
Chapter 2:

Proof Rules for Predicate Logic

2.1 Introduction

Mathematical activity can be classified mainly as úprovingø, úsolvingø, or
úsimplifyingø. Techniques for solving heavily depend on the structure of the
formulae under consideration and will be discussed in many special lectures on
systems of linear equations, differential equations, or integral equations. Solv-
ing, however, appears also as a subtask in proving, namely when proving
formulae involving the existential quantifier. In many cases, the proof of an
existential formula finally amounts to solving some formulae. We will discuss in
this chapter the transition from proving to solving, we will then not go into the
details of actually solving. úSimplificationø is often addressed as úcomputationø
and most of the times refers to úreplacing equals by equalsø. Simplification,
however, can be viewed in a much broader context, which will partly be covered
in this chapter in some rules for proving úby symbolic computationø. The empha-
sis of this chapter is being put on an introduction of rules for proving in predicate
logic. These rules should be helpful for both checking the correctness of given
proofs and for generating correct proofs on one’s own.

2.1.1 Proof Situations and Proofs

A proof situation consists of

è a formula to be proved (the úgoal formulaø) together with a couple of free
variables called the úproof variablesø

è and a knowledge base.

The proof problem consists of showing that the goal formula, under the assump-
tions in the knowledge base, is true for all values of the proof variables.

A proof starting from a given proof situation consists of a sequence of
(algorithmic) steps that reduces, by certain úreasoning rulesø the proof situation
to (hopefully) simpler proof situations (solution situations, simplification situa-
tions) until one arrives at situations for which an answer is known. The reason-
ing rules also tell us how, from the answers of the intermediate situations, the
answer to the initial proof problem may be obtained.

A proof starting from a given proof situation consists of a sequence of
(algorithmic) steps that reduces, by certain úreasoning rulesø the proof situation
to (hopefully) simpler proof situations (solution situations, simplification situa-
tions) until one arrives at situations for which an answer is known. The reason-
ing rules also tell us how, from the answers of the intermediate situations, the
answer to the initial proof problem may be obtained.

We do not give a formal definition of úproofø, it should be understood that a
proof should not only tell whether or not the goal follows from the assumptions
but it should also convince the reader (listener) by giving arguments why the
goal is true whenever the assumptions hold. (úTruthø of a formula here refers to
the semantics of expressions introduced in Chapter 1.)

Example of a proof situation in which the answer úprovedø is trivially known:
Any proof situation in which the goal formula can be obtained from one of the
formulae in the knowledge base by substitution, i.e. the goal formula is an
instance of a formula in the knowledge base. The easiest case is when the goal
is equal to one of the formulae in the knowledge base.

Here, we do not discuss in which sense the reasoning steps in a proof must
be algorithmic. However, in each of the reasoning steps which we introduce and
train below, it should be clear that they can be úcheckedø by computers. (The
Theorema system is a system that does not only allow to check reasoning steps
algorithmically but also to produce such steps algorithmically to a certain extent.)

2.1.1.1 Conventions on Free Variables

In proof situations we assume the goal and all formulae in the knowledge base
as closed, i.e. not containing free variables. Often the proof variables as intro-
duced above are not mentioned explicitely. In this case, we assume all free
variables bound by a universal quantifier, i.e. we prove the universal closure of
the goal. Analogously, we consider the universal closure of the formulae in the
knowledge base. In the description of the proof rules, we therefore assume that
neither goal nor knowledge base contain free variables.

2.1.2
Intuitive Notion: The úDistanceø between the Goal and the
Knowledge Base

On an informal level, it might be helpful to view the process of úprovingø as
úreducing the distance between the goal and the knowledge baseø, i.e. the
distance between the goal and the knowledge base is used as a measure for
the úsimplicity of a proof situationø. Notice, however, that there is no exact
notion of údistanceø in this context, it is meant only as a metaphor, through
which some of the characteristics of proving can be explained.

A proof is finished, when the goal is contained in the knowledge base, i.e.
the distance between goal and knowledge base is zero, or the goal is an
instance of a formula in the knowledge base, i.e. the goal is very close to a
formula in the knowledge base, i.e. the distance between goal and knowledge
base is úsmallø. At the beginning of a proof, the goal is neither contained in the
knowledge base nor is the goal already very close to a formula in the knowl-
edge base, i.e. there is a úbigø distance between goal and knowledge
base~otherwise the proof is trivial! The aim of each individual proof step should
therefore be to reduce the distance between goal and knowledge base.

