
Chapter 1:

Syntax and Informal Semantics of Predicate Logic

1.1 Why Syntax?

Mathematics,  in  particular  a  mathematical  proof,  always  reflects  processes  in
the  human  mind.  We  consider  something  as  true,  therefore  something  else
must be true. Let’s consider the following statements:

A: Increasing demand increases the price.

B: Raising the taxes increases the price.

Consider  A  and  B  to  be  true  and  imagine  this  is  all  what  we  know  about
údemandø,  úpriceø,  and  útaxø.  (Either  A  and  B  had  been proven before or  we
consider  them  as  axioms~as  úlaws  of  the  marketø~this  does  not  make  a
difference in what we want to investigate now!)

Question 1:  We observe increasing demand. Can we conclude that  the  price
must increase?
Answer: YES. (úBecause ofø A)

Question 2:  We observe increasing price.  Can we conclude that  the  demand
has increased?
Answer: NO. (It could also be due to raising the taxes, i.e. úbecause ofø B.)

Question 3:  We observe increasing price.  Can we conclude that  the  demand
has not increased?
Answer:  NO.  (Of  course  not,  the  increase  in  price  can  be  just  the  effect  of
increasing demand.)

Question 4:  We observe decreasing price. Can we conclude that the demand
has not increased?
Answer:  YES.  (If  it  had  increased  then,  úbecause  ofø  A,  the  price  would
increase.)



Question 4:  We observe decreasing price. Can we conclude that the demand
has not increased?
Answer:  YES.  (If  it  had  increased  then,  úbecause  ofø  A,  the  price  would
increase.)

Question  5:  We  observe  decreasing  price.  Can  we  conclude  that  the  taxes
have not been raised?
Answer:  YES. (If taxes had been raised then, úbecause ofø B, the price would
increase.)

The justifications for the above answers can be given without any understand-
ing of the concepts údemandø, úpriceø, and útaxø. This means, the logical rules
in our brains that make us answer úYESø or úNOø, respectively, only depend on
the syntactical structure of the statements under consideration. In fact, there is
a  tight  correspondence between úthoughtsø  and  the  way  we  express  them.  A
clear  understanding of  the syntactical structure helps to understand lots of  the
úreasoning  powerø  contained  in  a  statement.  On  the  other  hand,  the  correct-
ness of logical reasoning can be checked merely on a syntactical basis without
understanding the meaning of the statement.

We should, thus, learn to concentrate on syntax rather than semantics~on
form  rather  than  content~not  only  when  analyzing  the  correctness  of
reasoning steps but also when doing one’s own proofs!

This does neither dispel úhaving good ideasø nor úcreativityø nor úintuitionø from
mathematical proving. In some proofs it  will be valuable to have some intuition
in  order  to  find  the  right  track,  on  which  to  proceed with  the  proof.  Ideas  and
intuition are helpful for  finding the appropriate proof rule to apply next,  but  the
actual  application of  the  rule  is  safer  when being done on a  syntactical  basis.
Often  mathematical  concepts  become  too  complicated  or  too  abstract  for
reasoning about  their  properties just  based on  intuition, and  often the  intuitive
picture of some mathematical concept is only a rough approximation to the real
meaning and can lead into error.

Exercise 1

Question 4 is often answered úNOø with the following argument: 

The demand could have increased. If the taxes were lowered sufficiently,
then  one  would  still  observe  desreasing  price,  therefore  one  cannot
conclude that demand has necessarily not increased.

Analyse this argument and compare it to the argument given as justification for
úYESø.

Solution ®

In  the  rest  of  Chapter  1,  we  will  study  the  syntactical  structure  of
statements~such as  A  and  B~in  predicate logic.  Based  on  this  structure  we
will then investigate in Chapter 2, how certain statements can be used in order
to  derive  other  statements,  which  we  then  know  to  be  true  as  long  as  the
original statements were true.  These rules will  be  called úinference rulesø  and
they are just what is hidden behind the úbecause ofø  in the above example. In
mathematical  proofs,  it  is  common  to  just  phrase  the  application  of  inference
rules as úthereforeø, úbecause ofø, or often just úÞø, and it is assumed that the
reader is familiar with the rules that justify the respective proof step.
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In  the  rest  of  Chapter  1,  we  will  study  the  syntactical  structure  of
statements~such as  A  and  B~in  predicate logic.  Based  on  this  structure  we
will then investigate in Chapter 2, how certain statements can be used in order
to  derive  other  statements,  which  we  then  know  to  be  true  as  long  as  the
original statements were true.  These rules will  be  called úinference rulesø  and
they are just what is hidden behind the úbecause ofø  in the above example. In
mathematical  proofs,  it  is  common  to  just  phrase  the  application  of  inference
rules as úthereforeø, úbecause ofø, or often just úÞø, and it is assumed that the
reader is familiar with the rules that justify the respective proof step.

1.2 What Is Syntax?

Syntax  describes  the  form  of  expressions  in  a  language.  We  will  describe
predicate logic by its abstract syntax, i.e. one particular standard form of expres-
sions  in  the  language.  Expressions  that  conform  to  the  rules  of  syntax  are
called  úwell|formed  expressionsø.  Compare  this  to  programming  languages:
The  syntax  tells,  how  programs  must  be  written,  where  blanks  are  allowed,
where  semi|colons  must  be  written,  whether  to  use  brackets  or  parentheses,
etc.),  a  well|formed expression  in  a  programming language is  a  program that
passed the compiler without úsyntax errorø. There are, however, many different
úconcrete  waysø  of  writing  the  concepts  described  in  the  abstract  syntax  of
predicate logic,  mainly  to  allow different appearances of  mathematical expres-
sions reflecting different taste and style as it developed over the years. We call
this  concrete  syntax,  external  syntax,  or  notation.  (I  don’t  know a  comparable
concept in programming languages.) 

However,  whatever  the  concrete notation is,  the  syntactical  structure of  an
expression in predicate logic (and other langauges) is defined by the answers to
three questions:

è To  which  class  of  expression  does  the  expression  belong?  In  concrete
notation, this question is answered by determining the úoutermost symbolø
or the úclassifierø of the expression.

è What  are  the  subexpressions  of  the  expression?  This  question  is
answered  by  úselectorø  functions  that  decompose  (úparseø)  the
expression.

è How can we form new expressions in a certain class from given expres-
sions? This question is answered by úconstructorø functions that compose
new expressions.

The abstract syntax of a language is defined by the classifiers, the constructors
and the selectors and their interaction.
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Example

"
x

x2 >a

Jx > b í ¢ 1
������
x

¦ < ΕN
The outermost symbol of this expression is the symbol ‘"’ (universal quantifier).

The ingredient subexpressions are:

the quantified variable ’x ’,

the condition expression ’x2 > a ’, and

the body expression ’Hx > b ì   1�����x ¤ < ΕL ’.
á

The syntactical structure of  an expression can be determined without knowing
anything about the meaning of the symbols. We must be able to recognize the
concepts of predicate logic in all possible notational variants. The most extreme
case  being  the  recognition  of  predicate  logic  concepts  in  natural  language,
which  is  very  important,  since  much  of  mathematics  conversation  is  done  in
natural  language.  Don’t  believe  mathematics  starts  where  one  starts  to  intro-
duce fancy symbols and complicated formulae! The really distinctive feature of
mathematics is not the substitution of natural language by formulae but it  is its
formal rigor.

Moreover,  it  should  be  seen,  that  the  validity  of  the  rules  of  mathematical
logic  is  not  restricted to  mathematics.  The  rules  of  logic  have  developed over
centuries and they only reflect what humans have observed in their  every|day
behavior. Therefore, it can also be of help in daily conversation to recognize the
logic structure in statements such as úThere is always ¼ø or úIf we ¼ then ¼
we will  ¼ø  and to know what conclusions are allowed from these. It  can often
be observed, that wrong conclusions are drawn by wrong application of logical
rules.

1.3 What is Semantics?

Semantics refers to the meaning  of  expressions in a language. The semantics
of  an  expression  is  based  on  its  syntax,  and  also  the  actions  that  can  be
attached  to  an  expression~such  as  proving,  computing,  and  solving~are
guided by the syntactical structure of  expressions. Hence, a  clear understand-
ing of the syntax is the basis, and often the key, for understanding mathematics.
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Example

"
x

x2 >a

Jx > b í ¢ 1
������
x

¦ < ΕN
has the meaning that

for all values ’x ’,

satisfying the condition ’x2 > a ’

’Hx > b ì   1�����x ¤ < ΕL ’ holds.
á

1.4 A Standard Syntax: Theorema

Theorema is a software system implemented by the Theorema group at RISC|
Linz  under  the  direction  of  B.  Buchberger,  see  www.theorema.org. Theorema
contains  a  computer|supported  version  of  predicate  logic  and  other  useful
language constructs,  such  as  numbers,  sets,  and tuples.  The external  syntax,
i.e.  the  appearance  of  the  language,  is  as  close  as  possible  to  the  syntax
commonly  used  in  mathematical  textbooks.  The  internal  representation  of
expression  in  the  Theorema  system,  on  the  other  hand,  is  very  close  to  the
abstract syntax of  predicate logic. For getting a quick and deep introduction to
predicate logic syntax, we will display predicate logic expression in the internal
format  of  Theorema.  The  internal  syntax  will  uniquely  reveal  the  complete
syntax of any expression in predicate logic.

� This loads Theorema during a Mathematica session. A valid license for Theorema 
is necessary.

Needs@"Theorema‘"D
� To obtain the internal format of the above predicate logic expression, enter

·A "
x

x2 >a

ikjjx > b í ÄÄÄ ÄÄÄ 1
������
x

ÄÄÄ¤ÄÄÄ < Εy{zz E �� InputForm

ÔForAll[·range[·simpleRange[·var[x]]], ÔGreater[ÔPower[·var[x], 2], a], 
 ÔAnd[ÔGreater[·var[x], b], ÔLess[ÔBracketingBar[ÔDivide[1, ·var[x]]], Ε]]]

1. Syntax and Semantics of Predicate Logic 9



� (Wrapping an expression into ·[¼] tells Mathematica to parse the expression as a 
Theorema expression, the suffix //InputForm shows the internal representation 
instead of the standard external form.)

