
Lambda Calculus with Regular Types
Besik Dundua

Institute of Applied Mathematics
Tbilisi State University
bdundua@gmail.com

Mário Florido
Department of Computer Science

University of Porto
amf@dcc.fc.up.pt

Temur Kutsia
Research Institute for Symbolic Computation

Johannes Kepler University Linz
kutsia@risc.jku.at

Abstract—In this paper we define λR: a foundational calculus
for sequence processing with regular expression types. Its term
language is the lambda calculus extended with sequences of
terms and its types are regular expressions over simple types.
We provide a flexible notion of subtyping based on the semantic
notion of nominal interpretation of a type. Then we prove that
types are preserved by reduction (subject reduction), and that
there exist no infinite reduction sequences starting at typed terms
(strong normalization).

I. INTRODUCTION

Lambda calculus is regarded as a core formalism to model
programming languages. It provides a framework for both
computation and deduction. Since the pioneering works of
Landin [13]–[16] and McCarthy [17], [18], lambda calculus
plays an important role in specification and design of program-
ming languages, for some compiler construction techniques,
and in studying type systems.

The original version of lambda calculus, introduced by
Church in 1930s, was untyped and permitted any expression
(function) to be applied to every other expression (argument).
Any computable function can be represented as a term of
this calculus, which gave rise to the functional style of
programming.

Types were introduced to restrict arbitrary function applica-
tions. Simply typed lambda calculus is the most basic typed
lambda calculus, with the only type constructor→ for function
types. One of the important properties it possesses is so
called strong normalization: typed terms always have a normal
form. Taking into account undecidability of halting problem,
it means that not all computable functions can be expressed
as a typed term in this calculus. Hence, simply typed lambda
calculus is not Turing complete. However, as Barendregt [3]
notes, it is not as bad as it sounds, since computable functions
that can not be represented as typed terms are not easy to
construct.

To close the gap between simply typed lambda calculus
and programming languages, extensions of the calculus have
been proposed. Pierce’s book [19] gives a detailed overview
of various such extending features, starting from simple ones
such as, e.g., tuples, records, sums, recursion, lists, and going
up to subtyping and polymorphism, even for higher-order
systems.

The extension that we propose in this paper brings regular
expressions in types. By this, it also includes term sequences
of arbitrary finite length into the language. A characteristic

feature of sequences is that they are flat and can not be nested,
and a singleton sequence is identified with its sole element.

The obtained calculus, which we denote by λR, is quite
flexible. It can easily model, for instance, so called unranked
functions (these are functions that can be applied to arbitrary
number of arguments) and their curried applications, e.g., the
term of the form f [a][f [b, λx.g[x]], d] is typable. It can be
done if f has the type, say, α · (β∗ → β)∗ → α∗ → α, the
terms a, b, and d have the type α, g has the type β∗ → β,
and x is of type β∗, where the dot ‘·’ and the star ‘∗’ are
the regular operators for concatenation and repetition (Kleene
star), respectively.

Regular types naturally introduce subtyping, since α is a
subtype of α∗ and of α+β. Besides, we consider a partial
order on basic types and define a syntax-oriented subtyping
relation. The two main results that we prove are those that
one usually tries to show for typed lambda calculi: subject
reduction (evaluation is type-safe) and strong normalization
(every term has a normal form).
λR generalizes simply typed lambda calculus: If we forbid

the regular operators in types and forget subtyping over basic
types, we get simply typed lambda calculus.

The reader familiar with the programming language of the
symbolic computation system Mathematica [21] (also known
as the Wolfram language) might notice that our calculus can be
quite convenient to model a part of this language. Mathemat-
ica expressions are essentially untyped first- or higher-order
unranked terms with a pretty liberal application rule, see, e.g.
[5]. The strong normalization property of our calculus does
not permit to express the whole language.

The paper is organized as follows. In the next section we
give an overview of related work. Section III describes the
term language. In Section IV we define the type language
and the type system. We then have two sections with the two
fundamental properties of the type system: subject seduction in
Section V and strong normalization in Section VI. Section VII
concludes.

II. RELATED WORK

Previous work on regular expression types was mainly
motivated by XML-related applications. Schema languages
for XML introduce regular expression notation to describe
XML documents. Languages such as XDuce [11], XHaskell
[20], CDuce [4], XCentric [7], designed for XML processing,
use regular expressions and regular tree languages as types

and in pattern matching. These works deal with program-
ming languages for tree manipulation (thus are not strongly
normalizing) and with constructors in their syntax (thus the
need for considering tree languages instead of simple regular
languages). In our work we define a core functional calculus
and focus on the functional behavior of sequence processing,
thus we choose not to consider constructors in the term
syntax. A generalization of our work to a term language with
constructors would need to extend types with tree languages
and could provide a model of these languages, but, although
interesting, this was not the goal of this work.

In [12], unification and matching with regular expression
sorts has been studied. The sort system there is pretty similar
to our types, with the difference that the language in [12] is
first-order.

Recently, we introduced CLP(H): a constraint logic pro-
gramming language for hedges (finite sequences of unranked
terms) [8], [9]. In that work, regular expressions fit naturally
as membership constraints modeling dynamic type checking.
In contrast, the calculus λR is motivated by a static typing
approach, where types are checked at compile time. Our
subtyping relation is semantic. However, dealing with regular
languages for which the subset relation is decidable, makes it
decidable. Semantic subtyping [10] gave a model to deal with
set-theoretic operations on types (such as union, intersection
and negation). We define our subtyping relation as directly
relying on the decidability of the subset relation for regular
languages, but it could be interesting in the future to consider
how our simple and decidable subtyping definition would fit
in the semantic subtyping context.

III. TERMS

The alphabet of the language of λR consists of the set X of
variables and F of function constants. They are disjoint and
countably infinite. The symbols x and f range over X and F ,
respectively.

Untyped terms are defined by the following grammar:

A ::= x | f | A[A1, . . . , An] | λx.A

where A[A1, . . . , An] is an application and λx.A is an ab-
straction. When n = 1 the grammar generates the standard
untyped λ-terms [2].