Now think of each formula as a point in the plane and the knowledge base
as the area containing all formulae it is composed of. Each reasoning step
modifies the goal or the knowledge base.

50 2. Proof Rules for Predicate Logic

A proof is finished, when the goal is contained in the knowledge base, i.e.
the distance between goal and knowledge base is zero, or the goal is an
instance of a formula in the knowledge base, i.e. the goal is very close to a
formula in the knowledge base, i.e. the distance between goal and knowledge
base is úsmallø. At the beginning of a proof, the goal is neither contained in the
knowledge base nor is the goal already very close to a formula in the knowl-
edge base, i.e. there is a úbigø distance between goal and knowledge
base~otherwise the proof is trivial! The aim of each individual proof step should
therefore be to reduce the distance between goal and knowledge base.

Now think of each formula as a point in the plane and the knowledge base
as the area containing all formulae it is composed of. Each reasoning step
modifies the goal or the knowledge base.

KB
Goal

The distance between the goal and the knowledge base can be reduced by
either moving the goal towards the knowledge base or by expanding the knowl-
edge base towards the goal. Similarly, the reasoning rules that we will study
below, can be subdivided into rules for goal reduction and rules for knowledge
base expansion. More generally, reasoning proceeds by alternating rounds of
úgoal reductionsø (working backwards from the goals) and úknowledge base
expansionsø (working forward from known facts). Now suppose, we only apply
reasoning rules, which move the goal closer to the knowledge base or which
move formulae in the knowledge base closer to the goal.

KB
Goal

KB
Goal

2. Proof Rules for Predicate Logic 51

KB
GoalNew

Goal

The above pictures should indicate that an expansion of the knowledge base
can reduce the distance between goal and knowledge base (see picture 1) but
does not necessarily do so (see picture 2). Reduction of the goal (picture 3) on
the other hand is likely to always reduce the distance between the goal and the
knowledge base. Therefore, as a general principle, it is in most of the examples
better to first reduce the goal and only enter a round of expanding the knowl-
edge base when goal reduction is no longer possible. After knowledge base
expansion a reduction of the goal might again be possible.

2.1.3 Notation in Reasoning Rules

When explaining reasoning rules in the subsequent sections, upper case letters
like ‘F’, ‘G’, etc. normally will denote formulae, lower case letters like ‘s’, ‘t’, etc.
will denote terms, and Greek letters ‘Ξ’, ‘Η’, etc. will denote variables. If we
consider universally quantified formula of the form

"
Ξ,Η,¼

F

in the knowledge base, we always assume tacitly that Ξ, Η, ¼ are all the distinct
free variables in F so that

"
Ξ,Η,¼

F

is closed.

52 2. Proof Rules for Predicate Logic

2.2
The Role of Propositional Logic in Predicate Logic
Proving

2.2.1 Elementary Parts of Formulae

For the propositional expansion of knowledge bases and other reasoning
techniques involving propositional connectives, the notion of the úelementary
partsø of formulae is important: The elementary parts of a formula are deter-
mined by going from outside to inside and considering subformulae that start
with a quantifier or a predicate constant as úblack boxesø (= the elementary
parts).

We first illustrate the process of determining the elementary parts of formulae in
a couple of examples:

Example

x Î A Þ Hx Î A Þ x Î BL .

The elementary parts (úblack boxesø which we do not any more decompose)
are

x Î A

and

x Î B .

The formula now writes as

A Þ HA Þ BL .

ExampleHA Ý B = ÆL � Ø $
x

Hx Î A ß x Î BL
The elementary parts are

A Ý B = Æ

and

$
x

Hx Î A ß x Î BL

2. Proof Rules for Predicate Logic 53

and the formula writes as

A � Ø B

2.2.2 Truth Tables

Propositional expansion of knowledge bases and other reasoning techniques
involving propositional connectives are based on truth tables that describe the
behavior of the propositional connectives as functions on the truth values útrueø
and úfalseø. We assume the truth tables for propositional connectives (¬, ß, Þ, Þ
, �) are known, they can be looked up in the lecture notes Analysis or Linear
Algebra.

2.2.3
Propositional Consequences, Propositional Tautologies,
Propositional Equivalences

A formula U is a propositional consequence of formulae F, G, ¼ iff U is true
whenever F, G, ¼ are true úonly because of the meaning of the propositional
connectivesø. More precisely, for finding out whether or not U is a propositional
consequence of F, G, ¼ , the formulae are decomposed into their elementary
parts and then it is checked whether or not, for all assignments of the possible
two truth values útrueø and úfalseø to the elementary parts, U obtains the truth
value útrueø whenever F, G, ¼ obtain the truth value útrueø. For this check, the
truth tables for the propositional connectives are applied.

