
Chapter 1:

Syntax and Informal Semantics of Predicate Logic

1.1 Why Syntax?

Mathematics, in particular a mathematical proof, always reflects processes in
the human mind. We consider something as true, therefore something else
must be true. Let’s consider the following statements:

A: Increasing demand increases the price.

B: Raising the taxes increases the price.

Consider A and B to be true and imagine this is all what we know about
údemandø, úpriceø, and útaxø. (Either A and B had been proven before or we
consider them as axioms~as úlaws of the marketø~this does not make a
difference in what we want to investigate now!)

Question 1: We observe increasing demand. Can we conclude that the price
must increase?
Answer: YES. (úBecause ofø A)

Question 2: We observe increasing price. Can we conclude that the demand
has increased?
Answer: NO. (It could also be due to raising the taxes, i.e. úbecause ofø B.)

Question 3: We observe increasing price. Can we conclude that the demand
has not increased?
Answer: NO. (Of course not, the increase in price can be just the effect of
increasing demand.)

Question 4: We observe decreasing price. Can we conclude that the demand
has not increased?
Answer: YES. (If it had increased then, úbecause ofø A, the price would
increase.)

Question 4: We observe decreasing price. Can we conclude that the demand
has not increased?
Answer: YES. (If it had increased then, úbecause ofø A, the price would
increase.)

Question 5: We observe decreasing price. Can we conclude that the taxes
have not been raised?
Answer: YES. (If taxes had been raised then, úbecause ofø B, the price would
increase.)

The justifications for the above answers can be given without any understand-
ing of the concepts údemandø, úpriceø, and útaxø. This means, the logical rules
in our brains that make us answer úYESø or úNOø, respectively, only depend on
the syntactical structure of the statements under consideration. In fact, there is
a tight correspondence between úthoughtsø and the way we express them. A
clear understanding of the syntactical structure helps to understand lots of the
úreasoning powerø contained in a statement. On the other hand, the correct-
ness of logical reasoning can be checked merely on a syntactical basis without
understanding the meaning of the statement.

We should, thus, learn to concentrate on syntax rather than semantics~on
form rather than content~not only when analyzing the correctness of
reasoning steps but also when doing one’s own proofs!

This does neither dispel úhaving good ideasø nor úcreativityø nor úintuitionø from
mathematical proving. In some proofs it will be valuable to have some intuition
in order to find the right track, on which to proceed with the proof. Ideas and
intuition are helpful for finding the appropriate proof rule to apply next, but the
actual application of the rule is safer when being done on a syntactical basis.
Often mathematical concepts become too complicated or too abstract for
reasoning about their properties just based on intuition, and often the intuitive
picture of some mathematical concept is only a rough approximation to the real
meaning and can lead into error.

Exercise 1

Question 4 is often answered úNOø with the following argument:

The demand could have increased. If the taxes were lowered sufficiently,
then one would still observe desreasing price, therefore one cannot
conclude that demand has necessarily not increased.

Analyse this argument and compare it to the argument given as justification for
úYESø.

Solution ®

In the rest of Chapter 1, we will study the syntactical structure of
statements~such as A and B~in predicate logic. Based on this structure we
will then investigate in Chapter 2, how certain statements can be used in order
to derive other statements, which we then know to be true as long as the
original statements were true. These rules will be called úinference rulesø and
they are just what is hidden behind the úbecause ofø in the above example. In
mathematical proofs, it is common to just phrase the application of inference
rules as úthereforeø, úbecause ofø, or often just úÞø, and it is assumed that the
reader is familiar with the rules that justify the respective proof step.

6 1. Syntax and Semantics of Predicate Logic

In the rest of Chapter 1, we will study the syntactical structure of
statements~such as A and B~in predicate logic. Based on this structure we
will then investigate in Chapter 2, how certain statements can be used in order
to derive other statements, which we then know to be true as long as the
original statements were true. These rules will be called úinference rulesø and
they are just what is hidden behind the úbecause ofø in the above example. In
mathematical proofs, it is common to just phrase the application of inference
rules as úthereforeø, úbecause ofø, or often just úÞø, and it is assumed that the
reader is familiar with the rules that justify the respective proof step.

1.2 What Is Syntax?

Syntax describes the form of expressions in a language. We will describe
predicate logic by its abstract syntax, i.e. one particular standard form of expres-
sions in the language. Expressions that conform to the rules of syntax are
called úwell|formed expressionsø. Compare this to programming languages:
The syntax tells, how programs must be written, where blanks are allowed,
where semi|colons must be written, whether to use brackets or parentheses,
etc.), a well|formed expression in a programming language is a program that
passed the compiler without úsyntax errorø. There are, however, many different
úconcrete waysø of writing the concepts described in the abstract syntax of
predicate logic, mainly to allow different appearances of mathematical expres-
sions reflecting different taste and style as it developed over the years. We call
this concrete syntax, external syntax, or notation. (I don’t know a comparable
concept in programming languages.)

However, whatever the concrete notation is, the syntactical structure of an
expression in predicate logic (and other langauges) is defined by the answers to
three questions:

è To which class of expression does the expression belong? In concrete
notation, this question is answered by determining the úoutermost symbolø
or the úclassifierø of the expression.

è What are the subexpressions of the expression? This question is
answered by úselectorø functions that decompose (úparseø) the
expression.

è How can we form new expressions in a certain class from given expres-
sions? This question is answered by úconstructorø functions that compose
new expressions.

The abstract syntax of a language is defined by the classifiers, the constructors
and the selectors and their interaction.

1. Syntax and Semantics of Predicate Logic 7

Example

"
x

x2 >a

Jx > b í ¢ 1
������
x

¦ < ΕN
The outermost symbol of this expression is the symbol ‘"’ (universal quantifier).

The ingredient subexpressions are:

the quantified variable ’x ’,

the condition expression ’x2 > a ’, and

the body expression ’Hx > b ì 1�����x ¤ < ΕL ’.
á

The syntactical structure of an expression can be determined without knowing
anything about the meaning of the symbols. We must be able to recognize the
concepts of predicate logic in all possible notational variants. The most extreme
case being the recognition of predicate logic concepts in natural language,
which is very important, since much of mathematics conversation is done in
natural language. Don’t believe mathematics starts where one starts to intro-
duce fancy symbols and complicated formulae! The really distinctive feature of
mathematics is not the substitution of natural language by formulae but it is its
formal rigor.

Moreover, it should be seen, that the validity of the rules of mathematical
logic is not restricted to mathematics. The rules of logic have developed over
centuries and they only reflect what humans have observed in their every|day
behavior. Therefore, it can also be of help in daily conversation to recognize the
logic structure in statements such as úThere is always ¼ø or úIf we ¼ then ¼
we will ¼ø and to know what conclusions are allowed from these. It can often
be observed, that wrong conclusions are drawn by wrong application of logical
rules.

1.3 What is Semantics?

Semantics refers to the meaning of expressions in a language. The semantics
of an expression is based on its syntax, and also the actions that can be
attached to an expression~such as proving, computing, and solving~are
guided by the syntactical structure of expressions. Hence, a clear understand-
ing of the syntax is the basis, and often the key, for understanding mathematics.

8 1. Syntax and Semantics of Predicate Logic

Example

"
x

x2 >a

Jx > b í ¢ 1
������
x

¦ < ΕN
has the meaning that

for all values ’x ’,

satisfying the condition ’x2 > a ’

’Hx > b ì 1�����x ¤ < ΕL ’ holds.
á

1.4 A Standard Syntax: Theorema

Theorema is a software system implemented by the Theorema group at RISC|
Linz under the direction of B. Buchberger, see www.theorema.org. Theorema
contains a computer|supported version of predicate logic and other useful
language constructs, such as numbers, sets, and tuples. The external syntax,
i.e. the appearance of the language, is as close as possible to the syntax
commonly used in mathematical textbooks. The internal representation of
expression in the Theorema system, on the other hand, is very close to the
abstract syntax of predicate logic. For getting a quick and deep introduction to
predicate logic syntax, we will display predicate logic expression in the internal
format of Theorema. The internal syntax will uniquely reveal the complete
syntax of any expression in predicate logic.

� This loads Theorema during a Mathematica session. A valid license for Theorema
is necessary.

Needs@"Theorema‘"D
� To obtain the internal format of the above predicate logic expression, enter

·A "
x

x2 >a

ikjjx > b í ÄÄÄ ÄÄÄ 1
������
x

ÄÄÄ¤ÄÄÄ < Εy{zz E �� InputForm

ÔForAll[·range[·simpleRange[·var[x]]], ÔGreater[ÔPower[·var[x], 2], a],
 ÔAnd[ÔGreater[·var[x], b], ÔLess[ÔBracketingBar[ÔDivide[1, ·var[x]]], Ε]]]

1. Syntax and Semantics of Predicate Logic 9

� (Wrapping an expression into ·[¼] tells Mathematica to parse the expression as a
Theorema expression, the suffix //InputForm shows the internal representation
instead of the standard external form.)