The sets of free and bound variables of a term A, denoted
fv(A) and bv(A) respectively, are defined inductively as
follows:

fv(x) = {x} fv(f) = ∅
fv(λx.A) = fv(A) \ {x}
fv(A[A1, . . . , An]) = fv(A) ∪ (∪ni=1fv(Ai))

bv(x) = ∅ bv(f) = ∅
bv(λx.A) = bv(A) ∪ {x}
bv(A[A1, . . . , An]) = bv(A) ∪ (∪ni=1bv(Ai))

The sets of free and bound variables of a term sequence
[A1, . . . , An] are defined as fv([A1, . . . , An]) = ∪ni=1fv(Ai)

and bv([A1, . . . , An]) = ∪ni=1bv(Ai) respectively. Below we
work modulo α-equivalence and use Barendregt’s hygiene
convention [2] to distinguish the names of free and bound
variables.

IV. TYPES

We consider a finite set B of basic types, partially ordered
with the relation 5. Its elements are denoted by α and β.
Types are defined by the grammar

τ, ρ ::= ϕ | ε | τ · ρ | τ+ρ | τ∗, ϕ ::= α | τ→ ϕ,

where · (concatenation), + (choice), and ∗ (Kleene star) are
regular operators.

Note that our arrow types have the form τ1 → · · · → τn →
α for n ≥ 1. We often will use this more explicit notation.

For a given set S, [s1, . . . , sn] denotes a finite sequence of
elements s1, . . . , sn of S. In particular, the empty sequence
is written as []. For singleton sequences, we usually omit the
parentheses and write s instead of [s], when it does not cause
a confusion. The result of joining two sequences [s1, . . . , sn]
and [s′1, . . . , s

′
m], written [s1, . . . , sn] � [s′1, . . . , s

′
m], is the

sequence [s1, . . . , sn, s
′
1, . . . , s

′
m]. As usual, � is associative

and the empty sequence plays the role of its unit element.
We define the operations of concatenation and Kleene

closure on sets of sequences: Given two such sets, S and R,
their concatenation S·R is the set of sequences {[s1, . . . , sn] �
[r1, . . . , rm] | [s1, . . . , sn] ∈ S and [r1, . . . , rm] ∈ R}. The
Kleene closure of S, denoted S∗, is defined as S∗ = ∪i≥0S

i,
where S0 = {[]} and Sn = Sn−1 · S for n > 0.

The nominal interpretation L.M of a type is defined as a set
of finite sequences, where each element of the sequence is
either a basic type or a tuple of nominal interpretations. We
call those elements nominal atoms. The definition of nominal
type interpretations is as follows:
• LαM = {[α]}, i.e., the set that contains a singleton

sequence [α].
• LεM = {[]}.
• Lτ · ρM = LτM · LρM.
• Lτ+ρM = LτM ∪ LρM.
• Lτ∗M = LτM∗.
• Lτ1 → · · · → τn → αM = {[〈Lτ1M, . . . , LτnM, LαM〉]}, n >

0, i.e., the set that contains a singleton sequence
consisting of the tuple of nominal interpretations
〈Lτ1M, . . . , LτnM, LαM〉.

Since any type τ→ ϕ has the form τ1 → · · · → τn → α for
some τ1, . . . , τn,α, nominal type interpretation is defined for
all types.

Examples:

Lα∗M = {[], [α], [α,α], [α,α,α], . . .}.
Lα∗ → βM = {[〈{[], [α], [α,α], [α,α,α], . . .}, {[β]}〉]}.
Lα∗ → (β · β)→ βM =

{[〈{[], [α], [α,α], [α,α,α], . . .}, {[β,β]}, {[β]}〉]}.
L(α∗ → β) · α∗M =

{[〈{[], [α], [α,α], [α,α,α], . . .}, {[β]}〉],

[〈{[], [α], [α,α], [α,α,α], . . .}, {[β]}〉,α],

[〈{[], [α], [α,α], [α,α,α], . . .}, {[β]}〉,α,α], . . .}.
L(α∗ → β) · α∗ → βM =

{[〈{[〈{[], [α], [α,α], [α,α,α], . . .}, {[β]}〉],
[〈{[], [α], [α,α], [α,α,α], . . .}, {[β]}〉,α],

[〈{[], [α], [α,α], [α,α,α], . . .}, {[β]}〉,α,α], . . .},
{[β]}〉]}.

Definition 1 (� ordering, subtyping). We define the ordering
� for nominal atoms and their sequences recursively:
• α � β iff α 5 β.
• 〈D1, . . . , Dn, R〉 � 〈D′1, . . . , D′n, R′〉 iff D′i � Di for all

1 ≤ i ≤ n and R � R′.
• For two equal-length sequences of nominal atoms, we

have [a1, . . . , an] � [b1, . . . , bn] iff ai � bi for each 1 ≤
i ≤ n.

This ordering is extended to nominal type interpretations:
• For nominal type interpretations I1 and I2, we have I1 �
I2 iff for each sequence of nominal atoms s̃1 ∈ I1 there is
a sequence of nominal atoms s̃2 ∈ I2 such that s̃1 � s̃2.

The subtyping relation between types is defined as τ1 4 τ2

iff Lτ1M � Lτ2M.

Under this definition, for example, if α 5 β, we have α ·
β · β∗ 4 β∗, α+β 4 β, β∗ → α 4 α∗ → β and (α∗ →
β) · α∗ → β 4 (β∗ → α)→ β.

The subtyping relation is decidable. We do not spell the
details of the decision algorithm here, but give some intuition
behind it. First, note that to decide whether τ1 → ϕ1 4 τ2 →
ϕ2, we need to decide whether τ2 4 τ1 and ϕ1 4 ϕ2. That
means, eventually the subtyping decision problem reduces
to the subtyping decision problem between two types that
do not contain the arrow, i.e., between regular expressions
over basic types. If we did not have subtyping between
basic types, this problem can be effectively decided by any
algorithm that checks inclusion between regular languages,
e.g., by Antimirov’s algorithm [1] that performs this test on
regular expressions without translating them to finite automata.
The presence of subtyping between basic types requires a
slight preprocessing of types (see, e.g., [12]): Replace each
basic type α with the sum β1+ · · ·+βn, n > 0, where βi,
1 ≤ i ≤ n, are all the basic types for which βi 4 α
holds. Since B is finite, the sum is finite. Correctness of such
a translation for the subtyping decision algorithm has been
proved in [12]. The obtained regular expressions can then be
compared by Antimirov’s algorithm.