A formula U is a propositional tautology iff U is (always) true iff U obtains
the truth value útrueø for all assignments of truth values to the elementary parts
of U .

Formulae U and V are propositionally equivalent iff U is a propositional
consequence of V and V is a propositional consequence of U .

It is clear that formulae U and V are propositionally equivalent iff, for any
assignment of truth values to the elementary parts of U and V , they obtain
identical truth values.

Also, U and V are propositionally equivalent iff U � V is a propositional
tautology.

Example

The formulaHx Î A ß x Î CL Þ Hx Î B ß x Î CL
is a propositional consequence of the formulae

54 2. Proof Rules for Predicate Logic

x Î A Þ x Î B

and

x Î C .

In order to check this we determine the elementary parts of the formulae and
then look to the truth tables

x Î A x Î B x Î C x Î A Þ x Î B Hx Î A ß x Î CL Þ Hx Î B ß x Î CL
true true true true true
true true � true �
true � true true true
true � � true �

� true true true true
� true � true �
� � true � �
� � � � �

(We write ‘�’ instead of ‘false’ in order to identify the positions of the ‘true’ in the
tables more easily.)

One sees that for all combinations of truth values, for which x Î C and
x Î A Þ x Î B are both true, also Hx Î A ß x Î CL Þ Hx Î B ß x Î CL is true. Hence,Hx Î A ß x Î CL Þ Hx Î B ß x Î CL
is a propositional consequence of x Î C and x Î A Þ x Î B .

Example

The formulaHHx Î A Þ x Î BL ß x Î CL � HHx Î A ß x Î CL Þ Hx Î B ß x Î CLL
is a tautology (which is also called úpropositional distributivity of ß over Þø). In
fact, when we check the truth tables

2. Proof Rules for Predicate Logic 55

x Î A x Î B

true true
true true
true �
true �

� true
� true
� �
� �

x Î C

true
�

true
�

true
�

true
�

Hx Î A Þ x Î BL ß x Î C

true
�

true
�

true
�
�
�

Hx Î A ß x Î CL Þ Hx Î B ß x Î CL
true

�
true

�
true

�
�
�

we see that the columns of HHx Î A Þ x Î BL ß x Î CL andHHx Î A ß x Î CL Þ Hx Î B ß x Î CLL are identical and, hence, the column of HHx Î A Þ x Î BL ß x Î CL � HHx Î A ß x Î CL Þ Hx Î B ß x Î CLL
would consist of all ‘true’. Hence, we also see thatHHx Î A Þ x Î BL ß x Î CL
is a propositional consequence of HHx Î A ß x Î CL Þ Hx Î B ß x Î CLL
and that, in fact,HHx Î A Þ x Î BL ß x Î CL
and HHx Î A ß x Î CL Þ Hx Î B ß x Î CLL
are propositionally equivalent.

2.2.4 Pure Propositional Logic Proof Parts

At rare occasions, it may happen that an entire part of a proof can be estab-
lished by just looking to the elementary propositional parts of the goal formula
and the relevant formulae in the knowledge base and by establishing that the
goal is a propositional consequence of the relevant formulae in the knowledge
base. There are basically two methods for establishing that a goal formula is a
propositional consequence of certain formulae in the knowledge base:

è the truth table method,

è the únatural deduction methodø: this is the method that results from
applying the proof techniques for the propositional connectives described
below that reduce proof situations to other proof situations until one
arrives at trivial proof situations; we will illustrate this method in the exam-
ples. In most practical situations, the natural deduction method is applied.
In contrast to the truth table method, a proof by natural deduction gives a
úlogical argumentationø why the goal formula is a consequence of the
formulae in the knowledge base.

56 2. Proof Rules for Predicate Logic

è the únatural deduction methodø: this is the method that results from
applying the proof techniques for the propositional connectives described
below that reduce proof situations to other proof situations until one
arrives at trivial proof situations; we will illustrate this method in the exam-
ples. In most practical situations, the natural deduction method is applied.
In contrast to the truth table method, a proof by natural deduction gives a
úlogical argumentationø why the goal formula is a consequence of the
formulae in the knowledge base.