The internal representation shows the syntactical structure of the expression in
a systematic way, namely as a nested expression made up from a head symbol
(outermost symbol, leftmost symbol) and subexpressions. The head symbol
determines the útype of the expressionø, i.e. the language category, to which
the expression belongs. In the example above, the head symbol ‘ÔForAll’
indicates that the expression is a úuniversally quantified formulaø containing the
three subexpressions

·range[·simpleRange[·var[x]]]

ÔGreater[ÔPower[·var[x], 2], a]

ÔAnd[ÔGreater[·var[x],b],ÔLess[ÔBracketingBar[ÔDivide[1,·var[x]]],Ε]]

The application of head symbols to subexpressions is written using brackets (‘[’,
‘]’). Each of the subexpressions again has a head symbol and subexpressions.
Some expressions do not contain subexpressions anymore, we call these
expressions atomic expressions. The actual names used as head symbols
(‘ÔForAll’, ‘ÔGreater’, ·range, ·var, etc.) do not matter, you can choose
other~more telling~names. Even symbols may be used, for instance the third
subexpression above could also be written asß [> [·var[x], b], < [¤ [÷ [1, ·var[x]]], Ε]]

It is important to see, how complex expressions are built|up from simpler
expressions. Again there are very similar concepts in programming languages:
The first step during the compilation of a program, i.e. the transformation to the
machine code of the particular computer, is the úlexical analysisø, where the
stream of symbols is divided into útokensø, i.e. separate pieces, words. During
lexical analysis it is decided, for instance, whether úx > bø consists of the three
tokens ‘x ’, ‘> ’, and ‘b ’ or just one token ‘x > b ’. This may seem trivial, but
already the next example will show that lexical analysis may become tricky: the
input stream ú3 nø is usually divided into the two tokens ‘3’ and ‘n ’, whereas úinø
is usually recognized as only one token ‘in’.

The hierarchical inter|relation of language chunks left after lexical analysis is
established by the úparsingø of the expression, i.e. the grammatical analysis of
the expression. During parsing, the sequence of tokens ‘x ’, ‘> ’, and ‘b ’ is
recognized as úthe operation ‘> ’ applied to the arguments ‘x ’ and ‘b ’ø. This can
be established since the token ‘> ’ is recognized as a symbol, which may occur
between its subexpressions. It stands for the known head symbol ÔGreater,
thus úx > bø is parsed as ÔGreater@x, bD . The result of parsing is best visualized
in the so|called úparse treeø of the expression.

10 1. Syntax and Semantics of Predicate Logic

� In Mathematica, the parse tree of an expression can be displayed using the
command TreeForm.

·A "
x

x2 >a

ikjjx > b í ÄÄÄ ÄÄÄ 1
������
x

ÄÄÄ¤ÄÄÄ < Εy{zz E �� TreeForm

ÔForAllA È
·rangeA È

·simpleRangeA È
·var@xD E E , È

ÔGreaterA È
ÔPowerA È

·var@xD , 2E , aE , È
ÔAnd

From this it becomes evident that the most appropriate data structure for storing
expressions is a tree structure, where each node contains the head of the
corresponding subexpression and each subtree of a node corresponds to a
subexpression. The root of the tree would contain the outermost symbol of the
whole expression, the leaves of the tree would contain only atomic expressions.

� The use of symbols starting with Ô as head symbols in Theorema has technical
reasons. The same is true for head symbols starting with ·, such as ·var or ·range.

1.5 The Standard Language Constructs of Predicate Logic

We will now introduce the standard language constructs available in predicate
logic. For most language constructs, we will give the standard syntax as sup-
ported in Theorema and several notational variants that are commonly used in
mathematics.

1.5.1 Example from Analysis 1: The Definition of ‘converges’

We want to define~for all sequences f and all real numbers a~what it means
that f converges to a . In Theorema’s version of predicate logic, this would be
written as

·A "
f

"
a

i
kjjjjjjjjconverges@f, aD :� "

Ε
ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε
y
{zzzzzzzz E �� InputForm

1. Syntax and Semantics of Predicate Logic 11

ÔForAll@
·range@·simpleRange@·var@fDDD,
True,
ÔForAll@

·range@·simpleRange@·var@aDDD,
True,
ÔIff@

converges@·var@fD, ·var@aDD,
ÔForAll@

·range@·simpleRange@·var@ΕDDD,
ÔAnd@ÔElement@·var@ΕD, ÔRD, ÔGreater@·var@ΕD, 0DD,
ÔExists@

·range@·simpleRange@·var@nDDD,
ÔElement@·var@nD, ÔND,
ÔForAll@

·range@·simpleRange@·var@mDDD,
ÔAnd@ÔElement@·var@mD, ÔND, ÔGreater@·var@mD, ·var@nDDD,
ÔLess@

ÔBracketingBar@
ÔMinus@

ÔSubscript@·var@fD, ·var@mDD,
·var@aDDD,

·var@ΕDDDDDDDD
This is a definition of a new property, namely that f converges to a . In the
internal syntax, this is reflected by introducing a new head symbol ‘converges’,
which is applied to its argument expressions. A definition only introduces an
abbreviation for usually more complex expressions of predicate logic, i.e. it is
not necessary to view definitions as a core component of predicate logic, it is
just that it is convenient to allow the introduction of new symbols that are
defined in terms of known symbols. We will learn more about the rules, how to
give explicit definitions, in Section 1.8 later. In general, the structure of a defini-
tion is

new@v1 , ¼, vn D :� expressionv1 ,¼,vn

or

new@v1 , ¼, vn D := expressionv1 ,¼,vn

and it allows to substitute each occurrence of ‘new@v1 , ¼, vn D ’ by
‘expressionv1 ,¼,vn

’, where ‘expressionv1 ,¼,vn
’ is a predicate logic expression involv-

ing the variables v1 , ¼, vn . The expression to the right of :� in the definition
above contains most of the important categories of language constructs of
predicate logic.

� The úwrappersø starting with · in the internal form of the expression are used for
clarification of syntactical structure in the Theorema system. They are not part of
predicate logic. For instance, ·var is used to explicitely mark symbols to denote
variables in order to be able to distinguish them from symbols denoting constants,
see below.

12 1. Syntax and Semantics of Predicate Logic

� The úwrappersø starting with · in the internal form of the expression are used for
clarification of syntactical structure in the Theorema system. They are not part of
predicate logic. For instance, ·var is used to explicitely mark symbols to denote
variables in order to be able to distinguish them from symbols denoting constants,
see below.

For an intuitive understanding of predicate logic it is helpful to distinguish
expressions into terms and formulae. A term describes an object, whereas a
formula describes a statement about (a property of) objects.

1.5.2 Terms

1.5.2.1 Constants

è Object constants: stand for concrete objects in the úuniverse of discourseø.

In the example above: 0, ÔR, ÔN .

è Function constants: stand for concrete functions (operations, processes,
algorithms, etc.) on objects in the úuniverse of discourseø. The úarityø of a
function constant is the number of arguments that it can take.

In the example above: ÔBracketingBar (arity 1), ÔMinus (arity 2),
ÔSubscript (arity 2).

è Predicate constants: stand for concrete predicates (attributes, relations,
properties, etc.) on objects in the úuniverse of discourseø. The úarityø of a
predicate constant is the number of arguments that it can take.

In the example above: converges (arity 2), ÔElement (arity 2), ÔGreater
(arity 2), ÔLess (arity 2).

1.5.2.2 Variables

è Object (Ordinary) variables: place|holders, for which terms can be substi-
tuted, see Section 1.6, or which can be quantified, see Section 1.5.3.3.

In the example above: f , a , Ε , n , m . (In Theorema’s internal form, they
are represented as ·var[f], ·var[a], ·var[Ε], etc.)

è Function variables:

In the example above: None.

è Predicate variables:

In the example above: None.

These types of variables are available in first|order logic. Note, that function and
predicate variables are available, but may neither be substituted nor quantified
in first|order logic. In higher|order logic, function and predicate variables may
be both substituted and quantified. We will not embark on the advantages and
disadvantages of first|order versus higher|order. The approach chosen mostly
in mathematics is to use first|order logic and introduce set theory on top of
first|order predicate logic. Both functions and relations can be represented
within set theory, which makes them first|order objects, thus making function
and predicate variables superfluous. These topics will be discussed in all
necessary detail in courses on logic (e.g. Logik 1, Logik 2).

1. Syntax and Semantics of Predicate Logic 13

These types of variables are available in first|order logic. Note, that function and
predicate variables are available, but may neither be substituted nor quantified
in first|order logic. In higher|order logic, function and predicate variables may
be both substituted and quantified. We will not embark on the advantages and
disadvantages of first|order versus higher|order. The approach chosen mostly
in mathematics is to use first|order logic and introduce set theory on top of
first|order predicate logic. Both functions and relations can be represented
within set theory, which makes them first|order objects, thus making function
and predicate variables superfluous. These topics will be discussed in all
necessary detail in courses on logic (e.g. Logik 1, Logik 2).

1.5.2.3 Compound Terms

Terms are built up inductively from object and function constants and variables
by úapplicationø. Application, in Theorema, is denoted by brackets ‘[’ and ‘]’. (In
almost all other notations, application is denoted by parantheses ‘(’ and ‘)’. The
bracket notation, which is borrowed from Mathematica, avoids certatin ambigu-
ities that may arise with the parantheses notation.)

è Constants and ordinary variables are terms.

è If t1 , ¼, tn are terms and f is an n|ary function constant or variable then
f @t1 , ¼, tn D is again a term.

In the example above:

ÔSubscript[·var[f], ·var[m]], i.e. fm

ÔMinus[ÔSubscript[·var[f], ·var[m]], ·var[a]], i.e. fm - a

ÔBracketingBar[ÔMinus[ÔSubscript[·var[f], ·var[m]], ·var[a]]], i.e. fm - a ¤
Usually, the arity of a function constant is fixed, i.e. in the same context a
function constant must always take the same number of arguments. There are
cases, where it is convenient to allow flexible arity constants, i.e. function
constants that can take arbitrarily many arguments. In most of the cases,
however, these are only abbreviations for more complicated expressions using
fixed arity constants.

·@ a + b D �� InputForm

ÔPlus[a, b]

·@ a + b + c D �� InputForm

ÔPlus[a, b, c]

Alternatively, ÔPlus@a, b, cD could be interpreted as an abbreviation for
ÔPlus@a, ÔPlus@b, cDD .