The internal representation shows the syntactical structure of the expression in
a systematic way, namely as a nested expression made up from a head symbol
(outermost  symbol,  leftmost  symbol)  and  subexpressions.  The  head  symbol
determines  the  útype  of  the  expressionø,  i.e.  the  language category,  to  which
the  expression  belongs.  In  the  example  above,  the  head  symbol  ‘ÔForAll’
indicates that the expression is a úuniversally quantified formulaø containing the
three subexpressions

·range[·simpleRange[·var[x]]]

ÔGreater[ÔPower[·var[x], 2], a]

ÔAnd[ÔGreater[·var[x],b],ÔLess[ÔBracketingBar[ÔDivide[1,·var[x]]],Ε]]

The application of head symbols to subexpressions is written using brackets (‘[’,
‘]’). Each of the subexpressions again has a head symbol and subexpressions.
Some  expressions  do  not  contain  subexpressions  anymore,  we  call  these
expressions  atomic  expressions.  The  actual  names  used  as  head  symbols
(‘ÔForAll’,  ‘ÔGreater’,  ·range,  ·var,  etc.)  do  not  matter,  you  can  choose
other~more telling~names. Even symbols may be used, for instance the third
subexpression above could also be written asß [ > [·var[x], b], < [  ¤ [ ÷ [1, ·var[x]]], Ε]]

It  is  important  to  see,  how  complex  expressions  are  built|up  from  simpler
expressions. Again there are very similar concepts in programming languages:
The first step during the compilation of a program, i.e. the transformation to the
machine  code  of  the  particular  computer,  is  the  úlexical  analysisø,  where  the
stream of symbols is divided into útokensø, i.e. separate pieces, words. During
lexical analysis it is decided, for instance, whether úx > bø consists of the three
tokens  ‘x ’,  ‘> ’,  and  ‘b ’  or  just  one  token  ‘x > b ’.  This  may  seem  trivial,  but
already the next example will show that lexical analysis may become tricky: the
input stream ú3 nø is usually divided into the two tokens ‘3’ and ‘n ’, whereas úinø
is usually recognized as only one token ‘in’.

The hierarchical inter|relation of language chunks left after lexical analysis is
established by the úparsingø of the expression, i.e. the grammatical analysis of
the  expression.  During  parsing,  the  sequence  of  tokens  ‘x ’,  ‘> ’,  and  ‘b ’  is
recognized as úthe operation ‘> ’ applied to the arguments ‘x ’ and ‘b ’ø. This can
be established since the token ‘> ’ is recognized as a symbol, which may occur
between  its  subexpressions.  It  stands  for  the  known  head  symbol  ÔGreater,
thus úx > bø is parsed as ÔGreater@x, bD . The result of parsing is best visualized
in the so|called úparse treeø of the expression.
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� In Mathematica, the parse tree of an expression can be displayed using the 
command TreeForm.

·A "
x

x2 >a

ikjjx > b í ÄÄÄ ÄÄÄ 1
������
x

ÄÄÄ¤ÄÄÄ < Εy{zz E �� TreeForm

ÔForAllA È
·rangeA È

·simpleRangeA È
·var@xD E E , È

ÔGreaterA È
ÔPowerA È

·var@xD , 2E , aE , È
ÔAnd

From this it becomes evident that the most appropriate data structure for storing
expressions  is  a  tree  structure,  where  each  node  contains  the  head  of  the
corresponding  subexpression  and  each  subtree  of  a  node  corresponds  to  a
subexpression. The root of the tree would contain the outermost symbol of the
whole expression, the leaves of the tree would contain only atomic expressions.

� The use of symbols starting with Ô as head symbols in Theorema has technical 
reasons. The same is true for head symbols starting with ·, such as ·var or ·range.

1.5 The Standard Language Constructs of Predicate Logic

We will  now introduce the standard language constructs available in  predicate
logic.  For  most  language constructs,  we  will  give  the  standard syntax  as  sup-
ported in Theorema  and several notational variants that are commonly used in
mathematics.

1.5.1 Example from Analysis 1: The Definition of ‘converges’

We want to define~for all sequences f  and all real numbers a~what it means
that f  converges to a .  In Theorema’s  version of  predicate logic, this would be
written as

·A "
f

"
a

i
kjjjjjjjjconverges@f, aD :� "

Ε
ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε
y
{zzzzzzzz E �� InputForm
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ÔForAll@
·range@·simpleRange@·var@fDDD,
True,
ÔForAll@

·range@·simpleRange@·var@aDDD,
True,
ÔIff@

converges@·var@fD, ·var@aDD,
ÔForAll@

·range@·simpleRange@·var@ΕDDD,
ÔAnd@ÔElement@·var@ΕD, ÔRD, ÔGreater@·var@ΕD, 0DD,
ÔExists@

·range@·simpleRange@·var@nDDD,
ÔElement@·var@nD, ÔND,
ÔForAll@

·range@·simpleRange@·var@mDDD,
ÔAnd@ÔElement@·var@mD, ÔND, ÔGreater@·var@mD, ·var@nDDD,
ÔLess@

ÔBracketingBar@
ÔMinus@

ÔSubscript@·var@fD, ·var@mDD,
·var@aDDD,

·var@ΕDDDDDDDD
This  is  a  definition  of  a  new  property,  namely  that  f  converges  to  a .  In  the
internal syntax, this is reflected by introducing a new head symbol ‘converges’,
which  is  applied  to  its  argument  expressions.  A  definition  only  introduces  an
abbreviation  for  usually  more  complex  expressions  of  predicate logic,  i.e.  it  is
not  necessary to  view definitions as  a  core component of  predicate logic,  it  is
just  that  it  is  convenient  to  allow  the  introduction  of  new  symbols  that  are
defined in terms of known symbols. We will learn more about the rules, how to
give explicit definitions, in Section 1.8 later. In general, the structure of a defini-
tion is

new@v1 , ¼, vn D :� expressionv1 ,¼,vn

or

new@v1 , ¼, vn D := expressionv1 ,¼,vn

and  it  allows  to  substitute  each  occurrence  of  ‘new@v1 , ¼, vn D ’  by
‘expressionv1 ,¼,vn

’, where ‘expressionv1 ,¼,vn
’ is a predicate logic expression involv-

ing  the  variables v1 , ¼, vn .  The  expression to  the  right  of  :�  in  the  definition
above  contains  most  of  the  important  categories  of  language  constructs  of
predicate logic.

� The úwrappersø starting with · in the internal form of the expression are used for 
clarification of syntactical structure in the Theorema system. They are not part of 
predicate logic. For instance, ·var is used to explicitely mark symbols to denote 
variables in order to be able to distinguish them from symbols denoting constants, 
see below.
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� The úwrappersø starting with · in the internal form of the expression are used for 
clarification of syntactical structure in the Theorema system. They are not part of 
predicate logic. For instance, ·var is used to explicitely mark symbols to denote 
variables in order to be able to distinguish them from symbols denoting constants, 
see below.

For  an  intuitive  understanding  of  predicate  logic  it  is  helpful  to  distinguish
expressions  into  terms  and  formulae.  A  term  describes  an  object,  whereas  a
formula describes a statement about (a property of) objects.  

1.5.2 Terms

1.5.2.1 Constants

è Object constants: stand for concrete objects in the úuniverse of discourseø.

In the example above: 0, ÔR, ÔN .

è Function  constants:  stand  for  concrete  functions  (operations,  processes,
algorithms, etc.) on objects in the úuniverse of discourseø. The úarityø of a
function constant is the number of arguments that it can take.

In  the  example  above:  ÔBracketingBar  (arity  1),  ÔMinus  (arity  2),
ÔSubscript (arity 2).

è Predicate  constants:  stand  for  concrete  predicates  (attributes,  relations,
properties, etc.) on objects in the úuniverse of discourseø. The úarityø of a
predicate constant is the number of arguments that it can take.

In the example above: converges (arity 2), ÔElement (arity 2), ÔGreater
(arity 2), ÔLess (arity 2).

1.5.2.2 Variables

è Object (Ordinary) variables: place|holders, for which terms can be substi-
tuted, see Section 1.6, or which can be quantified, see Section 1.5.3.3.

In  the example above: f ,  a ,  Ε ,  n ,  m .  (In  Theorema’s  internal form,  they
are represented as ·var[f], ·var[a], ·var[Ε], etc.)

è Function variables:

In the example above: None.

è Predicate variables:

In the example above: None.

These types of variables are available in first|order logic. Note, that function and
predicate variables are available, but may neither be substituted nor quantified
in  first|order  logic.  In  higher|order logic,  function  and  predicate  variables  may
be both substituted and quantified. We will  not embark on the advantages and
disadvantages of  first|order versus  higher|order. The approach chosen mostly
in  mathematics  is  to  use  first|order  logic  and  introduce  set  theory  on  top  of
first|order  predicate  logic.  Both  functions  and  relations  can  be  represented
within  set  theory,  which  makes  them  first|order  objects,  thus  making  function
and  predicate  variables  superfluous.  These  topics  will  be  discussed  in  all
necessary detail in courses on logic (e.g. Logik 1, Logik 2).
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These types of variables are available in first|order logic. Note, that function and
predicate variables are available, but may neither be substituted nor quantified
in  first|order  logic.  In  higher|order logic,  function  and  predicate  variables  may
be both substituted and quantified. We will  not embark on the advantages and
disadvantages of  first|order versus  higher|order. The approach chosen mostly
in  mathematics  is  to  use  first|order  logic  and  introduce  set  theory  on  top  of
first|order  predicate  logic.  Both  functions  and  relations  can  be  represented
within  set  theory,  which  makes  them  first|order  objects,  thus  making  function
and  predicate  variables  superfluous.  These  topics  will  be  discussed  in  all
necessary detail in courses on logic (e.g. Logik 1, Logik 2).

1.5.2.3 Compound Terms

Terms are built up inductively from object and function constants and variables
by úapplicationø. Application, in Theorema, is denoted by brackets ‘[’ and ‘]’. (In
almost all other notations, application is denoted by parantheses ‘(’ and ‘)’. The
bracket notation, which is borrowed from Mathematica, avoids certatin ambigu-
ities that may arise with the parantheses notation.)

è Constants and ordinary variables are terms.

è If t1 , ¼, tn  are terms and f  is an n|ary function constant or variable then
f @t1 , ¼, tn D  is again a term.

In the example above:

ÔSubscript[·var[f], ·var[m]], i.e. fm

ÔMinus[ÔSubscript[·var[f], ·var[m]], ·var[a]], i.e. fm - a

ÔBracketingBar[ÔMinus[ÔSubscript[·var[f], ·var[m]], ·var[a]]], i.e.   fm - a ¤
Usually,  the  arity  of  a  function  constant  is  fixed,  i.e.  in  the  same  context  a
function constant must always take the same number of arguments. There are
cases,  where  it  is  convenient  to  allow  flexible  arity  constants,  i.e.  function
constants  that  can  take  arbitrarily  many  arguments.  In  most  of  the  cases,
however, these are only abbreviations for more complicated expressions using
fixed arity constants.