A. Type System

We assume that each f ∈ F has the unique associated
type, denoted by type(f), which is a type ϕ, i.e., either α
or τ1 → · · · → τn → α. A type assignment statement is
an expression of the form A : τ where the term A is called
the subject and the type τ is the predicate of the statement.
A declaration is a statement whose subject is a variable. A
basis Γ is a set of declarations with distinct variables as

subjects. By Subject(Γ) we denote the set of variables that
are subjects of the declarations in Γ: Subject(Γ) = {x | x :
τ ∈ Γ for some τ}.

A statement A : τ is derivable from a basis Γ, written
Γ ` A : τ, if Γ ` A : τ can be produced by the following
rules:

Γ, x : τ ` x : τ
(VAR)

Γ ` f : type(f)
(FUN)

Γ ` A1 : τ1 · · · Γ ` An : τn n > 0
Γ ` A : τ→ ϕ τ1 · . . . · τn 4 τ

Γ ` A[A1, . . . , An] : ϕ
(APP1)

Γ ` A : τ→ ϕ ε 4 τ
Γ ` A[] : ϕ

(APP2)

Γ, x : τ ` A : ϕ

Γ ` λx.A : τ→ ϕ
(ABS)

Note the absence of the subsumption rule and, instead, the
usage of subtyping in the APP1 and APP2 rules. By this,
the rules are syntax directed (cf., e.g., the algorithmic typing
relations in [19], or typing rules in [6].)

Given a basis Γ, we say that a term A is a Γ-typed term of
type τ, if Γ ` A : τ holds.

A Γ-typed substitution σΓ is a mapping from Γ-typed
variables to sequences of Γ-typed terms such that for each
variable x of type τ, we have σΓ(x) = [A1, . . . , An], where
• if n = 0, then ε 4 τ,
• if n > 0 and Ai is of type τi for each 1 ≤ i ≤ n, then
τ1 · · · · · τn 4 τ.

Each substitution σ is represented as a finite set of pairs
{x1 7→ σ(x1), . . . , xn 7→ σ(xn)} where the x’s are variables
for which σ(xi) 6= xi. The sets Dom(σ) = {x1, . . . , xn} and
Ran(σ) = {σ(x1), . . . , σ(xn)} are called the domain and the
range of σ, respectively. The set fv(σ) is defined as fv(σ) =
Dom(σ)∪ fv(Ran(σ)) where fv(Ran(σ)) = ∪ni=1fv(σ(xi))

The application of a substitution σ to A replaces each
free occurrence of a variable x in A with σ(x). It is defined
inductively:

xσ = σ(x), if x ∈ Dom(σ).
xσ = x, if x /∈ Dom(σ).
fσ = f.

(A[A1, . . . , An])σ = Aσ[A1, . . . , An]σ.

(λx.A)σ = λx.Aσ, if x /∈ fv(σ).
(λx.A)σ = λy.A{x 7→ y}σ, if x ∈ fv(σ) and y is fresh.

Application of a substitution σ to a sequence is defined as
[]σ = [] and [A1, . . . , An]σ = A1σ � · · · � Anσ for n > 0.

Note that for a non-variable term A, AσΓ is always a single
term (a singleton sequence). For a variable x, it is a single term
if Γ ` x : ϕ+ · · ·+ϕ.

B. Reduction

A binary relation →R is compatible if it is defined by the
inference rules below.

A→R A
′

A[A1, . . . , An]→R A′[A1, . . . , An]

A→R A
′

λx.A→R λx.A′

Ai →R A
′
i

A[A1, . . . , Ai, . . . , An]→R A[A1, . . . , A′i, . . . , An]

Reduction is defined by the following rule:

β : (λx.A) [A1, . . . , An]→ Aσ,

where σ = {x 7→ [A1, . . . , An]}.

Example 1. Some examples of reduction:
•
(
λx.f [x][λy.c[y], x]

)
[a, b]→ f [a, b][λy.c[y], a, b].

•
(
λx.f [x][λy.c[y], x]

)
[]→ f [][λy.c[y]].

•
(
λx.x[a, b]

)
[λy.f [y, y][y]] →

(
λy.f [y, y][y]

)
[a, b] →

f [a, b, a, b][a, b].

In what follows, →β denotes the compatible closure of
the relation β. The relation �β denotes the reflexive and
transitive closure of →β . The definition of �β is extended
to substitutions having the same domain by setting σ �β σ

′

if for all x ∈ Dom(σ) = Dom(σ′), we have xσ �β xσ
′.

Lemma 1. For all terms A,A′, and all substitutions σ, σ′

with Dom(σ) = Dom(σ′), if A �β A
′ and σ �β σ

′, then
Aσ �β A

′σ′.

Proof. A straightforward proof, by induction on �β .

V. GENERALIZED SUBJECT REDUCTION

The subject reduction theorem states that the reduction
relation preserves types. Since typing in our calculus is syntax-
directed, without the subsumption rule, we will have a gener-
alized version of the subject reduction theorem (GSR), which
essentially states that the reduction relation does not increase
types.

GSR is based on two lemmas: the Generation Lemma and
the Substitution Lemma.

Lemma 2 (Generation Lemma). Let Γ be a basis.
• If Γ ` x : τ, then (x : τ) ∈ Γ.
• If Γ ` f : τ, then τ = type(f).
• If Γ ` A[A1, . . . , An] : ϕ, then there exist τ, τ1, . . . , τn,
n > 0 such that Γ ` A : τ→ ϕ, Γ ` A1 : τ1 , . . . , Γ `
An : τn, and τ1 · · · · · τn 4 τ.

• If Γ ` A[] : ϕ, then there exists τ such that Γ ` A : τ→
ϕ and ε 4 τ.

• If Γ ` λx.A : τ, then there exist ρ and ϕ such that
τ = ρ→ ϕ and Γ, x : ρ ` A : ϕ.

Proof. By induction on the length of the type derivation.

Lemma 3 (Substitution Lemma). Let Γ be a basis and σ be
a Γ-typed substitution. If Γ ` A : τ1, then Γ ` Aσ : τ2, where
τ2 4 τ1.