Notation: The standard way of denoting function application is f @t1 , ¼, tn D ,
where f is a function constant, i.e. the name of the function, and t1 , ¼, tn are
the argument terms. Many functions in every|day mathematics have associated
operators, i.e. symbols and symbolics, for abbreviating the names. In many
cases, symbols and symbolics is chosen such that an intuitive meaning of the
function is captured in the notation. Operators can be written in many different
ways, notably infix, prefix, postfix, matchfix, sub|, super|, under|, over|script,
and many other fancy two|dimensional patterns. For correctly parsing an
expression it is absolutely necessary to know the behavior of operands in order
to uniquely translate any fancy notation into its underlying standard form of
predicate logic. úGoodø notation is an absolutely crucial feature of mathematics
and it is heavily used in all areas of mathematics, therefore it is inevitable to
understand the logic structure of mathematical notation in all its variations.
Table 1.1 shows commonly used expressions in mathematics with one possible
translation to standard syntax:

14 1. Syntax and Semantics of Predicate Logic

Notation: The standard way of denoting function application is f @t1 , ¼, tn D ,
where f is a function constant, i.e. the name of the function, and t1 , ¼, tn are
the argument terms. Many functions in every|day mathematics have associated
operators, i.e. symbols and symbolics, for abbreviating the names. In many
cases, symbols and symbolics is chosen such that an intuitive meaning of the
function is captured in the notation. Operators can be written in many different
ways, notably infix, prefix, postfix, matchfix, sub|, super|, under|, over|script,
and many other fancy two|dimensional patterns. For correctly parsing an
expression it is absolutely necessary to know the behavior of operands in order
to uniquely translate any fancy notation into its underlying standard form of
predicate logic. úGoodø notation is an absolutely crucial feature of mathematics
and it is heavily used in all areas of mathematics, therefore it is inevitable to
understand the logic structure of mathematical notation in all its variations.
Table 1.1 shows commonly used expressions in mathematics with one possible
translation to standard syntax:

Expression Operator Type Standard syntax

a + b + Infix ÔPlus@a, bD
a - b - Infix ÔMinus@a, bD

-a - Prefix ÔMinus@aD
a ! ! Postfix ÔFactorial@aD a¤ ¤ Matchfix ÔBracketingBar@aD°a´ ° ´ Matchfix ÔDoubleBracketingBar@aD
an ãã Subscript ÔSubscript@a, nD
an ãã Subscript a@nD
a2 ã2 Superscript ÔSquare@aD
an ãã Superscript ÔPower@a, nD�!!!!

a
�!!!

2 D ÔSqrt@aD
f ’ ’ Postfix ÔDerivative@ f D
f HnL ãHãL 2 D ÔDerivative@ f , nD

a�����b ����� 2 D � Infix ÔDivide@a, bDikjjj a

b
y{zzz ikjjj ã

ã
y{zzz 2 D � Matchfix ÔBinomial@a, bD

ikjjj a

b
y{zzz ikjjj ã

ã
y{zzz 2 D � Matchfix ÔVector@a, bD

F Èab È 2 D � Postfix ÔEvalUpperLower@F, a, bD
Table 1.1:Frequently used operators associated with function symbols.

Ambiguities: As one can already see from Table 1.1, mathematical notation is
not unique. In most of the cases, interpretation is at least unique in a particular

context assumed to be known by the reader: in a book on combinatorics J a
b

N
will certainly denote the binomial coefficient, in a book on geometry probably the
vector. Lecture notes Linear Algebra: Page 12: used as binomial coefficient,
page 58 and 59 used as vector.
Lecture notes Analysis: Page 236: in Exercise 7 used as binomial coefficient,
on page 244 used as vector.
For humans, it is usually úclear from the contextø what certain ambiguous
notations actually mean.

1. Syntax and Semantics of Predicate Logic 15

Ambiguities: As one can already see from Table 1.1, mathematical notation is
not unique. In most of the cases, interpretation is at least unique in a particular

context assumed to be known by the reader: in a book on combinatorics J a
b

N
will certainly denote the binomial coefficient, in a book on geometry probably the
vector. Lecture notes Linear Algebra: Page 12: used as binomial coefficient,
page 58 and 59 used as vector.
Lecture notes Analysis: Page 236: in Exercise 7 used as binomial coefficient,
on page 244 used as vector.
For humans, it is usually úclear from the contextø what certain ambiguous
notations actually mean.

Precedence: The question of precedence arises as soon as there is more than
one operator, e.g.

a + b ! ¼? ÔFactorial@ÔPlus@a, bDD
a + b ! ¼? ÔPlus@a, ÔFactorial@bDD

Parentheses ‘(’ and ‘)’ are used in order to indicate which operator to use first,
i.e. Ha + bL ! ¼ ÔFactorial@ÔPlus@a, bDD

a + Hb ! L ¼ ÔPlus@a, ÔFactorial@bDD
Note that in the standard syntax there is no need for parentheses! In order to
avoid parentheses in certain cases one introduces operator precedence. In the
example above, interpretation 1 would be achieved without need of parentheses
by assigning a higher precedence for ‘+’ than to ‘!’.

General rule: If unsure, use parentheses!

1.5.3 Formulae

Formulae can be atomic formulae, propositional formulae, or quantifier formulae.

1.5.3.1 Atomic Formulae

Atomic formulae are built up inductively from predicate constants and variables
by úapplicationø using brackets ‘[’ and ‘]’.

è If t1 , ¼, tn are terms and p is an n|ary predicate constant or variable then
p@t1 , ¼, tn D is an atomic formula.

16 1. Syntax and Semantics of Predicate Logic

In the example above:

ÔElement[·var[Ε], ÔR], ÔElement[·var[n], ÔN], ÔElement[·var[m], ÔN],
i.e. Ε Î R , n Î N , m Î N

ÔGreater[·var[Ε], 0], ÔGreater[·var[m],·var[n]], i.e. Ε > 0 , m > n

ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[·var[f], ·var[m]], ·var[a]]],
·var[Ε]], i.e. fm - a ¤ < Ε

Like with function constants, we allow flexible arity also for some predicate
constants.

·@ a < b D �� InputForm

ÔLess[a, b]

·@ 0 < n < M D �� InputForm

ÔLess[0, n, M]

Alternatively, ÔLess@0, n, MD could be interpreted as abbreviation for
ÔLess@0, nD ß ÔLess@n, MD .

Notation: Predicate symbols can be denoted~like function symbols~using
associated operators. Table 1.2 shows commonly used expressions in mathe-
matics with one possible translation to standard syntax:

1. Syntax and Semantics of Predicate Logic 17

Expression Operator Type Standard syntax

a = b = Infix ÔEqual@a, bD
a £ b £ Infix ÔLessEqual@a, bD
a ³ b ³ Infix ÔGreaterEqual@a, bD
a ý b ý Infix ÔVerticalBar@a, bD

a ºn b ºn 2 D � Infix ÔCongruent@a, b, nD
a Î A Î Infix ÔElement@a, AD
A Í B Í Infix ÔSubsetEqual@A, BD
a ~ b ~ Infix ÔTilde@a, bD
f �a � Infix ÔLongRightArrow@ f , aD
g ¦ h ¦ Infix ÔUpTee@g, hD
g þ h þ Infix ÔDoubleVerticalBar@g, hD

f : A ® B : ® Infix ÔIsFunctionFromTo@ f , A, BD
f � � Postfix ÔUpperRightArrow@ f D

Table 1.2: Frequently used operators associated with predicate symbols.

Ambiguities and Precedence: see terms.

1.5.3.2 Propositional Formulae

Propositional formulae are built up inductively from formulae by the proposi-
tional connectives.

è If A and B are formulae then únegationsø, údisjunctionsø, úconjunctionsø,
úimplicationsø, and úequivalencesø are propositional formulae.

Connective Syntax Name speak

Ø Ø A Negation únotø AÞ A Þ B Disjunction A úorø Bß A ß B Conjunction A úandø B

Þ A Þ B Implication A úimpliesø B

� A � B Equivalence A úif and only ifø B

Table 1.3: Propositional connectives.

18 1. Syntax and Semantics of Predicate Logic

In the example above:

ÔAnd[ÔElement[·var[Ε], ÔR], ÔGreater[·var[Ε], 0]], i.e. Ε Î R ß Ε > 0

ÔAnd[ÔElement[·var[m], ÔN], ÔGreater[·var[m], ·var[n]]], i.e.
m Î N ß m > n

ÔIff[converges[·var[f], ·var[a]], ÔForAll[¼]], i.e. converges@ f , aD � " ¼

In written text, úif and only ifø is often abbreviated úiffø.
Connectives can also be hidden in quantifier expressions, see Table 1.5 below,
or in flexible arity operators, see above.

1.5.3.3 Quantifier Formulae

Quantifier formulae are built up inductively from formulae by the quantifiers "
and $. In correspondence with the outermost quantifiers, such formulae are
called úuniversal formulaeø and úexistential formulaeø, respectively. The distinc-
tive feature of quantifiers is that quantifiers úbindø a variable, see Section 1.6.1.

è If A and C are formulae and x is an object variable then "
x
C

A , $
x
C

A are

quantified formulae.

