b, c, b, a) by merging one pair of
duplicates.

Now we generalize merge duplicates allowing merging of approximate dupli-
cates (we use l as a term variable):

merge duplicates(l) :: (x, x, y, y, z) =⇒ (x, x, y, z)← prox(l) :: x =⇒ y.

This clause (which is well-moded) removes y from the given hedge, if the hedge
contains an x such that x and y are close to each other with respect to the given
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proximity relation with the proximity degree l. The merge duplicates strategy above
is just a special case of merge duplicates(l) with l = 1.

Assume now that in the proximity relation R, we have R(a,e) = 0.6 and
R(b,d) = 0.7. Then the query

merge duplicates(0.8) :: (a, b, c, d, e) =⇒ x

fails, because (a, b, c, d, e) does not contain elements which are close to each other
with the proximity degree at least 0.8. If we take l = 0.7, i.e., the query

merge duplicates(0.7) :: (a, b, c, d, e) =⇒ x,

we get a single answer: {x 7→ (a, b, c, e)}. Decreasing l further and taking the query

merge duplicates(0.6) :: (a, b, c, d, e) =⇒ x,

we get two answers (via backtracking): {x 7→ (a, b, c, d)} and {x 7→ (a, b, c, e)}.
A hedge without duplicates is a normal form with respect to this single-step

merge duplicates(l) transformation. ρLog-prox has a predefined strategy for com-
puting normal forms, denoted by nf, and we can use it to define a new strategy
merge all duplicates(l) in the following clause:

merge all duplicates(l) :: x =⇒ y ← nf(merge duplicates(l)) :: x =⇒ y.

The effect of nf is that it applies merge duplicates to x, repeating this process
iteratively as long as it is possible, i.e., as long as duplicates can be merged in the
obtained hedges. When merge duplicates is no more applicable, it means that the
normal form of the transformation is reached. It is returned in y.

Now, for the query

merge all duplicates(0.6) :: (a, b, c, d, e) =⇒ x.

we get a single answer x 7→ (a, b, c). However, procedurally, this answer can be
computed multiple times (via backtracking). To avoid such multiple computations,
we can use another predefined strategy first one:

merge all duplicates(l) :: x =⇒ y ←
first one(nf(merge duplicates(l))) :: x =⇒ y.

first one applies to a sequence of strategies, finds the first one among them,
which successfully transforms the input hedge, and gives back just one result of
the transformation. Here it has a single argument strategy nf(merge duplicates(l))
and returns (by instantiating y) only one result of its application to x.

ρLog-prox is good not only in selecting arbitrarily many subexpressions in “hor-
izontal direction” (by hedge variables), but also in working in “vertical direction”,
selecting subterms at arbitrary depth. Context variables provide this flexibility, by
matching the context above the subterm to be selected. With the help of context and
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function variables, from the merge duplicates(l) strategy it is pretty easy to define a
transformation that merges neighboring branches in a tree, which are approximately
the same:

merge duplicate branches(l) :: X(Y (x)) =⇒ X(Y (y)) ←
merge duplicates(l) :: x =⇒ y.

Now, we can ask to merge neighboring branches in a given tree, which are 0.6-
approximate of each other (for the same R as above):

merge duplicate branches(0.6) ::
f (g(a,b,e,h(c,c)), h(c), g(a,e,b,h(c))) =⇒ x.

ρLog-prox computes three answers:

{x 7→ f (g(a,b,h(c,c)), h(c), g(a,e,b,h(c)))},
{x 7→ f (g(a,b,e,h(c)), h(c), g(a,e,b,h(c)))},
{x 7→ f (g(a,b,e,h(c,c)), h(c), g(a,b,h(c)))}.

To obtain the first one, ρLog-prox matched the context variable X to the context
f (◦, h(c),g(a,a,b,h(c))), the function variable Y to the function symbol g, and the
hedge variable x to the hedge (a,b,e,h(c,c)). merge duplicates(0.6) transformed
(a,b,e,h(c,c)) to (a,b,h(c,c)). The other results have been obtained by taking dif-
ferent contexts and respective subbranches.

The right hand side of transformations in the queries need not be variables. One
can have an arbitrary hedge there. For instance, we may be interested in trees that
contain h(c,c):

merge duplicate branches(0.6) ::

f (g(a,b,e,h(c,c)), h(c), g(a,e,b,h(c))) =⇒ X(h(c,c)).

We get here two answers, which show instantiations of X by the relevant contexts:

{X 7→ f (g(a,b,◦), h(c), g(a,e,b,h(c)))},
{X 7→ f (g(a,b,e,◦), h(c), g(a,b,h(c)))}.

Similar to merging all duplicates in a hedge above, we can also define a strategy
that merges all approximately duplicate branches in a tree repeatedly. Naturally, the
built-in strategy for normal forms plays a role also here:

merge all duplicate branches(l) :: x =⇒ y←
first one(nf(merge duplicate branches(l))) :: x =⇒ y.

For the query
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merge all duplicate branches(0.6) ::
f (g(a,b,e,h(c,c)), h(c), g(a,e,b,h(c))) =⇒ x.

we get a single answer {x 7→ f (g(a,b,h(c)),h(c))}.