Proof. By structural induction on A.
• When A = x, either xσ = x and the lemma trivially

holds, or xσ 6= x and by Lemma 2 we have (x : τ1) ∈ Γ.
Since σ is Γ-typed, there exists τ2 such that τ2 4 τ1 and
Γ ` xσ : τ2.

• When A = f , the proof is obvious.
• When A = A[A1, . . . , An], then by Lemma 2 there exist
ρ, ρ1, . . . , ρn, n > 0 such that Γ ` A : ρ → τ1, Γ `
A1 : ρ1 , . . . , Γ ` An : ρn, and ρ1 · · · · · ρn 4 ρ. By the
induction hypothesis there exist ρ′,ϕ′, ρ′1, . . . , ρ

′
n such

that ρ′ → ϕ′ 4 ρ → τ1, ρ
′
1 4 ρ1, . . . , ρ

′
n 4 ρn and

Γ ` Aσ : ρ′ → ϕ′, Γ ` A1σ : ρ′1 , . . . , Γ ` Anσ : ρ′n.
From ρ′ → ϕ′ 4 ρ → τ1 we know ρ 4 ρ′, ϕ′ 4 τ1.
Also, ρ′1 4 ρ1, . . . , ρ

′
n 4 ρn implies ρ′1 · · · · · ρ′n 4

ρ1 ·· · ··ρn. Therefore, we have ρ′1 ·· · ··ρ′n 4 ρ1 ·· · ··ρn 4
ρ 4 ρ′ and, by the rule APP1, we can conclude that
Γ ` A[A1, . . . , An]σ : ϕ′. We take τ2 = ϕ′ 4 τ1, which
proves this case.

• When A = A[], then by Lemma 2, there exists ρ such that
ε 4 ρ and Γ ` A : ρ→ τ1. By the induction hypothesis
there exist ρ′ and ϕ such that ρ′ → ϕ 4 ρ → τ1 and
Γ ` Aσ : ρ′ → ϕ. Since ρ′ → ϕ 4 ρ → τ1 we have
ρ 4 ρ′, ϕ 4 τ1 and hence ε 4 ρ 4 ρ′. By the rule APP2,
we can conclude Γ ` A[]σ : ϕ. We take τ2 = ϕ 4 τ1,
which proves this case.

• When A = λx.A, then by Lemma 2 there exist ρ,ϕ
such that τ1 = ρ → ϕ and Γ, x : ρ ` A : ϕ. By the
induction hypothesis there exists ϕ′ such that ϕ′ 4 ϕ
and Γ, x : ρ ` Aσ : ϕ′. By the rule ABS, we can conclude
that Γ ` λx.A : ρ → ϕ′. We take τ2 = ρ → ϕ′ 4 ρ →
ϕ = τ1 to finish the proof.

Theorem 1 (Generalized Subject Reduction). If A1 �β A2

and Γ ` A1 : τ1, then Γ ` A2 : τ2 and τ2 4 τ1.

Proof. We prove Γ ` A2 : τ2 from Γ ` A1 : τ1 and A1 →β

A2. Then the theorem follows by induction on the length of
the reduction sequence A1 �β A2.

We proceed by induction on the derivation of Γ ` A1 : τ1.
• When A1 is either x or f , then it can not be reduced by
→β . Hence, the theorem follows trivially, since A1 →β

A2 is not possible.
• When A1 = A′[A′1, . . . , A

′
n] and n > 0, then by

Lemma 2 there exist ρ′, ρ′1, . . . , ρ
′
n such that ρ′1 ·· · ··ρ′n 4

ρ′ and Γ ` A′ : ρ′ → τ1, Γ ` A′1 : ρ′1 , . . . , Γ ` A′n : ρ′n.
We have the following cases:
– A2 = A′′[A′1, . . . , A

′
n] with A′ →β A′′. By the

induction hypotheses there exist ρ′′, τ′′ such that ρ′′ →
τ′′ 4 ρ′ → τ1 and Γ ` A′′ : ρ′′ → τ′′. Since
ρ′′ → τ′′ 4 ρ′ → τ1 we have ρ′ 4 ρ′′ and τ′′ 4 τ1,
hence ρ′1 · · · · · ρ′n 4 ρ′ 4 ρ′′ and by the typing rule
APP1 we get Γ ` A2 = A′′[A′1, . . . , A

′
n] : τ′′. Then we

can just take τ2 = τ′′.
– A2 = A′[A′1, . . . , A

′′
i , . . . A

′
n] with A′i →β A

′′
i . By the

induction hypotheses there exists ρ′′i such that ρ′′i 4 ρ
′
i

and Γ ` A′′i : ρ′′i . Since ρ′1 · · · · · ρ′i · · · · · ρ′n 4 ρ′ we
have ρ′1 · · · · · ρ′′i · · · · · ρ′n 4 ρ′ and by the typing rule
APP1 we get Γ ` A′[A′1, . . . , A′′i , . . . A′n] : τ1. Then
we can just take τ2 = τ1.

– A′ = λx.A, i.e., A1 = (λx.A)[A′1, . . . , A
′
n]. By

Lemma 2 there exist τ′, τ′1, . . . , τ
′
n, n > 0 such that

Γ ` λx.A : τ′ → τ1, Γ ` A1 : τ′1 , . . . , Γ ` An : τ′n,
and τ′1 · · · · · τ′n 4 τ′. Since we have Γ ` λx.A : τ′ →
τ1, Lemma 2 implies that Γ, x : τ′ ` A : τ1. The
reduction reduces the term A1 = (λx.A)[A′1, . . . , A

′
n]

to Aσ = A2, where σ = {x 7→ [A′1, . . . , A
′
n]} is a

Γ-typed substitution. By Lemma 3, since Γ ` A : τ1,
we have Γ ` Aσ : τ2 where τ2 4 τ1. Hence, this case
also holds.

• When A1 = A′[], then by Lemma 2 there exists ρ such
that ε 4 ρ and Γ ` A′ : ρ→ τ1. The proof is similar to
the previous case.