In the example above:

ÔForAll[
 ·range[·simpleRange[·var[m]]],
 ÔAnd[ÔElement[·var[m], ÔN],ÔGreater[·var[m], ·var[n]]],
 ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[·var[f], ·var[m]], ·var[a]]],

·var[Ε]]]
¼
In external form:

"
m

mÎNßm>n

 fm - a¤ < Ε

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε

"
a

i
kjjjjjjjconverges@ f , aD � "

Ε
ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε
y
{zzzzzzz

1. Syntax and Semantics of Predicate Logic 19

"
f

"
a

i
kjjjjjjjconverges@ f , aD � "

Ε
ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε
y
{zzzzzzz

The internal representation reveals the three selectors, that every quantifier
formulae has:

è the quantified variable: ·range[·simpleRange[·var[m]]]

è the condition (on the variable): ÔAnd[ÔElement[·var[m], ÔN],Ô-
Greater[·var[m], ·var[n]]]

è the body formula: ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[·var[f],
·var[m]], ·var[a]]], ·var[Ε]]]

In Theorema’s external syntax, the quantified variable is always written under
the quantifier, the condition is written under both quantifier and quantified
variable. In other mathematical texts, the quantified variable might be written as
subscript to the quantifier or just to the right of the quantifier. The above exam-
ple would then be written as

" HΕ Î R ß Ε > 0L $ n Î N " Hm Î N ß m > nL : fm - a¤ < Ε .

Special forms

è The quantified variable and the condition are often combined into úspecial
rangesø. Let Q stand for " or $:

Long Form Special Range

Q
x

xÎS

 A Q
xÎS

 A

Q
x

xÎZßl£x£u

 A Q
x=l,¼,u

 A

Table 1.4: Special ranges.

Note, however, that the range specification must allow to determine the
quantified variable! A human mathematician can often decide this again
úin the contextø, when communicating with a machine this might some-
times need more care. It is, for instance, common to write

¼ "
m>n

 fm - a¤ < Ε

and it is úobviousø that the variable quantified by the universal quantifier
is ‘m ’ and not ‘n ’.

20 1. Syntax and Semantics of Predicate Logic

è Subsequent quantifiers of the same type are often combined into one
quantifier with úmultiple rangeø, i.e.

"
x

"
y

"
z

A

can be written as

"
x,y,z

A

è Conditions in a quantifier can, in fact, be viewed as abbreviations as
shown in Table 1.5.

Quantifier with
Condition

Long Form

"
x
C

A "
x

C Þ A

$
x
C

A $
x

HC ß AL
Table 1.5: Conditions in quantifiers.

è The condition in a quantifier can be omitted, in the internal form it is
represented as ‘True’.

All special forms of quantifiers reduce~by the rules above~to quantifier formu-
lae without condition! We could even úsurviveø with only the universal quantifier
and define $

x
A to stand for Ø "

x
Ø A . Since we introduce both quantifiers, the úde

Morgan lawsø

Ø "
x

 A � $
x

Ø A

Ø $
x

 A � "
x

Ø A

would have to be proven based on the semantics for quantifier formulae given
in Section 1.7.

If x is the quantified variable in a formula A then we call an occurrence of x a
bound occurrence and we call x a bound variable in A . Otherwise, variables
and their occurrences are called free. The distinction between free and bound
occurrences of variables is of particular importance when it comes to the crucial
operation on variables, namely substitution.

1. Syntax and Semantics of Predicate Logic 21

1.6 Substitution and Replacement

1.6.1 Free and Bound Occurences of Variables

Variables are the essence of mathematical language, which make the mathemat-
ical language really powerful. Variables are atomic (not decomposable) parts of
expressions for which potentially infinitely many different expressions may be
substituted. An expression containing a free variable has many meanings, one
for each assignment of a concrete object as the meaning of the variable.
Hence, an expression containing a free variable, in some sense, stands for
potentially infinitely many expressions and hence, in one stroke, can express
potentially infinitely many meanings depending on which expressions are
substituted for the variables. Expressions containing free variables can be
viewed as úgeneralø statements that can be formulated once but can be
unfolded in potentially infinitely many situations.

(A formula containing free variables is exactly what in the Analysis lecture notes
is called úAussageformø and in the Linear Algebra lecture notes is called
úPrädikatø !)

Most of what has been remarked above about free variables is not true for
bound variables, such as the x in the formula "

xÎN
Hx = 0L . This formula does not

have various meanings, it means exactly the statement that all natural numbers
are equal to 0, which is false (it should intuitively be clear that this is false;
however, we can only say so after having discussed the semantics of ", which
has not been done yet!). Substituting 0 or 7 for x in the formula x = 0 makes it a
true (0 = 0) or false (7 = 0) statement, respectively. Substituting 0 or 7 for x in
the formula "

xÎN
Hx = 0L makes it into the meaningless formulae "

0ÎN
H0 = 0L or

"
7ÎN

H7 = 0L , respectively. Therefore, bound variables should be considered

úinvisibleø for the substitution operation.
Substituting the variable y for x in "

xÎN
Hx = 0L does not change the meaning

of the formula, whereas substituting y for x in x = 0 might change the meaning.
It depends on the assignments for x and y , whether x = 0 and y = 0 have the
same meaning.

Note that there is no possibility to decide whether an occurrence of a symbol
in a formula is a free occurrence of a variable or a constant without knowing the
context of the formula. For example, just looking at

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε

22 1. Syntax and Semantics of Predicate Logic

it is not possible to tell whether ‘ f ’, ‘a ’, ‘Ε ’ are free occurrences of variables or
(function or object) constants.

We will discuss this subtle point in more detail later. In fact, wrapping sym-
bols by ·var[¼] in the internal Theorema representation is done in order to be
able to distinguish the usage of symbols as free variables and as constants.
Alternatively, one would have to declare, once and for all, which symbols will be
used as variables and which symbols will be used as constants. However, this
is not attractive for practical purposes because it may well be that, for example,
‘Π’ in some texts is used as a constant and in some other text is used as a
variable.

On the meta level~when we speak about expressions~we will often
indicate free variables of an expression as subscripts of the expression, i.e. Ax

should indicate that x occurs free in A . We do not fix in general, whether Ax

should mean that x is among the free variables of A or whether x is the only
free variable in A . On the object level, however, subscripting is often used as a
hidden function symbol like in the example of fm above. In other situations
subscripting is used to distinguish between constants or variables of similar
nature, e.g. if two constants for polynomials are required one often likes to
name them p1 and p2 . The meaning of subscripting must be understood from
the context. The same is true for similar notations.

1.6.2 More Quantifiers

The different behavior w.r.t. substitution of free and bound variables as illus-
trated above should guide us in distinguishing free and bound variables. Of
course, the quantifiers " and $ turn free variables into bound variables. We will
see that also other language constructs show this behavior. We will classify all
language constructs, which bind variables, as úquantifiersø. Examples of such
quantifiers are given in Table 1.6.

1. Syntax and Semantics of Predicate Logic 23

Quantifier Meaning Binds8x È A< úthe set of all x satisfying Aø x9T È
x

A= úthe set of all T with x satisfying Aø x

Ú
k=1

n
A úthe sum of all A when k ranges from 1 to nø k

Ù f @xD â x úthe integral of f ø x

Λ
x

 T úthe function mapping x to Tø x

'
x

A úsuch an x satisfying Aø x

F@xD Èx=5 úF@xD where x equals 5ø x

Table 1.6: Special quantifiers.

The last two quantifiers in Table 1.6~the úsuch aø and the úwhereø
quantifier~are often used in their natural language form and only rarely using
the symbols ú'ø and ú|ø.

If you look through mathematical texts, you will probably find many more quantifi-
ers. For many of these quantifiers, special forms as described in Section 1.5.3.3
(special ranges, omitting conditions, etc.) are available. In most of the cases,
the meaning of quantifiers is explained when they are introduced in a theory.
The crucial thing is to recognize when certain language constructs bind
variables!

Exercise 2

Analyze the syntactical structure of the following axiom of the real numbers (as
given in some lecture notes):

$ 0 Î K " x Î K : x + 0 = x

$ 1 Î K " x Î K : x × 1 = x
Solution ®

Exercise 3

Analyze the syntactical structure of the following theorem:

Every field HK, +, ×L is a K |vector|space.
Solution ®

24 1. Syntax and Semantics of Predicate Logic

Exercise 4

Analyze the syntactical structure of the following theorem:

In a field HK, +, ×L the inverse elements are unique.
Solution ®

Exercise 5

Analyze the syntactical structure of the following definitions (as taken from
existing lecture notes):

Let M ¹ Æ . A mapping x : N ® M is called a sequence (in M). For x@nD we
write xn , for x we often write Hxn L or Hxn LnÎN .Hxn L converges to x if and only if for all Ε > 0 there exists a natural number
n0 such that for all n ³ n0 : °xn - x´ < Ε . In this case we write xn ® x or
xn ®

nÎN
x or x = lim

n®¥
 xn .

Solution ®

Exercise 6

Analyze the syntactical structure of

â
k=1

¥

bk = â
k=1

¥

ak

using all knowledge on notation for series available from Analysis.
Solution ®

Exercise 7

Analyze the syntactical structure of the following theorem:

Let Ú
n=1

¥
an and Ú

n=1

¥
bn be two absolutely convergent series. Then their

Cauchy|product Ú
n=1

¥
cn is absolutely convergent and

â
n=1

¥

cn =
ikjjjjjâ

n=1

¥

an

y{zzzzz ×
ikjjjjjâ

n=1

¥

bn

y{zzzzz.

Solution ®

Exercise 8

Analyze the syntactical structure of the following definition (as taken from
existing lecture notes):

1. Syntax and Semantics of Predicate Logic 25

Let A, B Í R and x Î A . A function f is continuous at x if and only if for all
sequences Hxn L in A :

xn ® x í "
nÎN

xn ³ x� f @xn D ® f @xD .

Solution ®

Exercise 9

Analyze the syntactical structure of the following theorem:

Let f : A ® B bijective. Then there is a function g : B ® A such that
(i) gë f = idA

(ii) f ë g = idB .
Solution ®

1.6.3 Substitution

The operation of substitution has three arguments:

è an expression e in which the substitution takes place,

è a (free) variable x for which a term should be substituted, and

è a term t which is substituted for the variable.