4 Solving proximity problems

As one could see in the previous section, the inference rules of ρLog-prox heavily
rely on solving proximity problems. Well-modedness guarantees that only proximity
problems with ground right hand side arise during derivations of queries from ρLog-
prox programs. Resolving negative literals reduces to the problem of testing whether
two ground expressions are in the given proximity relation with respect to the given
cut value.

Here we describe an algorithm, which computes not only solutions to proximity
problems, but also the degree of proximity for the solutions. They can be used to
report the proximity degree of a query instance that is proved from the program.

We say that a set of equations {V1 ≈ E1, . . . ,Vn ≈ En} is in

• matching pre-solved form, if the E’s are ground,
• matching solved form, if it is in matching pre-solved form and each variable Vi

appears in the set only once.

If S is a solved form, we define an associated substitution σS := {Vi 7→ Ei | Vi ≈
Ei ∈ S}.

The proximity matching algorithm P is formulated in a rule-based way. Rules
work on configurations, which are either a special symbol ⊥ or triples of the form
M;S;α, where M is the proximity matching problem to be solved, S is a set of
equations in matching pre-solved form (the candidate set for a solution computed
so far), and α is the proximity degree of a solution computed so far. A rule that
produces ⊥ is called a failure rule. We have six success and four failure rules:

RFS: Removing function symbols
{ f (s̃)�R,λ g(t̃)}]M; S; α M∪{s̃�R,λ t̃}; S; α∧β,
where R( f ,g) = β≥ λ .

Dec: Decomposition
{(t, s̃)�R,λ (t ′, t̃)}]M; S; α M∪{t�R,λ t ′, s̃�R,λ t̃}; S; α,
where s̃ 6= () and t̃ 6= ().

FVE: Function variable elimination
{X(s̃)�R,λ g(t̃)}]M; S; α M∪{s̃�R,λ t̃}; S∪{X ≈ g′}; α∧β,
where R(g′,g) = β≥ λ .
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CVE: Context variable elimination
{X(t1)�R,λ C(t2)}]M; S; α M∪{t1�R,λ t2}; S∪{X ≈C′}; α∧β,
where R(C′,C) = β≥ λ .

TVE: Term variable elimination
{x�R,λ t}]M; S; α M; S∪{x≈ t ′}; α∧β, where R(t ′, t) = β≥ λ .

HVE: Hedge variable elimination
{(x, s̃)�R,λ (t̃1, t̃2)}]M; S; α M∪{s̃�R,λ t̃2}; S∪{x≈ t̃ ′1}; α∧β,
where R(t̃ ′1, t̃1) = β≥ λ .

Cla1: Clash 1
{ f (s̃)�R,λ g(t̃)}]M; S; α ⊥, if R( f ,g)< λ .

Cla2: Clash 2
{(t, s̃)�R,λ ()}]M; S; α ⊥.

Cla3: Clash 3
{()�R,λ (t, t̃)}]M; S; α ⊥.

Inc: Inconsistency
M; S; α ⊥,
if S contains two equations with the same variable in the left hand side.

To solve a proximity matching problem M, we create the initial configuration
M; /0;1 and start applying the rules exhaustively. If the same configuration can be
transformed by multiple rules, they are applied concurrently except one of the rules
is Inc: in this case only Inc applies. Each elimination rule instantiates a variable
not exactly with the corresponding expression in the right hand side, but with its
approximate expression. Since proximity classes of objects are finite, these choices
cause only finite branching. The other source of branching is the choice of a hedge
and a context from the right hand side in CVE and HVE rules. Also here, there are
finitely many ways to branch. The described process defines the algorithm P.

Theorem 1 (Termination). The proximity matching algorithm P terminates. Each
final configuration has the form either ⊥ or /0;S;α, where S is in matching solved
form.

Proof. Let size(E) be the number of symbols in E. By Msize(M) we denote the
multiset {size(E2) | E1�R,λ E2 ∈M}. To each configuration M;S;α we associate
the complexity measure, the pair 〈Msize(M),varocc(M)〉, where varocc(M) is the
number of variable occurrences in M. The measures are compared lexicographi-
cally, where the used orderings for the components are multiset ordering [4] and the
standard ordering on natural numbers. The RFC and Dec rules decrease the first
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component of the measure. (Note that for Dec it is ensured by the requirement that
s̃ and t̃ are not empty hedges.) The elimination rules do not increase the first com-
ponent and decrease the second one. The failure rules stop immediately, since ⊥ is
not transformed further. Hence, the algorithm terminates.

Since for each possible shape of a proximity problem there is the corresponding
rule, the process stops either with ⊥ or with a configuration of the form /0;S;α. In
the latter case, S should be in solved form, otherwise Inc would transform it into ⊥.
ut

From each final configuration /0;S;α, we can extract the corresponding substitu-
tion σS. These substitutions are called computed answers.

We say that σ is a solution of a (pre-solved) set of equations {V1 ≈ E1, . . . ,Vn ≈
En} iff Viσ =Ei for each 1≤ i≤ n. A solution of a pair M;S of a proximity matching
problem M and a set of equations in pre-solved form S is a substitution σ that solves
both M and S. The configuration ⊥ has not solutions.