• If A1 = λx.A′, then by Lemma 2 there exist τ′,ϕ′ such
that τ1 = τ′ → ϕ′ and Γ, x : τ′ ` A′ : ϕ′. By the
induction hypothesis, there exist ϕ′′ 4 ϕ′ and A′ �β A

′′

such that Γ ` A′′ : ϕ′′. By the typing rule ABS, we get
Γ ` λx.A′ : τ′ → ϕ′′. Since τ′ → ϕ′′ 4 τ′ → ϕ′, this
case also holds.

Example 2. Now we give an example where the type of a term
strictly decreases after reduction. Let Γ ` x : Real, Γ ` z :
Int∗, Γ ` f : Int∗ → Int and Γ ` Ai : Nat, 0 ≤ i ≤ n. We also
have the following ordering on basic types: Nat � Int � Real.
Then the type of the term (λz.(λx.x)(f [z]))[A1, . . . An] under
Γ is Real. On the other hand, this term reduces as

(λz.(λx.x)(f [z]))[A1, . . . An]→β

(λx.x)(f [A1, . . . An])→β f [A1, . . . An]

and the type of the term f [A1, . . . An] under Γ is Int, which
is a subtype of Real.

VI. STRONG NORMALIZATION

An untyped term is called strongly normalizing if there is
no infinite reduction starting from it. We denote the set of
strongly normalizing untyped terms by SN.

We start with defining the semantics of types with respect to
SN. The definition is formulated modulo equality of a single
term and the singleton sequence containing that term, i.e., A
and [A] are identified. If this relation is =s, we, in particular,
have that SN =s {[A] | A ∈ SN}.

Now the semantics J.K of a type with respect to SN is defined
as follows:
• JαK = SN.
• JεK = {[]}.
• Jτ · ρK = JτK · JρK.
• Jτ+ρK = JτK ∪ JρK.
• Jτ∗K = JτK∗.
• Jτ1 → · · · → τn → αK =

{A | A[A1
1, . . . , A

1
m1

] · · · [An1 , . . . , Anmn
] ∈ JαK

for all [Ai1, . . . , A
i
mi

] ∈ JτiK, 1 ≤ i ≤ n}.

Definition 2. A saturated set S is a subset of
SN, satisfying the conditions below. Let A′1, . . . A

′
m,

A1
1, . . . , A

1
n1
, . . . , Ak1 , . . . , A

k
nk
∈ SN, m, k, n1, . . . nk ≥ 0.

Then

(1) For all x and f ,

• x[A1
1, . . . , A

1
n1

] · · · [Ak1 , . . . , Aknk
] ∈ S and

• f [A1
1, . . . , A

1
n1

] · · · [Ak1 , . . . , Aknk
] ∈ S.

(2) If Aσ[A1
1, . . . , A

1
n1

] · · · [Ak1 , . . . , Aknk
] ∈ S with the sub-

stitution σ = {x 7→ [A′1, . . . A
′
m]}, then we have

(λx.A)[A′1, . . . A
′
m][A1

1, . . . , A
1
n1

]· · ·[Ak1 , . . . , Aknk
] ∈ S.

The set of all saturated sets is denoted by SAT.

Lemma 4. 1) SN ∈ SAT.
2) If D ∈ SAT∗ and R ∈ SAT, then F ∈ SAT, where

F is defined as F := {A | A[A1, . . . , An] ∈ R for all
[A1, . . . , An] ∈ D}.

3) JτK ∈ SAT∗ for all types τ.

Proof. As a shortcut, in some proofs below we write A′ for
A′1, . . . A

′
m, B′ for B′1, . . . B

′
m, Ai for Ai1, . . . , A

i
ni

, and Bi

for Bi1, . . . , B
i
ni

.

1) We show that the set SN is saturated. Assume
A1

1, . . . , A
1
n1
, . . . , Ak1 , . . . , A

k
nk
∈ SN, k, n1, . . . nk ≥ 0.

Since x[A1] · · · [Ak] ∈ SN and f [A1] · · · [Ak] ∈ SN, the
condition (1) of the definition of saturated sets is satisfied.
To show the condition (2), assume A′1, . . . A

′
m ∈ SN

and Aσ[A1] · · · [Ak] ∈ SN where σ = {x 7→ [A′]}.
Since Aσ is a subterm of a term in SN, we have
Aσ ∈ SN and, hence, A ∈ SN. Therefore, any re-
duction inside (λx.A)[A′][A1] · · · [Ak] must terminate.
Let (λx.B)[B′][B1] · · · [Bk] be the result of such a
reduction. Its contraction gives Bσ′[B1] · · · [Bk] where
σ′ = {x 7→ [B′]}. On the other hand, since B is a
reduct of A, B′ is a reduct of A′, and Bi is a reduct
of Ai for all 1 ≤ i ≤ k, by Lemma 1 we get that
Bσ′[B1] · · · [Bk] is a reduct of Aσ[A1] · · · [Ak]. Since the
latter is in SN, we conclude that Bσ′[B1] · · · [Bk] ∈ SN,
which implies that (λx.B)[B′][B1] · · · [Bk] ∈ SN and,
hence, (λx.A)[A′][A1] · · · [Ak] ∈ SN.

2) Assume the sets D ∈ SAT∗ and R ∈ SAT, and show
F ∈ SAT. Since D ∈ SAT∗, its elements are sequences
of elements from SN, i.e., for all [A1, . . . An] ∈ D, n ≥ 0,
we have [A1, . . . An] ∈ SN∗. In particular, we get that for
all A and A1, . . . , An ∈ SN, if A[A1, . . . , An] ∈ R, then
A[A1, . . . , An] ∈ SN, which implies that all such A’s are
from SN. That means, F ⊆ SN.
To show F ∈ SAT, we fix A′1, . . . A