We will write

SUBSTITUTED@e, x, tD
for the expression that results from e by substituting t for x at all free occur-
rences of x .

Note that t is substituted for all free occurrences of x in e . This is in sharp
contrast to the operation of úreplacementø, which we will discuss in Section
1.6.5.

We have already discussed an other operation that can be applied to expres-
sions containing variables, namely úquantificationø. Quantifiers úbindø variables.
Variables bound by quantifiers are not any more free to the outside. More
precisely, the operation of substitution does not substitute terms for bound
variables.

The interaction of quantification and substitution has one more subtle
aspect: If a free variable x occurs inside the scope of a quantifier that quantifies
variable y then, by substituting for x a term t containing a free variable y , the
free variable y in t would be úcaughtø, i.e. turned into a bound variable! This
must be avoided because it would drastically change the meaning of the expres-
sion. Hence, in such a case, before the actual substitution is carried out the
bound variable y must be úrenamedø. As we discussed above, it is a characteris-
tic feature of bound variables that renaming them does not affect the meaning
of the expression. This renaming of bound variables as a part of the substitution
process should be well understood. It is an aspect of substitution that is less
known.

26 1. Syntax and Semantics of Predicate Logic

We have already discussed an other operation that can be applied to expres-
sions containing variables, namely úquantificationø. Quantifiers úbindø variables.
Variables bound by quantifiers are not any more free to the outside. More
precisely, the operation of substitution does not substitute terms for bound
variables.

The interaction of quantification and substitution has one more subtle
aspect: If a free variable x occurs inside the scope of a quantifier that quantifies
variable y then, by substituting for x a term t containing a free variable y , the
free variable y in t would be úcaughtø, i.e. turned into a bound variable! This
must be avoided because it would drastically change the meaning of the expres-
sion. Hence, in such a case, before the actual substitution is carried out the
bound variable y must be úrenamedø. As we discussed above, it is a characteris-
tic feature of bound variables that renaming them does not affect the meaning
of the expression. This renaming of bound variables as a part of the substitution
process should be well understood. It is an aspect of substitution that is less
known.

If, for some x and t ,

f = SUBSTITUTED@e, x, tD
then we say that ú f is an instance of eø.

We will train the operation of substitution, including the subtle aspect of renam-
ing of bound variables, in a couple of examples.

Example: Substitution of a Constant for a Variable

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, a, 5E
is

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

H fm - 5¤ < ΕL
Example: Substitution of a Term for a Variable

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, a, Hu + vL2 E
is

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

H fm - Hu + vL2 ¤ < ΕL
Example: A Free Variable in the Substitution Term Caught by a Quantifier

If we substituted n for a in

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε

just blindly we would obtain

"
Ε

ΕÎRßΕ>0

 $
n

nÎN

"
m

mÎNßm>n

 fm - n¤ < Ε

Carefully think about why this is undesirable:

1. Syntax and Semantics of Predicate Logic 27

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε

means that f converges to a , whereas

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - n¤ < Ε

means something completely different. Hence,

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, a, nE
must be defined to be something like

"
Ε

ΕÎRßΕ>0

 $
N

NÎN

"
m

mÎNßm>N

 fm - n¤ < Ε

i.e. we must introduce a new bound variable N , which should not appear else-
where in the expression in order to avoid dangerous úvariable clashesø. Note
that the last formula has the appropriate meaning again, namely it means that f
converges to n .

Example: Simultaneous Substitution Versus Successive Substitution

Often, terms are substituted for various free variables simultaneously: Let us
read

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, f, a + b, a, f@aD + f@bDE
as the result of substituting a + b for f and f @aD + f @bD for a simultaneously
yielding

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 Ha + bLm - Hf@aD + f@bDL¤ < Ε .

meaning úthe sum sequence a + b converges to f @aD + f @bD . This has to be
carefully distinguished from successive substitution:

SUBSTITUTEDA
SUBSTITUTEDA "

Ε
ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, f, a + bE, a, f@aD + f@bDE
yields

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 Ha + bLm - a¤ < Ε, a, f@aD + f@bDE

28 1. Syntax and Semantics of Predicate Logic

which is

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 Hf@aD + f@bD + bLm - Hf@aD + f@bDL¤ < Ε

This is again different from

SUBSTITUTEDA
SUBSTITUTEDA "

Ε
ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, a, f@aD + f@bDE, f, a + bE
which is

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - Hf@aD + f@bDL¤ < Ε, f, a + bE
and, hence,

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 Ha + bLm - HHa + bL@aD + Ha + bL@bDL¤ < Ε .

1.6.3.1 A Notation for Substitution

In the sequel, let us write

ex,y,z ® s,t,u

for

SUBSTITUTED@e, x, s, y, t, z, uD.
Note that parallel substitution

ex,y ® s,t

is in general not identical to successive substitutionHex ® s Ly ® t

and that this may be also different fromHey ® t L
x ® s

.

1. Syntax and Semantics of Predicate Logic 29

1.6.4 Declaration of (Free) Variables

In mathematical texts, there are (at least) two ways of declaring which symbols
in a formula are considered to be (free) variables and which symbols are consid-
ered to be úconstantsø (which do not allow any substitution):

è explicit declaration of variables at the beginning of the text; this declara-
tion is then valid for all subsequent formulae;

è explicit declaration of variables at the beginning of each formula.

(In Theorema, we use the second alternative. We will explain this in more detail
later.)

In most math text books and publications, the first alternative is chosen. In fact,
in most texts the authors assume that the reader makes the appropriate
guesses úfrom the contextø. For example, if the group axioms

xë Hyë zL = Hxë yL ë z

1ë x = x

xë x-1 = 1

are given, it is tacitly assumed that one considers ‘x ’, ‘y ’, and ‘z ’ as (free)
variables.

Alternatively, instead of considering formulae with free variables, we may
just consider the formulae with all free variables quantified by a universal
quantifier. This is particularly appropriate for formulae in úknowledge basesø,
see below. Formulae without free variables are called úclosedø. For example,
the above axioms could also be written in the form

"
x,y,z

xë Hyë zL = Hxë yL ë z

"
x

1ë x = x

"
x

xë x-1 = 1

Universal quantification of free variables is, however, not appropriate for formu-
lae with free variables that appear as goals in solution or simplification situa-
tions, see below. Therefore, we do not want to introduce it as a general rule,
that free variables should always be considered as universally quantified!

30 1. Syntax and Semantics of Predicate Logic

1.6.5 Replacement

The operation of replacement has three arguments:

è an expression e in which a replacement takes place,

è a position p at which the replacement takes place,

è and an expression f which replaces the expression in e at position p .

We will write

REPLACED@e, p, fD
for the expression that results from e by replacing the expression at position p
in e by the expression f .

Note that, in replacement, f is replacing just one occurrence of a subexpres-
sion of e , namely the subexpression of e at one particular position p and that
the subexpression at position p need not be a variable but may be an arbitrary
expression. This is in sharp contrast to the operation of úsubstitutionø, which we
discussed in Section 1.6.3.

Again one must be careful with replacing subexpression by expressions in
expressions that contain quantifiers. We assume that the replacement operation
takes care of the necessary renaming of bound variables if name clashes occur
during replacement.

1.6.5.1 Positions

Positions of subexpressions in expressions can be described uniquely by tuples
of natural numbers taking into account the nested structure of expressions in
standard syntax. For example, in the formula

(1)Hx + yL * Hx + yL = x2 + 2 * x * y + y2

there are two positions at which the subexpression

x + y

occurs. These two positions could be described by the tuples X1, 1\ and X1, 2\ ,
respectively, because in the standard syntax representation of (1)

·@ Hx + yL * Hx + yL = x2 + 2 * x * y + y2 D �� InputForm

ÔEqual[ÔTimes[ÔPlus[x, y], ÔPlus[x, y]], ÔPlus[ÔPower[x, 2], ÔTimes[2, x, y],
 ÔPower[y, 2]]]

1. Syntax and Semantics of Predicate Logic 31

the first occurrences of ÔPlus@x, yD can be visited by going to the 1|st and then
again 1|st subexpression of (1) and the second occurrence can be visited by
going to the 1|st and then to the 2|nd subexpression of (1).

We will rarely use this explicit description of positions in this practical intro-
duction to predicate logic. Most times it will suffice to say something like úthe
first occurrenceø or the úthird occurrenceø of a subexpression.

� Mathematica offers an operation ReplacePart, which does exactly what
REPLACED does, i.e. we can implement REPLACED using basic Mathematica
operations. The notion of úpositionø, which we introduced above, corresponds
exactly to the notion of position in Mathematica, except that Mathematica uses
braces ‘{’ and ‘}’ to denote tuples instead of angle brackets ‘X’ and ‘\’.

Position@·@ Hx + yL * Hx + yL = x2 + 2 * x * y + y2 D, ·@ x + y DD881, 1<, 81, 2<<
REPLACED@e_, p_, f_D := ReplacePart@e, f, p �. AngleBracket ® ListD

We will train the operation of replacement in a couple of examples.