Theorem 2 (Soundness). Let M be a proximity problem and σ be its computed
answer with the proximity degree α. Then σ is a solution of M with the proximity
degree α.

Proof. Let M1;S1;α1 R M2;S2;α2 be the step made by R, where R is one of the
rules above. We show that if σ is a solution of M2 (with the degree α2) and S2, then
σ is a solution of M1 (with the same degree α2) and S1.

R is RFS. Then α2 = α1∧β, where R( f ,g) = β≥ λ . Obviously, if R(s̃σ , t̃)≥
α1∧β, then R( f (s̃)σ ,g(t̃))≥α1∧β. Hence, in this case σ is a solution of M1 with
the degree α2 and S1 (which is the same as S2).

R is FVE. Then α2 =α1∧β where R(g′,g) =β. Besides, g′=Xσ . Therefore, if
R(s̃σ , t̃)≥ α1∧β, then R(X(s̃)σ ,g(t̃))≥ α1∧β, and if σ solves S2, then it solves
also S1. Hence, also in this case σ is a solution of M1 with the degree α2 and S1.

For the other success rules the proof is similar or easier.
To prove the soundness theorem, we just need to proceed by induction on the

length of a successful derivation, using the single-step soundness result we just es-
tablished. ut

Lemma 1. If M;S;α ⊥, then M;S has no solution.

Proof. Assume M is a (R,λ )-matching problem and analyze the rules that lead to
⊥. For the Cla1 rule, M is unsolvable, because R(( f (s̃))σ ,g(t̃))=R( f (s̃σ),g(t̃))=
R( f ,g)∧R(s̃σ , t̃)≤R( f ,g)< λ . In Cla2 and Cla3 rules, unsolvability of M fol-
lows from the fact that a nonempty hedge can not be approximated by the empty
hedge. In the Inc rule, if we have two equations with the same variable in the left
hand side, it means that their right hand sides are different. Since equations in S are
solved syntactically, it implies that S has no solution. ut

Theorem 3 (Completeness). Let M be a proximity problem and σ be its solution
with the proximity degree α. Then there exists a derivation in P ending with a con-
figuration M; /0;1 ∗ /0;S;α, such that σ = σS.
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Proof. We construct the desired derivation under the guidance of σ . At each vari-
able elimination step, we choose the proximal object of the variable exactly as σ

does. This will guarantee that proximity degrees at each such step will be also in
accordance to σ . Making RFS and Dec steps will not make the proximity degree
differ from α, because σ is a solution. No clashing and inconsistency step will be
performed, because by Lemma 1 it would contradict the solvability of M. Hence, if
β1, . . . ,βn are all β’s in the derivation, then β1∧ ·· ·∧βn = α. Since we start from
the proximity degree 1, the computed proximity degree will be 1∧β1∧·· ·∧βn =α.
By construction, σS = σ . ut

Example 4. We use the proximity relation and problem from Example 2. The rela-
tion R is

R(g1,h1) = R(g2,h1) = 0.4, R(g1,h2) = R(g2,h2) = 0.5,
R(g2,h3) = R(g3,h3) = 0.6, R(a,b) = 0.7.

The proximity problem is

f (x,x,Y (x),z)�R,λ f (g1(a),g2(b), f (g3(a))).

We take the cut λ = 0.6 and show how P computes one of the solutions of this
problem, the substitution σ3 = {x 7→ g1(b),x 7→ h3(b),Y 7→ f (◦),z 7→ ()}:

{ f (x,x,Y (x),z)�R,0.6 f (g1(a),g2(b), f (g3(a)))}; /0;1 RFS

{(x,x,Y (x),z)�R,0.6 (g1(a),g2(b), f (g3(a)))}; /0;1 HVE

{(x,Y (x),z)�R,0.6 (g2(b), f (g3(a)))};{x≈ g1(b)};0.7 TVE

{(Y (x),z)�R,0.6 ( f (g3(a)))};{x≈ g1(b), x≈ h3(b)};0.6 CVE

{(x,z)�R,0.6 (g3(a))};{x≈ g1(b), x≈ h3(b), Y ≈ f (◦)};0.6 TVE

{z�R,0.6 ()};{x≈ g1(b), x≈ h3(b), Y ≈ f (◦)};0.6 HVE

/0;{x≈ g1(b), x≈ h3(b), Y ≈ f (◦), z≈ ()};0.6.

5 Conclusion

We extended the ρLog calculus with the capabilities to work with strict proximity
relations. This extension, called ρLog-prox, can process both crisp and fuzzy data.
With the help of the corresponding strategies, the user has full control on how fuzzy
(proximity) relations are used. There are no hidden assumptions about fuzziness.

We showed that matching modulo proximity can be naturally embedded in the
strategy-based transformation rule framework of ρLog-prox. We developed a prox-
imity matching algorithm for expressions involving four different kinds of variables
(for terms, for hedges, for function symbols, and for contexts), and proved its termi-
nation, soundness, and completeness.
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