·@ a + b D �� InputForm

ÔPlus[a, b]

·@ a + b + c D �� InputForm

ÔPlus[a, b, c]

Alternatively,  ÔPlus@a, b, cD  could  be  interpreted  as  an  abbreviation  for
ÔPlus@a, ÔPlus@b, cDD .

Notation:  The  standard  way  of  denoting  function  application  is  f @t1 , ¼, tn D ,
where f  is  a function constant, i.e. the name  of  the function, and t1 , ¼, tn  are
the argument terms. Many functions in every|day mathematics have associated
operators,  i.e.  symbols  and  symbolics,  for  abbreviating  the  names.  In  many
cases,  symbols and symbolics is  chosen such that an intuitive meaning of  the
function is captured in the notation. Operators can be written in many different
ways,  notably  infix,  prefix,  postfix,  matchfix,  sub|,  super|,  under|,  over|script,
and  many  other  fancy  two|dimensional  patterns.  For  correctly  parsing  an
expression it is absolutely necessary to know the behavior of operands in order
to  uniquely  translate  any  fancy  notation  into  its  underlying  standard  form  of
predicate logic. úGoodø notation is an absolutely crucial feature of mathematics
and  it  is  heavily  used  in  all  areas  of  mathematics,  therefore  it  is  inevitable to
understand  the  logic  structure  of  mathematical  notation  in  all  its  variations.
Table 1.1 shows commonly used expressions in mathematics with one possible
translation to standard syntax:
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Notation:  The  standard  way  of  denoting  function  application  is  f @t1 , ¼, tn D ,
where f  is  a function constant, i.e. the name  of  the function, and t1 , ¼, tn  are
the argument terms. Many functions in every|day mathematics have associated
operators,  i.e.  symbols  and  symbolics,  for  abbreviating  the  names.  In  many
cases,  symbols and symbolics is  chosen such that an intuitive meaning of  the
function is captured in the notation. Operators can be written in many different
ways,  notably  infix,  prefix,  postfix,  matchfix,  sub|,  super|,  under|,  over|script,
and  many  other  fancy  two|dimensional  patterns.  For  correctly  parsing  an
expression it is absolutely necessary to know the behavior of operands in order
to  uniquely  translate  any  fancy  notation  into  its  underlying  standard  form  of
predicate logic. úGoodø notation is an absolutely crucial feature of mathematics
and  it  is  heavily  used  in  all  areas  of  mathematics,  therefore  it  is  inevitable to
understand  the  logic  structure  of  mathematical  notation  in  all  its  variations.
Table 1.1 shows commonly used expressions in mathematics with one possible
translation to standard syntax:

Expression Operator Type Standard syntax

a + b + Infix ÔPlus@a, bD
a - b - Infix ÔMinus@a, bD

-a - Prefix ÔMinus@aD
a ! ! Postfix ÔFactorial@aD a¤   ¤ Matchfix ÔBracketingBar@aD°a´ ° ´ Matchfix ÔDoubleBracketingBar@aD
an ãã Subscript ÔSubscript@a, nD
an ãã Subscript a@nD
a2 ã2 Superscript ÔSquare@aD
an ãã Superscript ÔPower@a, nD�!!!!

a
�!!!

2 D ÔSqrt@aD
f ’ ’ Postfix ÔDerivative@ f D
f HnL ãHãL 2 D ÔDerivative@ f , nD

a�����b ����� 2 D � Infix ÔDivide@a, bDikjjj a

b
y{zzz ikjjj ã

ã
y{zzz 2 D � Matchfix ÔBinomial@a, bD

ikjjj a

b
y{zzz ikjjj ã

ã
y{zzz 2 D � Matchfix ÔVector@a, bD

F Èab È 2 D � Postfix ÔEvalUpperLower@F, a, bD
Table 1.1:Frequently used operators associated with function symbols.

Ambiguities: As one can already see from Table 1.1, mathematical notation is
not unique. In most of the cases, interpretation is at least unique in a particular

context  assumed to  be  known by  the  reader:  in  a  book on  combinatorics J a
b

N
will certainly denote the binomial coefficient, in a book on geometry probably the
vector.  Lecture  notes  Linear  Algebra:  Page  12:  used  as  binomial  coefficient,
page 58 and 59 used as vector.
Lecture  notes  Analysis:  Page  236:  in  Exercise  7  used  as  binomial  coefficient,
on page 244 used as vector.
For  humans,  it  is  usually  úclear  from  the  contextø  what  certain  ambiguous
notations actually mean.
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Ambiguities: As one can already see from Table 1.1, mathematical notation is
not unique. In most of the cases, interpretation is at least unique in a particular

context  assumed to  be  known by  the  reader:  in  a  book on  combinatorics J a
b

N
will certainly denote the binomial coefficient, in a book on geometry probably the
vector.  Lecture  notes  Linear  Algebra:  Page  12:  used  as  binomial  coefficient,
page 58 and 59 used as vector.
Lecture  notes  Analysis:  Page  236:  in  Exercise  7  used  as  binomial  coefficient,
on page 244 used as vector.
For  humans,  it  is  usually  úclear  from  the  contextø  what  certain  ambiguous
notations actually mean.

Precedence: The question of precedence arises as soon as there is more than
one operator, e.g.

a + b ! ¼? ÔFactorial@ÔPlus@a, bDD
a + b ! ¼? ÔPlus@a, ÔFactorial@bDD

Parentheses ‘(’  and ‘)’ are used in order to indicate which operator to use first,
i.e. Ha + bL ! ¼ ÔFactorial@ÔPlus@a, bDD

a + Hb ! L ¼ ÔPlus@a, ÔFactorial@bDD
Note that  in  the standard syntax there is  no need for  parentheses! In  order to
avoid parentheses in certain cases one introduces operator precedence.  In the
example above, interpretation 1 would be achieved without need of parentheses
by assigning a higher precedence for ‘+’ than to ‘!’.

General rule: If unsure, use parentheses!

1.5.3 Formulae

Formulae can be atomic formulae, propositional formulae, or quantifier formulae.

1.5.3.1 Atomic Formulae

Atomic formulae are built up inductively from predicate constants and variables
by úapplicationø using brackets ‘[’ and ‘]’.

è If t1 , ¼, tn  are terms and p  is an n|ary predicate constant or variable then
p@t1 , ¼, tn D  is an atomic formula.
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In the example above:

ÔElement[·var[Ε], ÔR],  ÔElement[·var[n], ÔN],  ÔElement[·var[m], ÔN],
i.e. Ε Î R , n Î N , m Î N

ÔGreater[·var[Ε], 0], ÔGreater[·var[m],·var[n]], i.e. Ε > 0 , m > n

ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[·var[f],  ·var[m]],  ·var[a]]],
·var[Ε]], i.e.   fm - a ¤ < Ε

Like  with  function  constants,  we  allow  flexible  arity  also  for  some  predicate
constants.

·@ a < b D �� InputForm

ÔLess[a, b]

·@ 0 < n < M D �� InputForm

ÔLess[0, n, M]

Alternatively,  ÔLess@0, n, MD  could  be  interpreted  as  abbreviation  for
ÔLess@0, nD ß ÔLess@n, MD .

Notation:  Predicate  symbols  can  be  denoted~like  function  symbols~using
associated operators. Table 1.2  shows commonly used expressions in  mathe-
matics with one possible translation to standard syntax:
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Expression Operator Type Standard syntax

a = b = Infix ÔEqual@a, bD
a £ b £ Infix ÔLessEqual@a, bD
a ³ b ³ Infix ÔGreaterEqual@a, bD
a ý b ý Infix ÔVerticalBar@a, bD

a ºn b ºn 2 D � Infix ÔCongruent@a, b, nD
a Î A Î Infix ÔElement@a, AD
A Í B Í Infix ÔSubsetEqual@A, BD
a ~ b ~ Infix ÔTilde@a, bD
f �a � Infix ÔLongRightArrow@ f , aD
g ¦ h ¦ Infix ÔUpTee@g, hD
g þ h þ Infix ÔDoubleVerticalBar@g, hD

f : A ® B : ® Infix ÔIsFunctionFromTo@ f , A, BD
f � � Postfix ÔUpperRightArrow@ f D

Table 1.2: Frequently used operators associated with predicate symbols.

Ambiguities and Precedence: see terms.

1.5.3.2 Propositional Formulae

Propositional  formulae  are  built  up  inductively  from  formulae  by  the  proposi-
tional connectives.

è If  A  and B  are formulae then únegationsø, údisjunctionsø, úconjunctionsø,
úimplicationsø, and úequivalencesø are propositional formulae.

Connective Syntax Name speak

Ø Ø A Negation únotø AÞ A Þ B Disjunction A úorø Bß A ß B Conjunction A úandø B

Þ A Þ B Implication A úimpliesø B

� A � B Equivalence A úif and only ifø B

Table 1.3: Propositional connectives.

18 1. Syntax and Semantics of Predicate Logic



In the example above:

ÔAnd[ÔElement[·var[Ε], ÔR], ÔGreater[·var[Ε], 0]], i.e. Ε Î R ß Ε > 0

ÔAnd[ÔElement[·var[m],  ÔN],  ÔGreater[·var[m],  ·var[n]]],  i.e.
m Î N ß m > n

ÔIff[converges[·var[f], ·var[a]], ÔForAll[¼]], i.e. converges@ f , aD � " ¼

In written text, úif and only ifø is often abbreviated úiffø.
Connectives can also be hidden in quantifier expressions, see Table 1.5 below,
or in flexible arity operators, see above.

1.5.3.3 Quantifier Formulae

Quantifier  formulae  are  built  up  inductively  from  formulae  by  the  quantifiers  "
and  $.  In  correspondence  with  the  outermost  quantifiers,  such  formulae  are
called úuniversal formulaeø and úexistential formulaeø, respectively. The distinc-
tive feature of quantifiers is that quantifiers úbindø a variable, see Section 1.6.1. 

è If  A  and  C  are  formulae  and  x  is  an  object  variable  then  "
x
C

A ,  $
x
C

A  are

quantified formulae.