Examples

REPLACEDA·@ Hx + yL * Hx + yL = x2 + 2 * x * y + y2 D, X1, 1\, ·A �!!!!!!!
u2 EEI�!!!!!!!

u2 M * Hx + yL = x2 + 2 * x * y + y2

whereas

REPLACEDA·@ Hx + yL * Hx + yL = x2 + 2 * x * y + y2 D, X1, 2\, ·A �!!!!!!!
u2 EEHx + yL * I�!!!!!!!

u2 M = x2 + 2 * x * y + y2

Also,

REPLACEDA·@ Hx + yL * Hx + yL = x2 + 2 x * y + y2 D, X2, 1\, ·A �!!!!!!!
u2 EEHx + yL * Hx + yL = I�!!!!!!!

u2 M + 2 * x * y + y2

(Note that, at this moment, we are not yet concerned with whether such replace-
ments are úreasonableø or úvalidø! We will be concerned with úvalidø transforma-
tions later, when we start to discuss proving, solving, and simplifying within
predicate logic.)

1.6.5.2 A Notation for Replacement

We will adopt the notation

32 1. Syntax and Semantics of Predicate Logic

ep! f

for

REPLACED@e, p, f D
i.e.

e_p_!f_ := REPLACED@e, p, fD
·@ Hx + yL * Hx + yL = x2 + 2 x * y + y2 DX2,2\!·A�!!!!!!!!

u2 EHx + yL * Hx + yL = x2 + I�!!!!!!!
u2 M + y2

1.7 An Informal Semantics

The semantics of expressions in predicate logic is defined inductively following
the syntactical structure of the expression. We will not give a formal definition of
semantics, rather we will try to give an idea how meaning is attached to expres-
sions in predicate logic. For assigning semantics to expressions, we need

è a non|empty úuniverse of discourseø U ,

è concrete functions on U (of arity 1, 2, 3, etc.) and concrete predicates (i.e.
relations) on U (of arity 1, 2, 3, etc.),

è an úinterpretationø, which interprets

á object constants as distinct concrete objects in U ,

á each n|ary function constant as some n|ary function on U , and

á each n|ary predicate constant as some n|ary relation on U ,

è an assignment mapping for variables, which maps each variable to a
concrete object in U .

1.7.1 Semantics for Terms

Terms mean some concrete object from U . A term without free variables has a
unique meaning, a term containing free variables typically has different mean-
ings depending on the assignment for the variables.

1. Syntax and Semantics of Predicate Logic 33

Expression Meaning

constant the interpretation of the constant

variable the object assigned to the variable

f @t1 , ¼, tn D the interpretation of f applied to the interpretations of the ti

Table 1.7: Semantics for terms.

Important: Distinct constants denote distinct objects, whereas distinct variables
may denote the same object, i.e. in case of constants ‘x ’ and ‘y ’ we know x ¹ y ,
in case of variables ‘x ’ and ‘y ’ it can be that x = y .

Example

Consider the universe of discourse the real numbers and consider the functions
úabsolute valueø, úsubtractionø, úreciprocalø, and úfunction evaluationø. We
interpret ÔBracketingBar, ÔMinus, ÔSubscript, and f as the absolute value
function, the subtraction function, function evaluation, and the reciprocal func-
tion, respectively. The meaning of the compound term fm |a¤ , i.e.

ÔBracketingBar[ÔMinus[ÔSubscript[f, ·var[m]], ·var[a]]] ,

is then

úthe absolute value of the difference between the reciprocal of m and aø

(with m and a free variables). If we assign to m the real number 5 and to a the
real number 0 then the meaning is 1�����5 , if we assign to m the real number Π and
to a the real number 3�����Π then the meaning is 2�����Π .

Example

Consider the universe of discourse the real numbers and consider the functions
úabsolute valueø, úsubtractionø, úreciprocalø, and úfunction evaluationø. We
interpret ÔBracketingBar, ÔMinus, ÔSubscript, and f as the square root
function, the multiplication function, function evaluation, and the squaring
function, respectively. The meaning of the compound term fm |a¤ , i.e.

ÔBracketingBar[ÔMinus[ÔSubscript[f, ·var[m]], ·var[a]]] ,

is then

úthe square root of the product of m squared and aø

34 1. Syntax and Semantics of Predicate Logic

(with m and a free variables). If we assign to m the real number 5 and to a the
real number 0 then the meaning is 0, if we assign to m the real number Π and to
a the real number 3�����Π then the meaning is (the real number)

�!!!!!!!!
3 Π .

1.7.2 Semantics for Formulae

Formulae without free variables mean útrueø or úfalseø. Truth or falsity of a
formula containing free variables may depend on the assignment for the
variables.

Expression Meaning

p@t1 , ¼, tn D the interpretation of p applied to the interpretations of the ti

Ø A interpret A; then use truth table for Ø

A Þ B interpret A and B; then use truth table for Þ
A ß B interpret A and B; then use truth table for ß
A Þ B interpret A and B; then use truth table for Þ

A � B interpret A and B; then use truth table for �

"
x
C

A

looooomnooooo
útrueø if the interpretation of A is útrueø for each

assignment for x,
which makes the interpretation of C útrueø

úfalseø otherwise

$
x
C

A

looooomnooooo
útrueø if the interpretation of A is útrueø for some

assignment for x,
which makes the interpretation of C útrueø

úfalseø otherwise

Table 1.8: Semantics for formulae.

The meaning of atomic formulae is decided by interpretation, propositional
formulae are decided by truth tables, whereas the meaning of quantified formu-
lae must be decided by following the úrecipeø given in Table 1.8. It is important
to understand that the formulations úfor eachø and úfor someø in the right
column of Table 1.8 are formulations on the meta level, i.e. on the level where
one speaks about the language, whereas ú"ø (speak: úfor allø) and ú$ø (speak:
úthere existsø) are on the object level, i.e. the level of the language! This means
that for "

x
A to be útrueø we must ensure that A is útrueø for all possible values

in the universe of discourse substituted for x , and for $
x

A to be útrueø we must

argue that we can substitute an object from the universe of discourse for x in
order to make A útrueø.

1. Syntax and Semantics of Predicate Logic 35

Note in particular, that quantifiers with finite ranges have the same meaning
as ß and Þ, e.g.

"
xÎ81,¼,n< A@xD is the same as A@1D ß ¼ ß A@nD and

$
xÎ81,¼,n< A@xD is the same as A@1D Þ ¼ Þ A@nD .

It is therefore appropriate to view the universal quantifier as a generalization of
úßø and the existential quantifier as a generalization of úÞø for cases of arbitrary
number or infinitely many operands. This is also the reason, why "

x
A and $

x
A is

sometimes written as ß
x

A and Þ
x

A .

Example

Consider the universe of discourse the real numbers and consider the functions
úabsolute valueø, úsubtractionø, úreciprocalø, úfunction evaluationø and the
relation úbeing less thanø. We interpret ÔBracketingBar, ÔMinus, ÔSubscript,
and f as the absolute value function, the subtraction function, function evalua-
tion, and the reciprocal function, respectively. We interpret ÔLess as the úless
thanø relation. The meaning of the atomic formula fm |a¤ < Ε , i.e.

ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[f, ·var[m]], ·var[a]]], ·var[Ε]] ,

is the property that

úthe absolute value of the difference between the reciprocal of m and a is
less than Εø

(with m , a , and Ε free variables). If we assign to m the real number 5, to a the
real number 0, and to Ε the real number 1�����3 , then the meaning is ú 1�����5 is less than
1�����3 ø, which is útrueø, if we assign to m the real number Π, to a the real number
3�����Π , and to Ε the real number 1�����Π , then the meaning is ú 2�����Π is less than 1�����Π ø, which
is úfalseø.

36 1. Syntax and Semantics of Predicate Logic

Example

Consider the universe of discourse the real numbers and úall setsø. Consider
the object úthe set of natural numbersø and the functions úabsolute valueø,
úsubtractionø, úreciprocalø, úfunction evaluationø and the relations úbeing less
thanø, úbeing greater thanø, and úmembershipø. We interpret ÔN as the set of
natural numbers, ÔBracketingBar, ÔMinus, ÔSubscript, and f as the absolute
value function, the subtraction function, function evaluation, and the reciprocal
function, respectively. We interpret ÔLess, ÔGreater, and ÔElement as the
úless thanø, the úgreater thanø, and the úmembershipø relation, respectively.
The meaning of the quantified formula "

m
mÎNßm>n

 fm |a¤ < Ε , i.e.

ÔForAll[·range[·simpleRange[·var[m]]],
 ÔAnd[ÔElement[·var[m], ÔN], ÔGreater[·var[m], ·var[n]]],
 ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[f, ·var[m]], a]], ·var[Ε]]]

is the property that

úfor all m
with the property, that m is a member of the set of natural numbers and m
is greater than n ,
the absolute value of the difference between the reciprocal of m and a is
less than Εø

(with n , a and Ε free variables). If we assign to n the real number 3, to a the real
number 0, and to Ε the real number 1�����3 , then the meaning is: úfor all natural
numbers m greater than 3 the absolute value of the reciprocal of m is less than
1�����3 ø, which is útrueø. Why is this true? Suppose m is a natural number greater
than 3, then, by laws for inequalities, we know that 1������m is less than 1�����3 , and from
this, since 1������m is positive, we know that also the absolute value of 1������m is less than
1�����3 .

If we assign to n the real number 1, to a the real number 0, and to Ε the real
number 1�����3 , then the meaning is: úfor all natural numbers m greater than 1 the
absolute value of the reciprocal of m is less than 1�����3 ø, which is úfalseø. Why is
this false? Because the statement úabsolute value of the reciprocal of m is less
than 1�����3 ø is not true for all natural numbers m greater than 1. Substitute e.g. 2 for
m , then we are left with úabsolute value of 1�����2 is less than 1�����3 ø, which is false.

Example

Interpret symbols as in the previous example. The meaning of the quantified
formula $

n
nÎN

"
m

mÎNßm>n

 fm |a¤ < Ε , i.e.