′
m, A

1
1, . . . , A

1
n1
,

. . . , Ak1 , . . . , A
k
nk
∈ SN, m, k, n1, . . . nk ≥ 0, and show

that the conditions (1) and (2) of Definition 2 are satisfied.
Since R ∈ SAT, we have
• x[A1] · · · [Ak][A1, . . . , An] ∈ R and
• f [A1] · · · [Ak][A1, . . . , An] ∈ R

for all x, f , and [A1, . . . , An] ∈ D. But then, by the
definition of F , we get that
• x[A1] · · · [Ak] ∈ F and
• f [A1] · · · [Ak] ∈ F ,
which implies that (1) is satisfied.
To show (2), we take σ = {x 7→ [A′]}, assume
A′σ[A1] · · · [Ak] ∈ F for some fixed A′, and show
(λx.A′)[A′][A1] · · · [Ak] ∈ F . From the assumption
A′σ[A1] · · · [Ak] ∈ F , by the definition of the set F ,
we get that A′σ[A1] · · · [Ak][A1, . . . , An] ∈ R for all
[A1, . . . , An] ∈ D, n ≥ 0. Since R ∈ SAT, from
A′σ[A1] · · · [Ak][A1, . . . , An] ∈ R, by Definition 2,
we get (λx.A′)[A′][A1] · · · [Ak][A1, . . . , An] ∈ R for
all [A1, . . . , An] ∈ D, n ≥ 0. Using the definition
of F once again, we conclude that the membership
(λx.A′)[A′][A1] · · · [Ak] ∈ F holds.

3) We prove it by induction on the generation of τ.
a) When τ = α, by the definition of J.K we have JτK =

SN. By the first item of this lemma, we then get JτK ∈
SAT and, hence, JτK ∈ SAT∗.

b) The cases when τ is ε, ρ1 · ρ2, ρ1+ρ2, and ρ∗ follow
from the induction hypothesis and the definition of
regular sets.

c) Let τ = ρ → ϕ. By the definition of type seman-
tics we have Jρ→ ϕK = {A | A[A1, . . . , An] ∈
JϕK for all [A1, . . . , An] ∈ JρK}. By the induction
hypothesis, we have JϕK ∈ SAT∗ and JρK ∈ SAT∗.
From JϕK ∈ SAT∗, by the definition of J.K, we can
easily conclude that JϕK ∈ SAT. By case 2 of Lemma
4 we get Jρ→ ϕK ∈ SAT. Hence, also in this case
JτK ∈ SAT∗.

In the technical lemmas below, we need a mapping that
relates nominal type interpretation with type semantics.

Definition 3. We define the mapping M on nominal atoms,
sequences of nominal atoms, and sets of sequences of nominal
atoms, in the following way:

M(α) := JαK.
M(〈D1, . . . , Dn, R〉) :=

{A | A[A1
1, . . . , A

1
m1

] · · · [An1 , . . . , Anmn
] ∈M(R)

for all [Ai1, . . . , A
i
mi

] ∈M(Di), 1 ≤ i ≤ n}.
M([]) := {[]}.
M([a1, . . . , an]) :=M(a1) · · · · · M(an), n > 0.

M(S) := ∪s̃∈SM(̃s).

Lemma 5. For all τ, M(LτM) = JτK.

Proof. By structural induction on τ.
• τ = α. Then M(LαM) = M({[α]}) = M([α]) =
M(α) = JαK.

• τ = ε. Then M(LεM) = M({[]}) = M([]) = {[]} =
JεK.

• ρ = ρ1 · ρ2. Then M(Lρ1 · ρ2M) =M(Lρ1M · Lρ2M). From
the definition of M, we can easily see that M(Lρ1M ·
Lρ2M) =M(Lρ1M)·M(Lρ2M). By the induction hypothesis,
M(Lρ1M) · M(Lρ2M) = Jρ1K · Jρ2K = Jρ1 · ρ2K. Hence,
M(Lρ1 · ρ2M) = Jρ1 · ρ2K.

• ρ = ρ1+ρ2. Then M(Lρ1+ρ2M) = M(Lρ1M ∪ Lρ2M) =
M(Lρ1M) ∪ M(Lρ2M). By the induction hypothesis,
M(Lρ1M) ∪M(Lρ2M) = Jρ1K ∪ Jρ2K = Jρ1+ρ2K. Hence,
M(Lρ1+ρ2M) = Jρ1+ρ2K.

• τ = ρ∗. Then M(Lρ∗M) = M(LρM∗). From Definition
3, we can easily see that M(LρM∗) = M(LρM)∗. By the
induction hypothesis, M(LρM)∗ = JρK∗ = Jρ∗K. Hence
M(Lρ∗M) = Jρ∗K.

• τ = ρ1 → · · · → ρn → α, n ≥ 1. Then

M(Lρ1 → · · · → ρn → αM) =

M({[〈Lρ1M, . . . , LρnM, LαM〉]}) =

M([〈Lρ1M, . . . , LρnM, LαM〉]) =

M(〈Lρ1M, . . . , LρnM, LαM〉) =

{A | A[A1
1, . . . , A

1
m1

] · · · [An1 , . . . , Anmn
] ∈M(LαM)

for all [Ai1, . . . , A
i
mi

] ∈M(LρiM), 1 ≤ i ≤ n} =

(by the induction hypothesis)

{A | A[A1
1, . . . , A

1
m1

] · · · [An1 , . . . , Anmn
] ∈ JαK

for all [Ai1, . . . , A
i
mi

] ∈ JρiK, 1 ≤ i ≤ n} =

Jρ1 → · · · → ρn → αK.

The next lemma, which shows that our subtype ordering is
sound with respect to type semantics, will be used to prove
the soundness theorem.

Lemma 6. For all τ1 and τ2, if τ1 4 τ2, then Jτ1K ⊆ Jτ2K.

Proof. By Definition 1 and Lemma 5, this lemma is equivalent
to the following statement: For all τ1 and τ2, if Lτ1M � Lτ2M,
thenM(Lτ1M) ⊆M(Lτ2M). We prove it by structural induction
on τ1.
• τ1 = α. Then Lτ1M = {[α]} and there exists [β] ∈ Lτ2M

such that α � β. Therefore, we have: M(Lτ1M) = JαK =
SN = JβK ⊆M(Lτ2M).

• τ1 = ε. Then Lτ1M = {[]} and [] ∈ Lτ2M. Therefore,
M(Lτ1M) = {[]} ⊆ M(Lτ2M).