In the example above:

ÔForAll[
  ·range[·simpleRange[·var[m]]],
  ÔAnd[ÔElement[·var[m], ÔN],ÔGreater[·var[m], ·var[n]]],
  ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[·var[f],  ·var[m]],  ·var[a]]],

·var[Ε]]]
¼
In external form:

"
m

mÎNßm>n

  fm - a¤ < Ε

$
n

nÎN

"
m

mÎNßm>n

  fm - a¤ < Ε

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

  fm - a¤ < Ε

"
a

i
kjjjjjjjconverges@ f , aD � "

Ε
ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

  fm - a¤ < Ε
y
{zzzzzzz
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"
f

"
a

i
kjjjjjjjconverges@ f , aD � "

Ε
ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

  fm - a¤ < Ε
y
{zzzzzzz

The  internal  representation  reveals  the  three  selectors,  that  every  quantifier
formulae has:

è the quantified variable: ·range[·simpleRange[·var[m]]]

è the  condition  (on  the  variable):  ÔAnd[ÔElement[·var[m],  ÔN],Ô-
Greater[·var[m], ·var[n]]]

è the  body  formula:  ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[·var[f],
·var[m]], ·var[a]]], ·var[Ε]]]

In  Theorema’s  external  syntax,  the  quantified variable  is  always  written  under
the  quantifier,  the  condition  is  written  under  both  quantifier  and  quantified
variable. In other mathematical texts, the quantified variable might be written as
subscript to the quantifier or just to the right of the quantifier. The above exam-
ple would then be written as

" HΕ Î R ß Ε > 0L $ n Î N " Hm Î N ß m > nL :   fm - a¤ < Ε .

Special forms

è The quantified variable and the condition are often combined into úspecial
rangesø. Let Q  stand for " or $ :

Long Form Special Range

Q
x

xÎS

 A Q
xÎS

 A

Q
x

xÎZßl£x£u

 A Q
x=l,¼,u

 A

Table 1.4: Special ranges.

Note,  however,  that  the  range specification must  allow to  determine the
quantified variable!  A  human mathematician can  often decide this  again
úin  the  contextø,  when  communicating with  a  machine this  might  some-
times need more care. It is, for instance, common to write

¼ "
m>n

  fm - a¤ < Ε

and it  is  úobviousø that the variable quantified by the universal quantifier
is ‘m ’ and not ‘n ’.

20 1. Syntax and Semantics of Predicate Logic



è Subsequent  quantifiers  of  the  same  type  are  often  combined  into  one
quantifier with úmultiple rangeø, i.e.

"
x

"
y

"
z

A

can be written as

"
x,y,z

A

è Conditions  in  a  quantifier  can,  in  fact,  be  viewed  as  abbreviations  as
shown in Table 1.5.

Quantifier with
Condition

Long Form

"
x
C

A "
x

C Þ A

$
x
C

A $
x

HC ß AL
Table 1.5: Conditions in quantifiers.

è The  condition  in  a  quantifier  can  be  omitted,  in  the  internal  form  it  is
represented as ‘True’.

All special forms of quantifiers reduce~by the rules above~to quantifier formu-
lae without condition! We could even úsurviveø with only the universal quantifier
and define $

x
A  to stand for Ø "

x
Ø A . Since we introduce both quantifiers, the úde

Morgan lawsø

Ø "
x

 A � $
x

Ø A

Ø $
x

 A � "
x

Ø A

would have to be proven  based on the semantics for quantifier formulae given
in Section 1.7.

If  x  is the quantified variable in a formula A  then we call an occurrence of x  a
bound  occurrence  and  we  call  x  a  bound  variable  in  A .  Otherwise,  variables
and their  occurrences are called free.  The distinction between free and bound
occurrences of variables is of particular importance when it comes to the crucial
operation on variables, namely substitution.
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1.6 Substitution and Replacement

1.6.1 Free and Bound Occurences of Variables

Variables are the essence of mathematical language, which make the mathemat-
ical language really powerful. Variables are atomic (not decomposable) parts of
expressions  for  which  potentially  infinitely  many  different  expressions  may  be
substituted. An expression containing a free variable has many meanings, one
for  each  assignment  of  a  concrete  object  as  the  meaning  of  the  variable.
Hence,  an  expression  containing  a  free  variable,  in  some  sense,  stands  for
potentially  infinitely  many  expressions  and  hence,  in  one  stroke,  can  express
potentially  infinitely  many  meanings  depending  on  which  expressions  are
substituted  for  the  variables.  Expressions  containing  free  variables  can  be
viewed  as  úgeneralø  statements  that  can  be  formulated  once  but  can  be
unfolded in potentially infinitely many situations.

(A formula containing free variables is exactly what in the Analysis lecture notes
is  called  úAussageformø  and  in  the  Linear  Algebra  lecture  notes  is  called
úPrädikatø !)

Most  of  what  has  been  remarked  above  about  free  variables  is  not  true  for
bound variables, such as the x  in the formula "

xÎN
Hx = 0L . This formula does not

have various meanings, it means exactly the statement that all natural numbers
are  equal  to  0,  which  is  false  (it  should  intuitively  be  clear  that  this  is  false;
however, we can only say so after having discussed the semantics of ", which
has not been done yet!). Substituting 0 or 7 for x  in the formula x = 0  makes it a
true (0 = 0 )  or  false (7 = 0 )  statement, respectively. Substituting 0 or  7 for x  in
the  formula  "

xÎN
Hx = 0L  makes  it  into  the  meaningless  formulae  "

0ÎN
H0 = 0L  or

"
7ÎN

H7 = 0L ,  respectively.  Therefore,  bound  variables  should  be  considered

úinvisibleø for the substitution operation.
Substituting the variable y  for x  in "

xÎN
Hx = 0L  does not change the meaning

of the formula, whereas substituting y  for x  in x = 0  might change the meaning.
It  depends on the assignments for  x  and y ,  whether x = 0  and y = 0  have the
same meaning. 

Note that there is no possibility to decide whether an occurrence of a symbol
in a formula is a free occurrence of a variable or a constant without knowing the
context of the formula. For example, just looking at 

$
n

nÎN

"
m

mÎNßm>n

  fm - a¤ < Ε
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it  is  not possible to tell whether ‘ f ’,  ‘a ’,  ‘Ε ’  are free occurrences of variables or
(function or object) constants.

We will  discuss this subtle point in more detail later. In fact, wrapping sym-
bols by ·var[¼]  in the internal Theorema  representation is  done in order to be
able  to  distinguish  the  usage  of  symbols  as  free  variables  and  as  constants.
Alternatively, one would have to declare, once and for all, which symbols will be
used as variables and which symbols will be used as constants. However, this
is not attractive for practical purposes because it may well be that, for example,
‘Π’  in  some  texts  is  used  as  a  constant  and  in  some  other  text  is  used  as  a
variable.

On  the  meta  level~when  we  speak  about  expressions~we  will  often
indicate free variables of an expression as subscripts of the expression, i.e. Ax

should  indicate  that  x  occurs  free  in  A .  We  do  not  fix  in  general,  whether  Ax

should mean that  x  is  among  the free variables of  A  or  whether x  is  the only
free variable in A . On the object level, however, subscripting is often used as a
hidden  function  symbol  like  in  the  example  of  fm  above.  In  other  situations
subscripting  is  used  to  distinguish  between  constants  or  variables  of  similar
nature,  e.g.  if  two  constants  for  polynomials  are  required  one  often  likes  to
name them p1  and p2 .  The meaning of  subscripting must be understood from
the context. The same is true for similar notations.

1.6.2 More Quantifiers

The  different  behavior  w.r.t.  substitution  of  free  and  bound  variables  as  illus-
trated  above  should  guide  us  in  distinguishing  free  and  bound  variables.  Of
course, the quantifiers " and $ turn free variables into bound variables. We will
see that also other language constructs show this behavior. We will classify all
language constructs,  which  bind  variables,  as  úquantifiersø.  Examples of  such
quantifiers are given in Table 1.6.
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Quantifier Meaning Binds8x È A< úthe set of all x satisfying Aø x9T È
x

A= úthe set of all T with x satisfying Aø x

Ú
k=1

n
A úthe sum of all A when k ranges from 1 to nø k

Ù f @xD â x úthe integral of f ø x

Λ
x

 T úthe function mapping x to Tø x

'
x

A úsuch an x satisfying Aø x

F@xD Èx=5 úF@xD where x equals 5ø x

Table 1.6: Special quantifiers.

The  last  two  quantifiers  in  Table  1.6~the  úsuch  aø  and  the  úwhereø
quantifier~are often used in  their  natural  language form and only rarely using
the symbols ú'ø and ú|ø.

If you look through mathematical texts, you will probably find many more quantifi-
ers. For many of these quantifiers, special forms as described in Section 1.5.3.3
(special  ranges,  omitting  conditions,  etc.)  are  available.  In  most  of  the  cases,
the  meaning of  quantifiers  is  explained when  they  are  introduced in  a  theory.
The  crucial  thing  is  to  recognize  when  certain  language  constructs  bind
variables!

Exercise 2

Analyze the syntactical structure of the following axiom of the real numbers (as
given in some lecture notes):

$ 0 Î K " x Î K : x + 0 = x

$ 1 Î K " x Î K : x × 1 = x
Solution ®

Exercise 3

Analyze the syntactical structure of the following theorem:

Every field HK, +, ×L  is a K |vector|space.
Solution ®
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Exercise 4

Analyze the syntactical structure of the following theorem:

In a field HK, +, ×L  the inverse elements are unique.
Solution ®

Exercise 5

Analyze  the  syntactical  structure  of  the  following  definitions  (as  taken  from
existing lecture notes):

Let M ¹ Æ . A mapping x : N ® M  is called a sequence (in M). For x@nD  we
write xn , for x  we often write Hxn L  or Hxn LnÎN .Hxn L  converges to x  if and only if for all Ε > 0  there exists a natural number
n0  such  that  for  all  n ³ n0 :  °xn - x´ < Ε .  In  this  case  we  write  xn ® x  or
xn ®

nÎN
x  or x = lim

n®¥
 xn .

Solution ®

Exercise 6

Analyze the syntactical structure of

â
k=1

¥

bk = â
k=1

¥

ak

using all knowledge on notation for series available from Analysis. 
Solution ®

Exercise 7

Analyze the syntactical structure of the following theorem:

Let  Ú
n=1

¥
an  and  Ú

n=1

¥
bn  be  two  absolutely  convergent  series.  Then  their

Cauchy|product Ú
n=1

¥
cn  is absolutely convergent and

â
n=1

¥

cn =
ikjjjjjâ

n=1

¥

an

y{zzzzz ×
ikjjjjjâ

n=1

¥

bn

y{zzzzz.