ÔExists[·range[·simpleRange[·var[n]]],
 ÔElement[·var[n], ÔN],
 ÔForAll[·range[·simpleRange[·var[m]]],
 ÔAnd[ÔElement[·var[m], ÔN], ÔGreater[·var[m], ·var[n]]],
 ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[f, ·var[m]], a]], ·var[Ε]]]

1. Syntax and Semantics of Predicate Logic 37

ÔExists[·range[·simpleRange[·var[n]]],
 ÔElement[·var[n], ÔN],
 ÔForAll[·range[·simpleRange[·var[m]]],
 ÔAnd[ÔElement[·var[m], ÔN], ÔGreater[·var[m], ·var[n]]],
 ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[f, ·var[m]], a]], ·var[Ε]]]

is the property that

úthere exists an n
with the property, that n is a member of the set of natural numbers, such
that
for all m
with the property, that m is a member of the set of natural numbers and m
is greater than n ,
the absolute value of the difference between the reciprocal of m and a is
less than Εø

(with a and Ε free variables). If we assign to a the real number 0 and to Ε the
real number 1�����3 , then the meaning is: úthere exists a natural number n such that
for all natural numbers m greater than n the absolute value of the reciprocal of
m is less than 1�����3 ø, which is útrueø. Why is this true? We substitute e.g. 10 for n .
Suppose m is a natural number greater than 10, then, by laws for inequalities,
we know that 1������m is less than 1��������10 , and from this, since 1������m is positive, we know
that also the absolute value of 1������m is less than 1��������10 , thus, by transitivity of úlessø,
1������m is less than 1�����3 .

If we assign to a the real number 1, and to Ε the real number 1�����3 , then the
meaning is: úthere exists a natural number n such that for all natural numbers m
greater than n the distance between the reciprocal of m and 1 is less than 1�����3 ø,
which is úfalseø. Why is this false? For all natural numbers greater than 3 the
reciprocal is less than 1�����3 , thus, the distance from 1 is greater than 2�����3 . There-
fore, no such number n can exist.

Exercise 10

Convince yourself that the de Morgan laws for negating quantifiers hold even for
quantifiers with conditions, i.e.HaL Ø "

x
C

 A � $
x
C

 Ø A

HbL Ø $
x
C

 A � "
x
C

 Ø A

Solution ®

38 1. Syntax and Semantics of Predicate Logic

Exercise 11

We often need to express úthere exists a at most one x such that Aø. Think
about the logical structure of this formula and express it using only standard
quantifiers.

Solution ®

Exercise 12

The special form $!
x

 A stands for úthere exists a unique x such that Aø. Think

about the logical structure of this formula and express it using only standard
quantifiers.

Solution ®

1.8 How to Define New Symbols in Terms of Known Symbols

The use of definitions can be nicely compared with the use of subprograms in
programming. Subprograms are not necessary but convenient for giving struc-
ture to some program. The same is true for definitions. Definitions are not
necessary for mathematics but convenient for structuring mathematical
knowledge.

1.8.1 Explicit Definitions

1.8.1.1 Explicit Definition of Functions

An explicit definition of an n|ary function f is a statement of the form

f @x1 , ¼, xn D := Τx1 ,¼,xn

where f is a new function symbol and Τx1 ,¼,xn is a term containing only known
symbols and no free variables other than x1 , ¼, xn .

The intention is that f @x1 , ¼, xn D is introduced as an abbreviation for Τx1 ,¼,xn

and the definition introduces knowledge about the new function symbol f ,
namely

"
x1 ,¼,xn

f @x1 , ¼, xn D = Τx1 ,¼,xn

called the defining axiom for f . It is save to introduce new symbols in this way
as long as one observes the rule concerning the free variables. The defining
axiom allows from then on to replace each occurence of f @x1 , ¼, xn D by Τx1 ,¼,xn

for arbitrary x1 , ¼, xn . The term on the right hand side may not contain some of
the variables on the left hand side, which is, however, an indication that the
function does actually not depend on these variables and they can therefore be
omitted also on the left hand side. If the defining term contains some additional
free variable, say y , then the definition is wrong in the sense that replacing
f @x1 , ¼, xn D by Τx1 ,¼,xn ,y may change the meaning of the expression.

1. Syntax and Semantics of Predicate Logic 39

called the defining axiom for f . It is save to introduce new symbols in this way
as long as one observes the rule concerning the free variables. The defining
axiom allows from then on to replace each occurence of f @x1 , ¼, xn D by Τx1 ,¼,xn

for arbitrary x1 , ¼, xn . The term on the right hand side may not contain some of
the variables on the left hand side, which is, however, an indication that the
function does actually not depend on these variables and they can therefore be
omitted also on the left hand side. If the defining term contains some additional
free variable, say y , then the definition is wrong in the sense that replacing
f @x1 , ¼, xn D by Τx1 ,¼,xn ,y may change the meaning of the expression.

1.8.1.2 Explicit Definition of Predicates

An explicit definition of an n|ary predicate p is a statement of the form

p@x1 , ¼, xn D :� jx1 ,¼,xn

where p is a new predicate symbol and jx1 ,¼,xn is a formula containing only
known symbols and no free variables other than x1 , ¼, xn .

The intention is that p@x1 , ¼, xn D is introduced as an abbreviation for jx1 ,¼,xn

and the definition introduces knowledge about the new predicate symbol p ,
namely

"
x1 ,¼,xn

p@x1 , ¼, xn D � jx1 ,¼,xn

called the defining axiom for p . It is save to introduce new symbols in this way
as long as one observes the rule concerning the free variables. The defining
axiom allows from then on to replace each occurence of p@x1 , ¼, xn D by jx1 ,¼,xn

for arbitrary x1 , ¼, xn . The formula on the right hand side may not contain some
of the variables on the left hand side, which is, however, an indication that the
predicate does actually not depend on these variables and they can therefore
be omitted also on the left hand side. If the defining formula contains some
additional free variable, say y , then the definition is wrong in the sense that
replacing p@x1 , ¼, xn D by jx1 ,¼,xn ,y may change the meaning of the expression.

1.8.2 Implicit Function Definitions

Consider the square root function on the non|negative real numbers, which is
usually defined for every x Î R0

+ as�!!!!
x := the y Î R0

+ such that y2 = x .

40 1. Syntax and Semantics of Predicate Logic

The characteristic feature of this type of definition is that a new function f is
defined via a formula. More precisely, an n|ary function f @x1 , ¼, xn D is defined
to be the y such that jx1 ,¼,xn ,y . In contrast to an explicit definition, the object
f @x1 , ¼, xn D is not defined by explicitely describing its structure, thus we call a
definition of this type an implicit function definition.

Let’s study the expression úthe y Î R0
+ such that y2 = xø in a little bit more detail.

We can substitute different values for x , typically resulting in different values for
y , e.g. úthe y Î R0

+ such that y2 = 9ø is 3, whereas úthe y Î R0
+ such that y2 = Π2 ø is

Π. Substituting a value for y would turn the expression into some meaningless
expression, e.g. úthe Π Î R0

+ such that Π2 = 3ø. Changing y into some other
variable leaves the meaning of the expression unchanged, e.g. both
úthe y Î R0

+ such that y2 = 9ø and úthe z Î R0
+ such that z2 = 9ø denote the value 3.

This indicates, as discussed in Section 1.6.2, to view the language construct
úthe y such that jx1 ,¼,xn ,y ø~written as '!

y
jx1 ,¼,xn ,y ~as a quantifier that binds y .

The typical use of the '!|quantifier is in implicit definitions

(2)f @x1 , ¼, xn D := '!
y

jx1 ,¼,xn ,y .

Note that, when viewing the '!|quantifier as a quantifier that results in a term,
there is no syntactic difference between an implicit definition and an explicit
definition! Again, the right hand side of the definition is a term containing only
known symbols and no free variables other than x1 , ¼, xn . However, the big
difference between explicit and implicit definitions lies in how they are used. The
defining axiom for f as defined in (2) is

(3)"
x1 ,¼,xn ,y

f @x1 , ¼, xn D = y � jx1 ,¼,xn ,y

and it can be shown that this is equivalent to

(4)"
x1 ,¼,xn

$!
y

jx1 ,¼,xn ,y .

In contrast to the defining axiom of an explicit definition, which is always save to
introduce as long as the restrictions on the free variables are not violated, an
implicit definition needs a proof before it can be given. Typically, this is accom-
plished by proving the unique existence condition (4). More often even, proving
a formula of the form (4) gives rise to introducing a new function f to be defined
implicitely like in (2). The use of an implicit definition (in proving), however,
relies in most of the examples on the defining axiom (3), i.e. each occurrence of
an equality f @x1 , ¼, xn D = y may be replaced by jx1 ,¼,xn ,y and vice versa.

1. Syntax and Semantics of Predicate Logic 41

Remark:

An explicit function definition f @x1 , ¼, xn D = Τx1 ,¼,xn as described in Section
1.8.1 can be viewed just as a special case of an implicit definition with jx1 ,¼,xn ,y

the formula y = Τx1 ,¼,xn . In this case, the unique existence condition (4) need not
be proven because it holds for every term Τx1 ,¼,xn . The defining axiom special-
izes now to

"
x1 ,¼,xn ,y

f @x1 , ¼, xn D = y � y = Τx1 ,¼,xn ,

which simplifies to

"
x1 ,¼,xn

f @x1 , ¼, xn D = Τx1 ,¼,xn ,

which is just what we chose as the defining axiom for the explicit definition.

1.8.2.1 Weaker Form of Implicit Definitions

There is also a weaker form of an implicit definition, which occurs e.g. in

higherPrime@xD := such a y with y is prime and y > x .