Example

The formulaHx Î A ß x Î CL Þ Hx Î B ß x Î CL
is a propositional consequence of the formulae

x Î A Þ x Î B

and

x Î C .

This is so because if we know x Î A Þ x Î B then we know that either x Î A or
x Î B holds. We distinguish the two cases:

è x Î A : Together with x Î C we then know x Î A ß x Î C and therefore alsoHx Î A ß x Î CL Þ Hx Î B ß x Î CL .

è x Î B : Together with x Î C we then know x Î B ß x Î C and therefore alsoHx Î A ß x Î CL Þ Hx Î B ß x Î CL .

2.2.5
Propositional Proof Rules for Structuring General Proofs in a
Natural Way

The more important role of the proof rules for propositional connectives is in
general predicate logic proofs for structuring the main part in the proof into
subproofs, for which quantifier rules are then necessary. The proof rules for the
connectives, which reduce proof situations to other proofs situations, yield the
únatural deduction styleø proofs. The name únatural deductionø stems from the
fact that, actually, a very natural way of understanding the connectives is by
explaining their role in proofs, i.e. in the reduction of proof situations to other
proof situations.

We will explain this important role of propositional logic within predicate logic
in the examples. In fact, most of the proofs that occur in practice, use proposi-
tional logic for structuring proofs before one applies (general and special)
quantifier rules. Hence, although propositional logic is trivial as a stand|alone
proof technique, it is of essential importance as a structuring tool for full predi-
cate logic proofs.

Roughly, the natural deduction rules for connectives contain (at least) one
proof rule for each propositional connective occurring as outermost symbol in
the goal or in a formula in the knowledge base. In addition to those there are
natural deduction rules for the quantifiers ‘"’ and ‘$’, again both for the quantifier
occurring as outermost symbol in the goal or in a formula in the knowledge
base.

2. Proof Rules for Predicate Logic 57

We will explain this important role of propositional logic within predicate logic
in the examples. In fact, most of the proofs that occur in practice, use proposi-
tional logic for structuring proofs before one applies (general and special)
quantifier rules. Hence, although propositional logic is trivial as a stand|alone
proof technique, it is of essential importance as a structuring tool for full predi-
cate logic proofs.

Roughly, the natural deduction rules for connectives contain (at least) one
proof rule for each propositional connective occurring as outermost symbol in
the goal or in a formula in the knowledge base. In addition to those there are
natural deduction rules for the quantifiers ‘"’ and ‘$’, again both for the quantifier
occurring as outermost symbol in the goal or in a formula in the knowledge
base.

2.3
Natural Deduction Proof Rules for Propositional
Connectives

2.3.1 Rules for Knowledge Base Expansion

2.3.1.1 Rule (úPropositional Consequenceø)

If

F,
G,
¼

are in the knowledge base and U is a propositional consequence of F, G, ¼
then

U

can be added to the knowledge base.

2.3.1.2 Rule (úPropositional Tautologyø)

If

U

is a propositional tautology then

U

can be added to the knowledge base.

58 2. Proof Rules for Predicate Logic

2.3.1.3 Rule (úCase Distinction on Disjunction in Knowledge Baseø)

If the proof goal has the form

F

and the knowledge base contains the closed formula

G Þ H

then prove

F

under the additional assumption

G

and prove

F

under the additional assumption

H .

Analogously for disjunctions with more alternatives.

Usually, one announces the application of this rule in a concrete proof with a
phrase similar to
úNow we distinguish two cases.
Case 1: Assume G ¼
Case 2: Now assume H ¼ø.

2.3.2 Rules for Universally Quantified Propositional Formulae

In fact, many rules for propositional connectives in the knowledge base do not
work only when the propositional connective is the outermost formula symbol,
but also when the propositional connective occurs inside a universal quantifier.
We will only describe the rules for the quantified case, it should be obvious, how
the rules specialize for the case where the universal quantifier is omitted.

2. Proof Rules for Predicate Logic 59

2.3.2.1
Rule (úExpansion of Universally Quantified Conjunction in

Knowledge Baseø)

If

"
Ξ,Η,¼

HF ß GL
is in the knowledge base then both

"
Ξ,Η,¼

F

"
Ξ,Η,¼

G

can be added to the knowledge base. (Analogously for conjunctions with more
than two formulae.)