Solution ®

Exercise 8

Analyze  the  syntactical  structure  of  the  following  definition  (as  taken  from
existing lecture notes):
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Let A, B Í R  and x Î A . A function f  is continuous at x  if and only if for all
sequences Hxn L  in A :

xn ® x í "
nÎN

xn ³ x� f @xn D ® f @xD .

Solution ®

Exercise 9

Analyze the syntactical structure of the following theorem:

Let f : A ® B  bijective. Then there is a function g : B ® A  such that
(i) gë f = idA

(ii) f ë g = idB  .
Solution ®

1.6.3 Substitution

The operation of substitution has three arguments:

è an expression e  in which the substitution takes place,

è a (free) variable x  for which a term should be substituted, and

è a term t  which is substituted for the variable.

We will write

SUBSTITUTED@e, x, tD
for  the  expression that  results  from e  by  substituting t  for  x  at  all  free  occur-
rences of x .

Note  that  t  is  substituted  for  all  free  occurrences  of  x  in  e .  This  is  in  sharp
contrast  to  the  operation  of  úreplacementø,  which  we  will  discuss  in  Section
1.6.5.

We have already discussed an other operation that can be applied to expres-
sions containing variables, namely úquantificationø. Quantifiers úbindø variables.
Variables  bound  by  quantifiers  are  not  any  more  free  to  the  outside.  More
precisely,  the  operation  of  substitution  does  not  substitute  terms  for  bound
variables. 

The  interaction  of  quantification  and  substitution  has  one  more  subtle
aspect: If a free variable x  occurs inside the scope of a quantifier that quantifies
variable y  then, by substituting for  x  a  term t  containing a free variable y ,  the
free  variable  y  in  t  would  be  úcaughtø,  i.e.  turned into  a  bound variable!  This
must be avoided because it would drastically change the meaning of the expres-
sion.  Hence,  in  such  a  case,  before  the  actual  substitution  is  carried  out  the
bound variable y  must be úrenamedø. As we discussed above, it is a characteris-
tic  feature of  bound variables that renaming them does not affect the meaning
of the expression. This renaming of bound variables as a part of the substitution
process  should  be  well  understood.  It  is  an  aspect  of  substitution that  is  less
known.
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We have already discussed an other operation that can be applied to expres-
sions containing variables, namely úquantificationø. Quantifiers úbindø variables.
Variables  bound  by  quantifiers  are  not  any  more  free  to  the  outside.  More
precisely,  the  operation  of  substitution  does  not  substitute  terms  for  bound
variables. 

The  interaction  of  quantification  and  substitution  has  one  more  subtle
aspect: If a free variable x  occurs inside the scope of a quantifier that quantifies
variable y  then, by substituting for  x  a  term t  containing a free variable y ,  the
free  variable  y  in  t  would  be  úcaughtø,  i.e.  turned into  a  bound variable!  This
must be avoided because it would drastically change the meaning of the expres-
sion.  Hence,  in  such  a  case,  before  the  actual  substitution  is  carried  out  the
bound variable y  must be úrenamedø. As we discussed above, it is a characteris-
tic  feature of  bound variables that renaming them does not affect the meaning
of the expression. This renaming of bound variables as a part of the substitution
process  should  be  well  understood.  It  is  an  aspect  of  substitution that  is  less
known.

If, for some x  and t ,

f = SUBSTITUTED@e, x, tD
then we say that ú f  is an instance of eø.

We will train the operation of substitution, including the subtle aspect of renam-
ing of bound variables, in a couple of examples.

Example: Substitution of a Constant for a Variable

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, a, 5E
is

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

H fm - 5¤ < ΕL
Example: Substitution of a Term for a Variable

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, a, Hu + vL2 E
is

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

H fm - Hu + vL2 ¤ < ΕL
Example: A Free Variable in the Substitution Term Caught by a Quantifier

If we substituted n  for a  in

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

  fm - a¤ < Ε

just blindly we would obtain

"
Ε

ΕÎRßΕ>0

 $
n

nÎN

"
m

mÎNßm>n

   fm - n¤ < Ε

Carefully think about why this is undesirable: 
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"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

  fm - a¤ < Ε

means that f  converges to a , whereas 

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

  fm - n¤ < Ε

means something completely different. Hence,

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, a, nE
must be defined to be something like

"
Ε

ΕÎRßΕ>0

 $
N

NÎN

"
m

mÎNßm>N

  fm - n¤ < Ε

i.e. we must introduce a new bound variable N ,  which should not appear else-
where  in  the  expression in  order  to  avoid  dangerous úvariable clashesø.  Note
that the last formula has the appropriate meaning again, namely it means that f
converges to n .

Example: Simultaneous Substitution Versus Successive Substitution

Often,  terms  are  substituted  for  various  free  variables  simultaneously:  Let  us
read

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, f, a + b, a, f@aD + f@bDE
as  the  result  of  substituting  a + b  for  f  and  f @aD + f @bD  for  a  simultaneously
yielding

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 Ha + bLm - Hf@aD + f@bDL¤ < Ε .

meaning  úthe  sum  sequence  a + b  converges  to  f @aD + f @bD .  This  has  to  be
carefully distinguished from successive substitution:

SUBSTITUTEDA
SUBSTITUTEDA "

Ε
ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, f, a + bE, a, f@aD + f@bDE
yields

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 Ha + bLm - a¤ < Ε, a, f@aD + f@bDE
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which is

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 Hf@aD + f@bD + bLm - Hf@aD + f@bDL¤ < Ε

This is again different from

SUBSTITUTEDA
SUBSTITUTEDA "

Ε
ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - a¤ < Ε, a, f@aD + f@bDE, f, a + bE
which is

SUBSTITUTEDA "
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 fm - Hf@aD + f@bDL¤ < Ε, f, a + bE
and, hence,

"
Ε

ΕÎRßΕ>0

$
n

nÎN

"
m

mÎNßm>n

 Ha + bLm - HHa + bL@aD + Ha + bL@bDL¤ < Ε .

1.6.3.1 A Notation for Substitution

In the sequel, let us write

ex,y,z ® s,t,u

for 

SUBSTITUTED@e, x, s, y, t, z, uD.
Note that parallel substitution

ex,y ® s,t

is in general not identical to successive substitutionHex ® s Ly ® t

and that this may be also different fromHey ® t L
x ® s

.
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1.6.4 Declaration of (Free) Variables

In mathematical texts, there are (at least) two ways of declaring which symbols
in a formula are considered to be (free) variables and which symbols are consid-
ered to be úconstantsø (which do not allow any substitution):

è explicit  declaration of  variables at  the beginning of  the text;  this  declara-
tion is then valid for all subsequent formulae;

è explicit declaration of variables at the beginning of each formula.

(In Theorema, we use the second alternative. We will explain this in more detail
later.)

In most math text books and publications, the first alternative is chosen. In fact,
in  most  texts  the  authors  assume  that  the  reader  makes  the  appropriate
guesses úfrom the contextø. For example, if the group axioms

xë Hyë zL = Hxë yL ë z

1ë x = x

xë x-1 = 1

are  given,  it  is  tacitly  assumed  that  one  considers  ‘x ’,  ‘y ’,  and  ‘z ’  as  (free)
variables.

Alternatively,  instead  of  considering  formulae  with  free  variables,  we  may
just  consider  the  formulae  with  all  free  variables  quantified  by  a  universal
quantifier.  This  is  particularly  appropriate  for  formulae  in  úknowledge  basesø,
see  below.  Formulae  without  free  variables  are  called  úclosedø.  For  example,
the above axioms could also be written in the form

"
x,y,z

xë Hyë zL = Hxë yL ë z

"
x

1ë x = x

"
x

xë x-1 = 1

Universal quantification of free variables is, however, not appropriate for formu-
lae  with  free  variables  that  appear  as  goals  in  solution  or  simplification situa-
tions,  see  below.  Therefore, we  do  not  want  to  introduce it  as  a  general  rule,
that free variables should always be considered as universally quantified!
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1.6.5 Replacement

The operation of replacement has three arguments:

è an expression e  in which a replacement takes place,

è a position p  at which the replacement takes place,

è and an expression f  which replaces the expression in e  at position p .

We will write

REPLACED@e, p, fD
for the expression that results from e  by replacing the expression at position p
in e  by the expression f .

Note that, in replacement, f  is replacing just one occurrence of a subexpres-
sion of  e ,  namely the subexpression of  e  at  one particular position p  and that
the subexpression at position p  need not be a variable but may be an arbitrary
expression. This is in sharp contrast to the operation of úsubstitutionø, which we
discussed in Section 1.6.3.

Again  one  must  be  careful  with  replacing subexpression by  expressions in
expressions that contain quantifiers. We assume that the replacement operation
takes care of the necessary renaming of bound variables if name clashes occur
during replacement.

1.6.5.1 Positions

Positions of subexpressions in expressions can be described uniquely by tuples
of  natural  numbers  taking  into  account  the  nested  structure  of  expressions  in
standard syntax. For example, in the formula 

(1)Hx + yL * Hx + yL = x2 + 2 * x * y + y2

there are two positions at which the subexpression 

x + y

occurs. These two positions could be described by the tuples X1, 1\  and X1, 2\ ,
respectively, because in the standard syntax representation of  (1)

·@ Hx + yL * Hx + yL = x2 + 2 * x * y + y2 D �� InputForm

ÔEqual[ÔTimes[ÔPlus[x, y], ÔPlus[x, y]], ÔPlus[ÔPower[x, 2], ÔTimes[2, x, y], 
  ÔPower[y, 2]]]
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the first occurrences of ÔPlus@x, yD  can be visited by going to the 1|st and then
again  1|st  subexpression of  (1)  and  the  second occurrence can  be  visited  by
going to the 1|st and then to the 2|nd subexpression of (1).

We will  rarely use this explicit description of positions in this practical intro-
duction to  predicate logic.  Most  times  it  will  suffice  to  say  something like  úthe
first occurrenceø or the úthird occurrenceø of a subexpression.

� Mathematica offers an operation ReplacePart, which does exactly what 
REPLACED does, i.e. we can implement REPLACED using basic Mathematica 
operations. The notion of úpositionø, which we introduced above, corresponds 
exactly to the notion of position in Mathematica, except that Mathematica uses 
braces ‘{’ and ‘}’ to denote tuples instead of angle brackets ‘X’ and ‘\’.

Position@·@ Hx + yL * Hx + yL = x2 + 2 * x * y + y2 D, ·@ x + y DD881, 1<, 81, 2<<
REPLACED@e_, p_, f_D := ReplacePart@e, f, p �. AngleBracket ® ListD

We will train the operation of replacement in a couple of examples.