• τ1 is a compound type (i.e., concatenation, choice, star,
or arrow). Then from Lτ1M � Lτ2M, by Definition 1, we
know that for each sequence of nominal atoms s̃1 ∈ Lτ1M
there is a sequence of nominal atoms s̃2 ∈ Lτ2M such that
s̃1 � s̃2. From the definition ofM it follows that s̃ ∈ LτM
implies M(̃s) ⊆ M(LτM) for any s̃ and τ. Hence, if we
show that s̃1 � s̃2 implies M(̃s1) ⊆ M(̃s2), then the
lemma will be proved, because we will have
– for all s̃1 ∈ Lτ1M there is s̃2 ∈ Lτ2M such that M(̃s1) ⊆
M(̃s2),

– ∪s̃1∈Lτ1MM(̃s1) =M(Lτ1M),
– ∪s̃2∈Lτ2M, s̃1�s̃2 for some s̃1∈Lτ1MM(̃s2) ⊆M(Lτ2M).

Hence, we need to prove that s̃1 � s̃2 implies M(̃s1) ⊆
M(s̃2). By the definitions of �, M, and concatenation
of set of sequences, this statement reduces to proving two
statements:

1) α � β implies M(α) ⊆M(β), which holds trivially,
because M(α) =M(β) = SN.

2) a � a′ implies M(a) ⊆ M(a′), where a =
〈Lρ1M, . . . , LρnM, LαM〉 and a′ = 〈Lρ′1M, . . . , Lρ′nM, Lα′M〉.
We prove this statement now.

From 〈Lρ1M, . . . , LρnM, LαM〉 � 〈Lρ′1M, . . . , Lρ′nM, Lα′M〉, by
Definition 1, we have Lρ′iM � LρiM for all 1 ≤ i ≤ n
and LαM � Lα′M. By the induction hypothesis, we get
M(Lρ′iM) ⊆ M(LρiM) for all 1 ≤ i ≤ n. Besides,
M(LαM) =M(Lα′M). From these relations, by Definition
3, we obtain

M(〈Lρ1M, . . . , LρnM, LαM〉) =

{A | A[A1
1, . . . , A

1
m1

] · · · [An1 , . . . , Anmn
] ∈M(LαM)

for all [Ai1, . . . , A
i
mi

] ∈M(LρiM), 1 ≤ i ≤ n} ⊆
{A | A[A1

1, . . . , A
1
m1

] · · · [An1 , . . . , Anmn
] ∈M(Lα′M)

for all [Ai1, . . . , A
i
mi

] ∈M(Lρ′iM), 1 ≤ i ≤ n} =

M(〈Lρ′1M, . . . , Lρ′nM, Lα′M〉).

It proves the second statement and, consequently, the
lemma.

The core of the strong normalization proof relies on sound-
ness of typing with respect to the semantics of types. To
formally state it, we need the notion of satisfiability:
• A substitution σ satisfies the statement A : τ, written
σ |= A : τ, if Aσ ∈ JτK.

• σ satisfies the basis Γ, written σ |= Γ, if σ |= x : τ for
all (x : τ) ∈ Γ.

• Γ satisfies the statement A : τ, written Γ |= A : τ, if
σ |= Γ implies σ |= A : τ for all substitutions σ.

The soundness theorem asserts that a basis satisfies all
statements that can be derived from it:

Theorem 2 (Soundness). If Γ ` A : τ then Γ |= A : τ.

Proof. By induction on the derivation of A : τ.
• A = x. By Lemma 2, Γ ` A : τ implies (x : τ) ∈ Γ. To

prove Γ |= A : τ, we assume σ |= Γ for an arbitrary σ.
From this assumption and (x : τ) ∈ Γ, by the definition
of satisfiability, we get σ |= A : τ and, hence Γ |= A : τ.

• A = f . By Lemma 2, Γ ` A : τ implies τ = type(f). By
definition, type(f) is either a basic type α, or a functional
type ρ1 → · · · → ρn → α, for some α and ρ1, . . . , ρn,
n > 0. If type(f) = α, then Jtype(f)K = SN and
f belongs to it, because f is strongly normalizable. If
type(f) = ρ1 → · · · → ρn → α, then to show that f ∈
Jρ1 → · · · → ρn → αK we reason as follows: Take arbi-
trary [A1] ∈ Jρ1K, . . . , [An] ∈ JρnK. By Lemma 4, [A1] ∈
SAT∗, . . . , [An] ∈ SAT∗. Therefore, all terms that appear
in [A1], . . . , [An] are strongly normalizable. Therefore,

f [A1] · · · [An] ∈ SN. On the other hand, SN = JαK, i.e.,
we obtained that f [A1] · · · [An] ∈ JαK for an arbitrary
[An] ∈ JρnK. By the definition of type semantics, it
implies f [A1] · · · [An−1] ∈ Jρn → αK. Repeating this ar-
gument n−1 times leads to the result that for an arbitrary
[A1] ∈ Jρ1K we have f [A1] ∈ Jρ2 → · · · → ρn → αK.
By the definition of type semantics, we conclude that
f ∈ Jρ1 → · · · → ρn → αK = Jtype(f)K.
Hence, we got A ∈ JτK. By the definition of satisfiability,
Γ � A : τ holds.

• A = B[B1, . . . , Bn]. Then τ = ϕ. By Lemma 2, there
exist ρ, ρ1, . . . , ρn, n > 0 such that Γ ` B : ρ → ϕ,
Γ ` B1 : ρ1 , . . . , Γ ` Bn : ρn, and ρ1 · · · · · ρn 4 ρ. By
the induction hypothesis we have Γ |= B : ρ → ϕ,
Γ |= B1 : ρ1, . . . ,Γ |= Bn : ρn. Therefore, by the
definition of satisfiability, for an arbitrary σ � Γ we
know σ |= B : ρ → ϕ, σ |= B1 : ρ1, . . . , σ |=
Bn : ρn. That means, we have Bσ ∈ Jρ→ ϕK, B1σ ∈
Jρ1K, . . . , Bnσ ∈ JρnK. Then, for the concatenation we
get [B1σ, . . . Bnσ] ∈ Jρ1 · · · · · ρnK. Since ρ1·· · ··ρn 4 ρ,
by Lemma 6, we have [B1σ, . . . Bnσ] ∈ JρK. From this
inclusion and the fact Bσ ∈ Jρ→ ϕK, by the definition
of Jρ→ ϕK, we obtain Bσ[B1σ, . . . Bnσ] ∈ JϕK. By the
definition of satisfiability, we get σ � B[B1, . . . Bn] : ϕ.
Hence, Γ � A : τ holds.