Similar to úthe y such thatø we can quickly convince ourselves that an expres-
sion úsuch a y withø ought to be viewed as a quantifier that binds y . We write
'
y

jx1 ,¼,xn ,y for úsuch a y with jx1 ,¼,xn ,y ø. The idea is that

(5)f @x1 , ¼, xn D := '
y

jx1 ,¼,xn ,y

introduces a new axiom

(6)"
x1 ,¼,xn ,y

f @x1 , ¼, xn D = y � jx1 ,¼,xn ,y

called again the defining axiom for f , which is equivalent to

(7)"
x1 ,¼,xn

$
y

jx1 ,¼,xn ,y .

Again, the existence condition (7) is typically used to justify a definition of the
form (5) or the proof of an existence formula of the form (7) gives the motivation
to introduce a new function f defined implicitely in the form (5). One must be
cautious, however, because it is only the implication in the defining axiom,
which is available as knowledge on f . As we will see later when studying proof
rules, this will not allow anymore unrestricted replacement of expressions of the
form f @x1 , ¼, xn D = y . In particular, a proof of f @x1 , ¼, xn D = y cannot be
reduced anymore to just proving jx1 ,¼,xn ,y , as it can be done in the case, when
f is defined using the '!|quantifier, because this is exactly where unique exist-
ence comes into play. However, it can be convenient to define functions in this
weaker form, since in some cases this is all what is really needed.

42 1. Syntax and Semantics of Predicate Logic

Again, the existence condition (7) is typically used to justify a definition of the
form (5) or the proof of an existence formula of the form (7) gives the motivation
to introduce a new function f defined implicitely in the form (5). One must be
cautious, however, because it is only the implication in the defining axiom,
which is available as knowledge on f . As we will see later when studying proof
rules, this will not allow anymore unrestricted replacement of expressions of the
form f @x1 , ¼, xn D = y . In particular, a proof of f @x1 , ¼, xn D = y cannot be
reduced anymore to just proving jx1 ,¼,xn ,y , as it can be done in the case, when
f is defined using the '!|quantifier, because this is exactly where unique exist-
ence comes into play. However, it can be convenient to define functions in this
weaker form, since in some cases this is all what is really needed.

Exercise 13

Give precise definitions of úthe quotient of the integers x and yø and úthe
remainder of the integers x and yø in the language of predicate logic. Which
additional information is needed for this definition to be úcorrectø?

Solution ®

Exercise 14

Give a precise definition of úthe inverse element of x w.r.t. multiplicationø in the
language of predicate logic. Which additional information is needed for this
definition to be úcorrectø? When is this information available?

Solution ®

Exercise 15

Give a precise definition of úthe inverse function of f ø in the language of predi-
cate logic, see lecture notes Linear Algebra. Which additional information is
needed for this definition to be úcorrectø? When is this information available?

Solution ®

Exercise 16

Give a precise definition of sup A (úthe supremum of a set A)ø in the language
of predicate logic according to Definition 2.9 in the lecture notes Analysis.
Which additional information is needed for this definition to be úcorrectø? When
is this information available? Think about how úsupø is used e.g. in Definition
2.11.

Solution ®

Exercise 17

Give a precise definition of úthe limit of the sequence Hxn L ø in the language of
predicate logic according to Definition 3.2 in the lecture notes Analysis. Which
additional information is needed for this definition to be úcorrectø? When is this
information available? Think about how úlimit ofø is used e.g. in Theorem 3.5.

Solution ®

1. Syntax and Semantics of Predicate Logic 43

Exercise 18

Give a precise formulation of Definition 3.15 from the lecture notes Analysis in
the language of predicate logic. If necessary, give precise definitions for underly-
ing concepts. Give a formulation of Theorem 3.16 from the lecture notes Analy-
sis in predicate logic using the concepts defined before.

Solution ®

Exercise 19

Give a precise definition of úthe derivative of a function f ø in the language of
predicate logic according to Definition 6.1 from the lecture notes Analysis. Give
precise definitions for all underlying concepts. Which role plays Theorem 6.2?

Solution ®

Exercise 20

Give a precise definition of ús is orthogonal to Aø (for s Î Rn and A a straight
line) in the language of predicate logic, see lecture notes Linear Algebra. Give
precise definitions for all underlying concepts.

Solution ®

Exercise 21

Give a precise definition of úp is the interpolating polynomial for the tuples x
and yø in the language of predicate logic, see lecture notes Algorithmic Meth-
ods. Give precise definitions for all underlying concepts.

Solution ®

Example (Danger of weak implicit definitions)

Consider the concepts of úbounded setsø and úupper bound of a setø. A set
A Í M is called bounded from above iff there is a c Î M , which is greater equal
all elements of A . Every such c is then called an upper bound of A . Written in
predicate logic:

is|bounded@A, MD :� $
cÎM

"
xÎA

x £ c

is an explicit definition of a new predicate úis|boundedø. For úupper|boundø one
would be tempted to introduce a function implicitely defined as

upper|bound@A, MD := '
cÎM

"
xÎA

x £ c

so that the fact that ú10 is an upper bound of A in M ø can be stated as

(8)upper|bound@A, MD = 10 .

44 1. Syntax and Semantics of Predicate Logic

Intuitively, this seems to be fine. Now consider the well|known theorem that
every number greater than an upper bound must again be an upper bound.
From this theorem together with (8) we can then easily infer

(9)upper|bound@A, MD = 12 ,

from which, by symmetry and transitivity of equality, we get the contradiction

10 = 12 .

Example (Predicate instead of implicitely defined function)

Weak implicit definitions are often better expressed as predicates. In the exam-
ple above, instead of the function úupper|boundø one would rather define a
predicate

upper|bound@A, M, cD :� c Î M í "
xÎA

x £ c .

(It can, in general, often help clarify the structure if one introduces new symbols
with each quantifier in a sequence of quantifiers.

is|bounded@A, MD :� $
c

upper|bound@A, M, cD
In a next step one could now introduce a quantifier for M and introduce a new
unary function/predicate depending only on A . Think about what the meaning of
this would then be. See also next example.)

The fact that ú10 is an upper bound of A in M ø would then be written as

upper|bound@A, M, 10D .

The theorem would now allow to infer

upper|bound@A, M, 12D ,

which does not cause any problems. (As soon as we have studied rules for
proving, we will see that in the formulation using a function úupper|boundø it
would not even be possible to prove the theorem, which~on the other
hand~saves us from the contradiction 10 = 12 arising in the previous example.)

Example (Structured definitions by introducing only one quantifier at the
time)

Consider the term

1. Syntax and Semantics of Predicate Logic 45

f @xD - f @aD
������������������������������������

x - a

containing the free variables f , a, x . It may, thus, be reasonable to define a
3|ary function

gradient|secant|between@ f , a, xD :=
f @xD - f @aD

������������������������������������
x - a

giving the úgradient of the secant between the points Hx, f @xDL and Ha, f @aDL ø.
Now, binding x through the lim|quantifier, we can define

gradient|at@ f , aD := lim
x®a

gradient|secant|between@ f , a, xD J = lim
x®a

f @xD - f @aD

������������������������������������
x - a

N
being the úgradient of f at aø. Now, binding a through the Λ|quantifier, we can
define the derivative of f as

derivative@ f D := Λ
a

gradient|at@ f , aD
J = Λ

a
 lim
x®a

gradient|secant|between@ f , a, xD = Λ
a

 lim
x®a

f @xD - f @aD

������������������������������������
x - a

N .

(Note, that we did not bother with existence of limits etc. in this example. The
complete and appropriate formulation of differentiability and related concepts
can be found in the next example.)

Example (Structured definitions by introducing only one quantifier at the
time)

We have a notion of limit for functions (see Definition 5.24 lecture notes
Analysis):

is|limit|of|at@ f , a, yD :� "
Ε>0

$
∆>0

"
xÎU∆ @aD�8a<ÝD@ f D f @xD Î UΕ @yD Ji.e. lim

x®a
 f @xD = yN

gradient|secant|between@ f , a, xD :=
f @xD - f @aD

������������������������������������
x - a

In fact, we want to view gradient|secant|between as a function of x :

gradient|between@ f , aD := Λ
x

 gradient|secant|between@ f , a, xD J = Λ
x

f @xD - f @aD

������������������������������������
x - a

N
converges|gradient|between|to@ f , a,

yD :� is|limit|of|at@gradient|between@ f , aD, a, yD
differentiable@ f , aD :� $!

y
converges|gradient|between|to@ f , a, yD

46 1. Syntax and Semantics of Predicate Logic

derivative@ f , aD := '!
y

converges|gradient|between|to@ f , a, yD
For derivative@ f , aD we introduce the notion f ’@aD , where in this case ú ’ ø is a
binary function symbol written in infix notation.

differentiable@ f D :� "
a

differentiable@ f , aD
derivative@ f D := Λ

a
 derivative@ f , aD

For derivative@ f D we introduce the notion f ’ , where in this case ú ’ ø is a unary
function symbol written in postfix notation. It must be noticed that in the defini-
tion (lecture notes Analysis p.87)

f ’ : I ® R
x # f ’@xD

the ú ’ ø|symbol in the first line is the unary postfix function symbol, whereas in
the second line it is the binary infix function symbol, i.e.

derivative@ f D : I ® R
x # derivative@ f , xD

telling that (for all x)

derivative@ f D@xD = derivative@ f , xD .

The process of representing a binary function j as a unary function, whose
value when applied to the first argument is itself a function, which is then
applied to the second argument, is called currying. In general, currying reduces
n|ary functions to nested applications of unary functions. By currying we can for
instance think of x + y + z (ÔPlus@x, y, zD) as

ÔPlus@ÔPlus@xD@yDD@zD
where

ÔPlus@xD := Λ
u

 x + u .

1. Syntax and Semantics of Predicate Logic 47