Examples

REPLACEDA·@ Hx + yL * Hx + yL = x2 + 2 * x * y + y2 D, X1, 1\, ·A �!!!!!!!
u2 EEI�!!!!!!!

u2 M * Hx + yL = x2 + 2 * x * y + y2

whereas

REPLACEDA·@ Hx + yL * Hx + yL = x2 + 2 * x * y + y2 D, X1, 2\, ·A �!!!!!!!
u2 EEHx + yL * I�!!!!!!!

u2 M = x2 + 2 * x * y + y2

Also,

REPLACEDA·@ Hx + yL * Hx + yL = x2 + 2 x * y + y2 D, X2, 1\, ·A �!!!!!!!
u2 EEHx + yL * Hx + yL = I�!!!!!!!

u2 M + 2 * x * y + y2

(Note that, at this moment, we are not yet concerned with whether such replace-
ments are úreasonableø or úvalidø! We will be concerned with úvalidø transforma-
tions  later,  when  we  start  to  discuss  proving,  solving,  and  simplifying  within
predicate logic.)

1.6.5.2 A Notation for Replacement

We will adopt the notation
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ep! f

for

REPLACED@e, p, f D
i.e.

e_p_!f_ := REPLACED@e, p, fD
·@ Hx + yL * Hx + yL = x2 + 2 x * y + y2 DX2,2\!·A�!!!!!!!!

u2 EHx + yL * Hx + yL = x2 + I�!!!!!!!
u2 M + y2

1.7 An Informal Semantics

The semantics of expressions in predicate logic is defined inductively following
the syntactical structure of the expression. We will not give a formal definition of
semantics, rather we will try to give an idea how meaning is attached to expres-
sions in predicate logic. For assigning semantics to expressions, we need

è a non|empty úuniverse of discourseø U ,

è concrete functions on U  (of arity 1, 2, 3, etc.) and concrete predicates (i.e.
relations) on U  (of arity 1, 2, 3, etc.),

è an úinterpretationø, which interprets

á object constants as distinct concrete objects in U , 

á each n|ary function constant as some n|ary function on U , and 

á each n|ary predicate constant as some n|ary relation on U ,

è an  assignment  mapping  for  variables,  which  maps  each  variable  to  a
concrete object in U .

1.7.1 Semantics for Terms

Terms mean some concrete object from U . A term without free variables has a
unique meaning, a  term containing free variables typically  has different mean-
ings depending on the assignment for the variables.
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Expression Meaning

constant the interpretation of the constant

variable the object assigned to the variable

f @t1 , ¼, tn D the interpretation of f applied to the interpretations of the ti

Table 1.7: Semantics for terms.

Important: Distinct constants denote distinct objects, whereas distinct variables
may denote the same object, i.e. in case of constants ‘x ’ and ‘y ’ we know x ¹ y ,
in case of variables ‘x ’ and ‘y ’ it can be that x = y .

Example

Consider the universe of discourse the real numbers and consider the functions
úabsolute  valueø,  úsubtractionø,  úreciprocalø,  and  úfunction  evaluationø.  We
interpret  ÔBracketingBar,  ÔMinus,  ÔSubscript,  and  f  as  the  absolute  value
function,  the  subtraction function,  function  evaluation, and  the  reciprocal  func-
tion, respectively. The meaning of the compound term   fm  |a¤ , i.e.

ÔBracketingBar[ÔMinus[ÔSubscript[ f, ·var[m]], ·var[a]]] ,

is then

úthe absolute value of the difference between the reciprocal of m  and aø

(with m  and a  free variables). If we assign to m  the real number 5 and to a  the
real number 0 then the meaning is 1�����5 , if we assign to m  the real number Π and
to a  the real number 3�����Π  then the meaning is 2�����Π .

Example

Consider the universe of discourse the real numbers and consider the functions
úabsolute  valueø,  úsubtractionø,  úreciprocalø,  and  úfunction  evaluationø.  We
interpret  ÔBracketingBar,  ÔMinus,  ÔSubscript,  and  f  as  the  square  root
function,  the  multiplication  function,  function  evaluation,  and  the  squaring
function, respectively. The meaning of the compound term   fm  |a¤ , i.e.

ÔBracketingBar[ÔMinus[ÔSubscript[ f, ·var[m]], ·var[a]]] ,

is then

úthe square root of the product of m  squared and aø
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(with m  and a  free variables). If we assign to m  the real number 5 and to a  the
real number 0 then the meaning is 0, if we assign to m  the real number Π and to
a  the real number 3�����Π  then the meaning is (the real number) 

�!!!!!!!!
3 Π .

1.7.2 Semantics for Formulae

Formulae  without  free  variables  mean  útrueø  or  úfalseø.  Truth  or  falsity  of  a
formula  containing  free  variables  may  depend  on  the  assignment  for  the
variables.

Expression Meaning

p@t1 , ¼, tn D the interpretation of p applied to the interpretations of the ti

Ø A interpret A; then use truth table for Ø

A Þ B interpret A and B; then use truth table for Þ
A ß B interpret A and B; then use truth table for ß
A Þ B interpret A and B; then use truth table for Þ

A � B interpret A and B; then use truth table for �

"
x
C

A

looooomnooooo
útrueø if the interpretation of A is útrueø for each

assignment for x,
which makes the interpretation of C útrueø

úfalseø otherwise

$
x
C

A

looooomnooooo
útrueø if the interpretation of A is útrueø for some

assignment for x,
which makes the interpretation of C útrueø

úfalseø otherwise

Table 1.8: Semantics for formulae.

The  meaning  of  atomic  formulae  is  decided  by  interpretation,  propositional
formulae are decided by truth tables, whereas the meaning of quantified formu-
lae must be decided by following the úrecipeø given in Table 1.8. It is important
to  understand  that  the  formulations  úfor  eachø  and  úfor  someø  in  the  right
column of Table 1.8 are formulations on the meta level,  i.e. on the level where
one speaks about the language, whereas ú"ø (speak:  úfor allø) and ú$ø  (speak:
úthere existsø) are on the object level, i.e. the level of the language! This means
that for "

x
A  to be útrueø we must ensure that A  is útrueø for all possible values

in the universe of discourse substituted for x , and for $
x

A  to be útrueø we must

argue that  we can substitute an object from the universe of  discourse for  x  in
order to make A  útrueø. 
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Note in particular, that quantifiers with finite ranges have the same meaning
as ß and Þ, e.g.

"
xÎ81,¼,n<  A@xD is the same as A@1D ß ¼ ß A@nD and

$
xÎ81,¼,n<  A@xD is the same as A@1D Þ ¼ Þ A@nD .

It is therefore appropriate to view the universal quantifier as a generalization of
úßø and the existential quantifier as a generalization of úÞø for cases of arbitrary
number or infinitely many operands. This is also the reason, why "

x
A  and $

x
A  is

sometimes written as ß
x

A  and Þ
x

A .

Example

Consider the universe of discourse the real numbers and consider the functions
úabsolute  valueø,  úsubtractionø,  úreciprocalø,  úfunction  evaluationø  and  the
relation úbeing less thanø. We interpret ÔBracketingBar, ÔMinus, ÔSubscript,
and f  as the absolute value function, the subtraction function, function evalua-
tion, and the reciprocal function, respectively. We interpret ÔLess as the úless
thanø relation. The meaning of the atomic formula   fm  |a¤ < Ε , i.e.

ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[ f, ·var[m]], ·var[a]]], ·var[Ε]] ,

is the property that

úthe absolute value of the difference between the reciprocal of m  and a  is
less than Εø

(with m ,  a ,  and Ε  free variables). If we assign to m  the real number 5, to a  the
real number 0, and to Ε  the real number 1�����3 , then the meaning is ú 1�����5  is less than
1�����3 ø,  which is útrueø, if  we assign to m  the real number Π, to a  the real number
3�����Π , and to Ε  the real number 1�����Π , then the meaning is ú 2�����Π  is less than 1�����Π ø, which
is úfalseø.
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Example

Consider  the  universe  of  discourse  the  real  numbers  and  úall  setsø.  Consider
the  object  úthe  set  of  natural  numbersø  and  the  functions  úabsolute  valueø,
úsubtractionø,  úreciprocalø,  úfunction  evaluationø  and  the  relations  úbeing  less
thanø, úbeing greater thanø, and úmembershipø. We interpret ÔN  as the set of
natural numbers, ÔBracketingBar, ÔMinus, ÔSubscript, and f  as the absolute
value function, the  subtraction function, function evaluation, and the reciprocal
function,  respectively.  We  interpret  ÔLess,  ÔGreater,  and  ÔElement  as  the
úless  thanø,  the  úgreater  thanø,  and  the  úmembershipø  relation,  respectively.
The meaning of the quantified formula "

m
mÎNßm>n

  fm  |a¤ < Ε , i.e.

ÔForAll[·range[·simpleRange[·var[m]]], 
   ÔAnd[ÔElement[·var[m], ÔN], ÔGreater[·var[m], ·var[n]]], 
   ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[f, ·var[m]], a]], ·var[Ε]]]

is the property that

úfor all m
with the property, that m  is a member of the set of natural numbers and m
is greater than n ,
the absolute value of the difference between the reciprocal of m  and a  is
less than Εø

(with n , a  and Ε  free variables). If we assign to n  the real number 3, to a  the real
number  0,  and  to  Ε  the  real  number  1�����3 ,  then  the  meaning  is:  úfor  all  natural
numbers m  greater than 3 the absolute value of the reciprocal of m  is less than
1�����3 ø,  which is  útrueø.  Why is  this true? Suppose m  is  a  natural number greater
than 3, then, by laws for inequalities, we know that 1������m  is less than 1�����3 , and from
this, since 1������m  is positive, we know that also the absolute value of 1������m  is less than
1�����3 .

If  we assign to n  the real number 1,  to a  the real number 0,  and to Ε  the real
number 1�����3 ,  then the meaning is:  úfor all  natural numbers m  greater than 1 the
absolute value of  the reciprocal of m  is  less than 1�����3 ø,  which is  úfalseø. Why is
this false? Because the statement úabsolute value of the reciprocal of m  is less
than 1�����3 ø is not true for all natural numbers m  greater than 1. Substitute e.g. 2 for
m , then we are left with úabsolute value of 1�����2  is less than 1�����3 ø, which is false.

Example

Interpret  symbols  as  in  the  previous  example.  The  meaning  of  the  quantified
formula $

n
nÎN

"
m

mÎNßm>n

  fm  |a¤ < Ε , i.e.