• A = B[]. Similar to the previous case.
• A = λx.B. By Lemma 2, there exist ρ and ϕ such

that τ = ρ → ϕ and Γ, x : ρ ` B : ϕ. By the
induction hypothesis, we have Γ, x : ρ � B : ϕ. Fix
a substitution σ arbitrarily and suppose σ � Γ in order
to show σ � λx.B : ρ → ϕ. That is, we must show
(λx.B)σ[A′1, . . . , A

′
n] ∈ JϕK for all [A′1, . . . , A

′
n] ∈ JρK.

We assume [A′1, . . . , A
′
n] ∈ JρK. Let σ′ be the substitution

obtained by the composition σ{x 7→ [A′1, . . . , A
′
n]}. Then

σ′ � Γ, x : ρ and Bσ′ ∈ JϕK. Note that Bσ′ = Bσ{x 7→
[A′1, . . . , A

′
n]} = (λx.B)σ[A′1, . . . , A

′
n], which finishes

the proof.

From Theorem 2 and the definition of satisfiability, we get
strong normalization:

Theorem 3 (Strong Normalization). If Γ ` A : τ, then A ∈
JτK.

Proof. Analogous to the proof of strong normalization in sim-
ply typed lambda calculus, see, e.g., [3, Theorem 4.3.6].

VII. CONCLUSION

We have formally developed a type system based on regular
expressions and a semantic (set-theoretic) subtyping relation.
As we wrote in the introduction, our approach is quite
generic and foundational: not all the particular features of
programming languages dealing with regular expressions are
considered since we choose to define a core typed functional
calculus. With this approach we provide a general model
which can be used to study important semantic definitions,
such as strong normalization and subject reduction.

ACKNOWLEDGMENT

This research has been partially supported by LIACC
through Programa de Financiamento Plurianual of the
Fundação para a Ciência e Tecnologia (FCT), by Rustaveli
National Science Foundation under the project FR/325/4-
120/14, and by the Austrian Science Fund (FWF) under the
project SToUT (P 24087-N18).

REFERENCES

[1] Valentin M. Antimirov. Rewriting regular inequalities (extended ab-
stract). In Horst Reichel, editor, Fundamentals of Computation Theory,
10th International Symposium, FCT ’95, Dresden, Germany, August
22-25, 1995, Proceedings, volume 965 of Lecture Notes in Computer
Science, pages 116–125. Springer, 1995.

[2] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics.
North-Holland, Amsterdam, 2nd edition, 1984.

[3] Henk Barendregt. Lambda calculi with types. In Samson Abramsky,
Dov M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in
Computer Science, volume 2: Background: Computational Structures,
pages 117–309. Clarendon Press, Oxford, 1992.

[4] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an
XML-centric general-purpose language. In Colin Runciman and Olin
Shivers, editors, ICFP, pages 51–63. ACM, 2003.

[5] Bruno Buchberger. Mathematica as a rewrite language. In Tetsuo Ida,
Atsushi Ohori, and Masato Takeichi, editors, 2nd Fuji International
Workshop on Functional and Logic Programming, November 1-4, 1996,
Shonan Village Center, Japan, pages 1–13. World Scientific, 1996.

[6] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus
for overloaded functions with subtyping. Inf. Comput., 117(1):115–135,
1995.

[7] Jorge Coelho and Mário Florido. Xcentric: A logic-programming lan-
guage for XML processing. In PLAN-X 2007, Programming Language
Technologies for XML, An ACM SIGPLAN Workshop colocated with
POPL 2007, Nice, France, January 20, 2007, pages 93–94, 2007.

[8] Besik Dundua, Mário Florido, Temur Kutsia, and Mircea Marin. Con-
straint logic programming for hedges: A semantic reconstruction. In
Michael Codish and Eijiro Sumii, editors, Functional and Logic Pro-
gramming - 12th International Symposium, FLOPS 2014, Kanazawa,
Japan, June 4-6, 2014. Proceedings, volume 8475 of Lecture Notes in
Computer Science, pages 285–301. Springer, 2014.

[9] Besik Dundua, Mário Florido, Temur Kutsia, and Mircea Marin.
CLP(H): Constraint logic programming for hedges. Theory and Practice
of Logic Programming, 2015. To appear.

[10] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic
subtyping: Dealing set-theoretically with function, union, intersection,
and negation types. J. ACM, 55(4):19:1–19:64, September 2008.

[11] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern
matching for XML. J. Funct. Program., 13(6):961–1004, 2003.

[12] Temur Kutsia and Mircea Marin. Regular expression order-sorted
unification and matching. J. Symb. Comput., 67:42–67, 2015.

[13] Peter J. Landin. Correspondence between ALGOL 60 and church’s
lambda-notation: part I. Commun. ACM, 8(2):89–101, 1965.

[14] Peter J. Landin. A correspondence between ALGOL 60 and church’s
lambda-notations: Part II. Commun. ACM, 8(3):158–167, 1965.

[15] Peter J. Landin. A lambda calculus approach. In L. Fox, editor, Ad-
vances in Programming and Non-Numerical Computation, Symposium
Publications Division, chapter 5, pages 97–141. Pergamon Press, 1966.

[16] Peter J. Landin. The next 700 programming languages. Commun. ACM,
9(3):157–166, 1966.

[17] John McCarthy. Towards a mathematical science of computation. In
IFIP Congress, pages 21–28, 1962.

[18] John McCarthy. A basis for a mathematical theory of computation.
In P. Braffort and D. Hirschberg, editors, Computer Programming and
Formal Systems, pages 33–69. North Holland, 1963.

[19] Benjamin C. Pierce. Types and programming languages. MIT Press,
2002.

[20] Martin Sulzmann and Kenny Zhuo Ming Lu. Xhaskell - adding regular
expression types to haskell. In Olaf Chitil, Zoltán Horváth, and Viktória
Zsók, editors, IFL, volume 5083 of LNCS, pages 75–92. Springer, 2007.

[21] Stephen Wolfram. The Mathematica book (5. ed.). Wolfram-Media,
2003.