ÔExists[·range[·simpleRange[·var[n]]], 
  ÔElement[·var[n], ÔN],
  ÔForAll[·range[·simpleRange[·var[m]]], 
   ÔAnd[ÔElement[·var[m], ÔN], ÔGreater[·var[m], ·var[n]]], 
   ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[f, ·var[m]], a]], ·var[Ε]]]
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ÔExists[·range[·simpleRange[·var[n]]], 
  ÔElement[·var[n], ÔN],
  ÔForAll[·range[·simpleRange[·var[m]]], 
   ÔAnd[ÔElement[·var[m], ÔN], ÔGreater[·var[m], ·var[n]]], 
   ÔLess[ÔBracketingBar[ÔMinus[ÔSubscript[f, ·var[m]], a]], ·var[Ε]]]

is the property that

úthere exists an n
with the property, that n  is a member of the set of natural numbers, such
that
for all m
with the property, that m  is a member of the set of natural numbers and m
is greater than n ,
the absolute value of the difference between the reciprocal of m  and a  is
less than Εø

(with a  and Ε  free variables). If  we assign to a  the real number 0 and to Ε  the
real number 1�����3 , then the meaning is: úthere exists a natural number n  such that
for all natural numbers m  greater than n  the absolute value of the reciprocal of
m  is less than 1�����3 ø, which is útrueø. Why is this true? We substitute e.g. 10 for n .
Suppose m  is  a natural number greater than 10, then, by laws for inequalities,
we know that 1������m  is  less than 1��������10 ,  and from this, since 1������m  is  positive, we know
that also the absolute value of 1������m  is less than 1��������10 , thus, by transitivity of úlessø,
1������m  is less than 1�����3 .

If  we  assign  to  a  the  real  number  1,  and  to  Ε  the  real  number  1�����3 ,  then  the
meaning is: úthere exists a natural number n  such that for all natural numbers m
greater than n  the distance between the reciprocal of m  and 1 is less than 1�����3 ø,
which is  úfalseø.  Why is  this  false? For  all  natural numbers greater than 3 the
reciprocal is  less  than 1�����3 ,  thus,  the distance from 1  is  greater than 2�����3 .  There-
fore, no such number n  can exist.

Exercise 10

Convince yourself that the de Morgan laws for negating quantifiers hold even for
quantifiers with conditions, i.e.HaL Ø "

x
C

 A � $
x
C

 Ø A

HbL Ø $
x
C

 A � "
x
C

 Ø A

Solution ®

38 1. Syntax and Semantics of Predicate Logic



Exercise 11

We  often  need  to  express  úthere  exists  a  at  most  one  x  such  that  Aø.  Think
about  the  logical  structure  of  this  formula  and  express  it  using  only  standard
quantifiers.

Solution ®

Exercise 12

The special  form $!
x

 A  stands for  úthere exists  a  unique  x  such that  Aø.  Think

about  the  logical  structure  of  this  formula  and  express  it  using  only  standard
quantifiers.

Solution ®

1.8 How to Define New Symbols in Terms of Known Symbols

The use of  definitions can be nicely compared with the use of subprograms in
programming. Subprograms are not necessary but  convenient for  giving struc-
ture  to  some  program.  The  same  is  true  for  definitions.  Definitions  are  not
necessary  for  mathematics  but  convenient  for  structuring  mathematical
knowledge.

1.8.1 Explicit Definitions

1.8.1.1 Explicit Definition of Functions

An explicit definition of an n|ary function f  is a statement of the form

f @x1 , ¼, xn D := Τx1 ,¼,xn

where f  is a new function symbol and Τx1 ,¼,xn  is a term containing only known
symbols and no free variables other than x1 , ¼, xn .

The  intention  is  that  f @x1 , ¼, xn D  is  introduced  as  an  abbreviation  for  Τx1 ,¼,xn

and  the  definition  introduces  knowledge  about  the  new  function  symbol  f ,
namely

"
x1 ,¼,xn

f @x1 , ¼, xn D = Τx1 ,¼,xn

called the defining axiom for f .  It is save to introduce new symbols in this way
as  long  as  one  observes  the  rule  concerning  the  free  variables.  The  defining
axiom allows from then on to replace each occurence of f @x1 , ¼, xn D  by Τx1 ,¼,xn

for arbitrary x1 , ¼, xn . The term on the right hand side may not contain some of
the  variables  on  the  left  hand  side,  which  is,  however,  an  indication  that  the
function does actually not depend on these variables and they can therefore be
omitted also on the left hand side. If the defining term contains some additional
free  variable,  say  y ,  then  the  definition  is  wrong  in  the  sense  that  replacing
f @x1 , ¼, xn D  by Τx1 ,¼,xn ,y  may change the meaning of the expression.
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called the defining axiom for f .  It is save to introduce new symbols in this way
as  long  as  one  observes  the  rule  concerning  the  free  variables.  The  defining
axiom allows from then on to replace each occurence of f @x1 , ¼, xn D  by Τx1 ,¼,xn

for arbitrary x1 , ¼, xn . The term on the right hand side may not contain some of
the  variables  on  the  left  hand  side,  which  is,  however,  an  indication  that  the
function does actually not depend on these variables and they can therefore be
omitted also on the left hand side. If the defining term contains some additional
free  variable,  say  y ,  then  the  definition  is  wrong  in  the  sense  that  replacing
f @x1 , ¼, xn D  by Τx1 ,¼,xn ,y  may change the meaning of the expression.

1.8.1.2 Explicit Definition of Predicates

An explicit definition of an n|ary predicate p  is a statement of the form

p@x1 , ¼, xn D :� jx1 ,¼,xn

where  p  is  a  new  predicate  symbol  and  jx1 ,¼,xn  is  a  formula  containing  only
known symbols and no free variables other than x1 , ¼, xn .

The  intention  is  that  p@x1 , ¼, xn D  is  introduced  as  an  abbreviation  for  jx1 ,¼,xn

and  the  definition  introduces  knowledge  about  the  new  predicate  symbol  p ,
namely

"
x1 ,¼,xn

p@x1 , ¼, xn D � jx1 ,¼,xn

called the defining axiom for p .  It is save to introduce new symbols in this way
as  long  as  one  observes  the  rule  concerning  the  free  variables.  The  defining
axiom allows from then on to replace each occurence of p@x1 , ¼, xn D  by jx1 ,¼,xn

for arbitrary x1 , ¼, xn . The formula on the right hand side may not contain some
of the variables on the left hand side, which is, however, an indication that the
predicate does actually  not  depend on  these variables and they can therefore
be  omitted  also  on  the  left  hand  side.  If  the  defining  formula  contains  some
additional  free  variable,  say  y ,  then  the  definition  is  wrong  in  the  sense  that
replacing p@x1 , ¼, xn D  by jx1 ,¼,xn ,y  may change the meaning of the expression.

1.8.2 Implicit Function Definitions

Consider the  square root  function on  the  non|negative real  numbers, which is
usually defined for every x Î R0

+  as�!!!!
x := the y Î R0

+ such that y2 = x .
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The  characteristic  feature  of  this  type  of  definition is  that  a  new  function  f  is
defined via a formula. More precisely, an n|ary function f @x1 , ¼, xn D  is defined
to  be  the  y  such  that  jx1 ,¼,xn ,y .  In  contrast  to  an  explicit  definition,  the  object
f @x1 , ¼, xn D  is  not defined by explicitely describing its structure, thus we call a
definition of this type an implicit function definition.

Let’s  study the expression úthe y Î R0
+ such that y2 = xø  in  a  little bit  more detail.

We can substitute different values for x , typically resulting in different values for
y ,  e.g.  úthe y Î R0

+ such that y2 = 9ø  is  3,  whereas úthe y Î R0
+ such that y2 = Π2 ø  is

Π.  Substituting a value for y  would turn the expression into some meaningless
expression,  e.g.  úthe Π Î R0

+ such that Π2 = 3ø.  Changing  y  into  some  other
variable  leaves  the  meaning  of  the  expression  unchanged,  e.g.  both
úthe y Î R0

+ such that y2 = 9ø  and  úthe z Î R0
+ such that z2 = 9ø  denote  the  value  3.

This  indicates,  as  discussed  in  Section  1.6.2,  to  view  the  language  construct
úthe y  such that jx1 ,¼,xn ,y ø~written as '!

y
jx1 ,¼,xn ,y ~as a quantifier that binds y .

The typical use of the '!|quantifier is in implicit definitions

(2)f @x1 , ¼, xn D := '!
y

jx1 ,¼,xn ,y .

Note that,  when viewing the '!|quantifier as  a  quantifier that  results in  a  term,
there  is  no  syntactic  difference  between  an  implicit  definition  and  an  explicit
definition! Again,  the right  hand side of  the definition is  a  term containing only
known  symbols  and  no  free  variables  other  than  x1 , ¼, xn .  However,  the  big
difference between explicit and implicit definitions lies in how they are used. The
defining axiom for f  as defined in (2) is

(3)"
x1 ,¼,xn ,y

f @x1 , ¼, xn D = y � jx1 ,¼,xn ,y

and it can be shown that this is equivalent to

(4)"
x1 ,¼,xn

$!
y

jx1 ,¼,xn ,y .

In contrast to the defining axiom of an explicit definition, which is always save to
introduce as  long as  the  restrictions on  the  free  variables are  not  violated, an
implicit definition needs a proof before it can be given. Typically, this is accom-
plished by proving the unique existence condition (4). More often even, proving
a formula of the form (4) gives rise to introducing a new function f  to be defined
implicitely  like  in  (2).  The  use  of  an  implicit  definition  (in  proving),  however,
relies in most of the examples on the defining axiom (3), i.e. each occurrence of
an equality f @x1 , ¼, xn D = y  may be replaced by jx1 ,¼,xn ,y and vice versa.
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Remark:

An  explicit  function  definition  f @x1 , ¼, xn D = Τx1 ,¼,xn  as  described  in  Section
1.8.1 can be viewed just as a special case of an implicit definition with jx1 ,¼,xn ,y

the formula y = Τx1 ,¼,xn . In this case, the unique existence condition (4) need not
be proven because it holds for every term Τx1 ,¼,xn .  The defining axiom special-
izes now to

"
x1 ,¼,xn ,y

f @x1 , ¼, xn D = y � y = Τx1 ,¼,xn ,

which simplifies to 

"
x1 ,¼,xn

f @x1 , ¼, xn D = Τx1 ,¼,xn ,

which is just what we chose as the defining axiom for the explicit definition.

1.8.2.1 Weaker Form of Implicit Definitions

There is also a weaker form of an implicit definition, which occurs e.g. in

higherPrime@xD := such a y with y is prime and y > x .

Similar to úthe y  such thatø we can quickly convince ourselves that an expres-
sion úsuch a y  withø  ought to be viewed as a quantifier that binds y .  We write
'
y

jx1 ,¼,xn ,y  for úsuch a y  with jx1 ,¼,xn ,y ø. The idea is that

(5)f @x1 , ¼, xn D := '
y

jx1 ,¼,xn ,y

introduces a new axiom

(6)"
x1 ,¼,xn ,y

f @x1 , ¼, xn D = y � jx1 ,¼,xn ,y

called again the defining axiom for f , which is equivalent to

(7)"
x1 ,¼,xn

$
y

jx1 ,¼,xn ,y .

Again,  the  existence condition (7)  is  typically  used to  justify  a  definition of  the
form (5) or the proof of an existence formula of the form (7) gives the motivation
to  introduce a  new function f  defined implicitely in  the form (5).  One must  be
cautious,  however,  because  it  is  only  the  implication  in  the  defining  axiom,
which is available as knowledge on f . As we will see later when studying proof
rules, this will not allow anymore unrestricted replacement of expressions of the
form  f @x1 , ¼, xn D = y .  In  particular,  a  proof  of  f @x1 , ¼, xn D = y  cannot  be
reduced anymore to just proving jx1 ,¼,xn ,y , as it can be done in the case, when
f  is defined using the '!|quantifier, because this is exactly where unique exist-
ence comes into play. However, it can be convenient to define functions in this
weaker form, since in some cases this is all what is really needed.
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Again,  the  existence condition (7)  is  typically  used to  justify  a  definition of  the
form (5) or the proof of an existence formula of the form (7) gives the motivation
to  introduce a  new function f  defined implicitely in  the form (5).  One must  be
cautious,  however,  because  it  is  only  the  implication  in  the  defining  axiom,
which is available as knowledge on f . As we will see later when studying proof
rules, this will not allow anymore unrestricted replacement of expressions of the
form  f @x1 , ¼, xn D = y .  In  particular,  a  proof  of  f @x1 , ¼, xn D = y  cannot  be
reduced anymore to just proving jx1 ,¼,xn ,y , as it can be done in the case, when
f  is defined using the '!|quantifier, because this is exactly where unique exist-
ence comes into play. However, it can be convenient to define functions in this
weaker form, since in some cases this is all what is really needed.

Exercise 13

Give  precise  definitions  of  úthe  quotient  of  the  integers  x  and  yø  and  úthe
remainder  of  the  integers  x  and  yø  in  the  language of  predicate  logic.  Which
additional information is needed for this definition to be úcorrectø?

Solution ®

Exercise 14

Give a precise definition of úthe inverse element of x  w.r.t. multiplicationø in the
language  of  predicate  logic.  Which  additional  information  is  needed  for  this
definition to be úcorrectø? When is this information available?

Solution ®

Exercise 15

Give a precise definition of úthe inverse function of f ø in the language of predi-
cate  logic,  see  lecture  notes  Linear  Algebra.  Which  additional  information  is
needed for this definition to be úcorrectø? When is this information available?

Solution ®

Exercise 16

Give a precise definition of sup A  (úthe supremum of a set A)ø  in the language
of  predicate  logic  according  to  Definition  2.9  in  the  lecture  notes  Analysis.
Which additional information is needed for this definition to be úcorrectø? When
is  this  information available? Think  about  how úsupø  is  used  e.g.  in  Definition
2.11.

Solution ®

Exercise 17

Give a  precise definition of  úthe limit  of  the sequence Hxn L ø  in  the language of
predicate logic according to Definition 3.2 in  the lecture notes Analysis. Which
additional information is needed for this definition to be úcorrectø? When is this
information available? Think about how úlimit ofø is used e.g. in Theorem 3.5.

Solution ®
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Exercise 18

Give a precise formulation of Definition 3.15 from the lecture notes Analysis in
the language of predicate logic. If necessary, give precise definitions for underly-
ing concepts. Give a formulation of Theorem 3.16 from the lecture notes Analy-
sis in predicate logic using the concepts defined before.

Solution ®

Exercise 19

Give  a  precise definition of  úthe derivative of  a  function f ø  in  the language of
predicate logic according to Definition 6.1 from the lecture notes Analysis. Give
precise definitions for all underlying concepts. Which role plays Theorem 6.2?

Solution ®

Exercise 20

Give a precise definition of  ús  is  orthogonal to  Aø  (for  s Î Rn  and A  a  straight
line) in the language of predicate logic, see lecture notes Linear Algebra. Give
precise definitions for all underlying concepts.

Solution ®

Exercise 21

Give  a  precise  definition of  úp  is  the  interpolating polynomial  for  the  tuples  x
and yø  in  the language of  predicate logic,  see lecture notes Algorithmic Meth-
ods. Give precise definitions for all underlying concepts.

Solution ®

Example (Danger of weak implicit definitions)

Consider  the  concepts  of  úbounded  setsø  and  úupper  bound  of  a  setø.  A  set
A Í M  is called bounded from above iff there is a c Î M , which is greater equal
all elements of A .  Every such c  is then called an upper bound of A .  Written in
predicate logic:

is|bounded@A, MD :� $
cÎM

"
xÎA

x £ c

is an explicit definition of a new predicate úis|boundedø. For úupper|boundø one
would be tempted to introduce a function implicitely defined as

upper|bound@A, MD := '
cÎM

"
xÎA

x £ c

so that the fact that ú10 is an upper bound of A  in M ø can be stated as

(8)upper|bound@A, MD = 10 .
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Intuitively,  this  seems  to  be  fine.  Now  consider  the  well|known  theorem  that
every  number  greater  than  an  upper  bound  must  again  be  an  upper  bound.
From this theorem together with (8) we can then easily infer

(9)upper|bound@A, MD = 12 ,

from which, by symmetry and transitivity of equality, we get the contradiction

10 = 12 .

Example (Predicate instead of implicitely defined function)

Weak implicit definitions are often better expressed as predicates. In the exam-
ple  above,  instead  of  the  function  úupper|boundø  one  would  rather  define  a
predicate

upper|bound@A, M, cD :� c Î M í "
xÎA

x £ c .

(It can, in general, often help clarify the structure if one introduces new symbols
with each quantifier in a sequence of quantifiers.

is|bounded@A, MD :� $
c

upper|bound@A, M, cD
In a next step one could now introduce a quantifier for M  and introduce a new
unary function/predicate depending only on A . Think about what the meaning of
this would then be. See also next example.)

The fact that ú10 is an upper bound of A  in M ø would then be written as

upper|bound@A, M, 10D .

The theorem would now allow to infer

upper|bound@A, M, 12D ,

which  does  not  cause  any  problems.  (As  soon  as  we  have  studied  rules  for
proving,  we  will  see  that  in  the  formulation  using  a  function  úupper|boundø  it
would  not  even  be  possible  to  prove  the  theorem,  which~on  the  other
hand~saves us from the contradiction 10 = 12  arising in the previous example.)

Example (Structured definitions by introducing only one quantifier at  the
time)

Consider the term
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f @xD - f @aD
������������������������������������

x - a

containing  the  free  variables  f , a, x .  It  may,  thus,  be  reasonable  to  define  a
3|ary function

gradient|secant|between@ f , a, xD :=
f @xD - f @aD

������������������������������������
x - a

giving  the  úgradient  of  the  secant  between  the  points  Hx, f @xDL  and  Ha, f @aDL ø.
Now, binding x  through the lim|quantifier, we can define

gradient|at@ f , aD := lim
x®a

gradient|secant|between@ f , a, xD J = lim
x®a

 
f @xD - f @aD

������������������������������������
x - a

N
being the úgradient of f  at aø.  Now, binding a  through the Λ|quantifier, we can
define the derivative of f  as

derivative@ f D := Λ
a

gradient|at@ f , aD
J = Λ

a
 lim
x®a

gradient|secant|between@ f , a, xD = Λ
a

 lim
x®a

 
f @xD - f @aD

������������������������������������
x - a

N .

(Note,  that  we did not  bother with existence of  limits etc.  in  this example. The
complete  and  appropriate  formulation  of  differentiability  and  related  concepts
can be found in the next example.)

Example (Structured definitions by introducing only one quantifier at  the
time)

We  have  a  notion  of  limit  for  functions  (see  Definition  5.24  lecture  notes
Analysis):

is|limit|of|at@ f , a, yD :� "
Ε>0

$
∆>0

"
xÎU∆ @aD�8a<ÝD@ f D f @xD Î UΕ @yD Ji.e. lim

x®a
 f @xD = yN

gradient|secant|between@ f , a, xD :=
f @xD - f @aD

������������������������������������
x - a

In fact, we want to view gradient|secant|between as a function of x :

gradient|between@ f , aD := Λ
x

 gradient|secant|between@ f , a, xD J = Λ
x

 
f @xD - f @aD

������������������������������������
x - a

N
converges|gradient|between|to@ f , a,

yD :� is|limit|of|at@gradient|between@ f , aD, a, yD
differentiable@ f , aD :� $!

y
converges|gradient|between|to@ f , a, yD
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derivative@ f , aD := '!
y

converges|gradient|between|to@ f , a, yD
For  derivative@ f , aD  we introduce the notion f ’@aD ,  where in  this  case ú  ’  ø  is  a
binary function symbol written in infix notation.

differentiable@ f D :� "
a

differentiable@ f , aD
derivative@ f D := Λ

a
 derivative@ f , aD

For derivative@ f D  we introduce the notion f ’ ,  where in this case ú  ’  ø  is a unary
function symbol written in postfix notation. It  must be noticed that in the defini-
tion (lecture notes Analysis p.87)

f ’ : I ® R
x # f ’@xD

the ú ’ ø|symbol in the first line is the unary postfix function symbol, whereas in
the second line it is the binary infix function symbol, i.e.

derivative@ f D : I ® R
x # derivative@ f , xD

telling that (for all x)

derivative@ f D@xD = derivative@ f , xD .

The  process  of  representing  a  binary  function  j  as  a  unary  function,  whose
value  when  applied  to  the  first  argument  is  itself  a  function,  which  is  then
applied to the second argument, is called currying. In general, currying reduces
n|ary functions to nested applications of unary functions. By currying we can for
instance think of x + y + z  (ÔPlus@x, y, zD) as

ÔPlus@ÔPlus@xD@yDD@zD
where

ÔPlus@xD := Λ
u

 x + u .
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