2.3.2.2
Rule (úUniversally Quantified Implication in Knowledge Base:

Modus Ponensø)

If

"
Ξ,Η,¼

F Þ G

and

FΞ,Η,¼®s,t,¼

(i.e. an instance of F) are in the knowledge base then also

GΞ,Η,¼®s,t,¼

(i.e. the corresponding instance of G) and hence also

"
Α,Β,¼

GΞ,Η,¼®s,t,¼

(where Α, Β, ¼ are the free variables in s , t , ¼) can be added to the knowledge
base.

Strategic Remark: In the phase of knowledge base expansion, applying modus
ponens never is a mistake although some of the new statements generated
may never be used subsequently.

60 2. Proof Rules for Predicate Logic

2.3.2.3
Rule (úUniversally Quantified Implication in Knowledge Base:

Modus Ponens Special Caseø)

If

"
Ξ,Η,¼

HF ß HL Þ G

and

FΞ,Η,¼®s,t,¼

HΞ,Η,¼®s,t,¼

are in the knowledge base then also

GΞ,Η,¼®s,t,¼

(i.e. the corresponding instance of G) and hence also

"
Α,Β,¼

GΞ,Η,¼®s,t,¼

(where Α, Β, ¼ are the free variables in s , t , ¼) can be added to the knowledge
base.

2.3.2.4 Rule (úReflexivity of Implicationø)

The formula

"
Ξ,Η,¼

F Þ F

can always be added to the knowledge base.

2.3.2.5 Rule (úTransitivity of Implicationø)

If

"
Ξ,Η,¼

F Þ G

and

"
Ξ,Η,¼

G Þ H

2. Proof Rules for Predicate Logic 61

are in the knowledge base then

"
Ξ,Η,¼

F Þ H

can be added to the knowledge base.

2.3.2.6 Rule (úEquivalence Rewritingø)

If

"
Ξ,Η,¼

HF � GL
and

H

are in the knowledge base and the subformula at position p in H has the form

FΞ,Η,¼®s,t,¼

(i.e. the subformula of H at position p is an instance of F) then also

Hp#GΞ,Η,¼®s,t,¼

(i.e. H with the subformula at position p replaced by the corresponding instance
of G) can be added to the knowledge base. Using this rule, all occurrences of
instances of F can be replaced subsequently by instances of G .

Note that, if

"
Ξ,Η,¼

HF � GL
is in the knowledge base then also

"
Ξ,Η,¼

HG � FL
could be added to the knowledge base and, hence, equivalence rewriting can
also proceed by replacing instances of G by instances of F .

The rule applies accordingly if H is the current proof goal.

62 2. Proof Rules for Predicate Logic

2.3.2.7 Rule (úReflexivity of Equivalenceø)

The formula

"
Ξ,Η,¼

F � F

can always be added to the knowledge base.

2.3.2.8 Rule (úSymmetry of Equivalenceø)

If

"
Ξ,Η,¼

F � G

is in the knowledge base then

"
Ξ,Η,¼

G � F

can be added to the knowledge base.

2.3.2.9 Rule (úTransitivity of Equivalenceø)

If

"
Ξ,Η,¼

F � G

and

"
Ξ,Η,¼

G � H

are in the knowledge base then

"
Ξ,Η,¼

F � H

can be added to the knowledge base.

2.3.2.10 Rule (úSplit Equivalence into Implicationø)

If

2. Proof Rules for Predicate Logic 63

"
Ξ,Η,¼

F � G

is in the knowledge base then both

"
Ξ,Η,¼

F Þ G

"
Ξ,Η,¼

G Þ F

can be added to the knowledge base.

Note that this rule follows from already known rules! F � G andHF Þ GL ß HG Þ FL are propositionally equivalent, hence, the tautologyHF � G L � HHF Þ GL ß HG Þ FLL can be added to the knowledge base. By
úEquivalence Rewritingø, we can replace F � G by HF Þ GL ß HG Þ FL in the
knowledge base. Then use the rule úSplit Conjunctionø for splitting conjunctions
in the knowledge base in order to derive the two desired formulae.

2.3.2.11 Rule (úEquality Rewriting in Formulaeø)

If

"
Ξ,Η,¼

Hu = vL
and

H

are in the knowledge base and the subterm at position p in H has the form

uΞ,Η,¼®s,t,¼

(i.e. the subterm of H at position p is an instance of u) then also

Hp!vΞ,Η,¼®s,t,¼

(i.e. H with the subterm at position p replaced by the corresponding instance of
v) can be added to the knowledge base.

Note that, if

"
Ξ,Η,¼

Hu = vL
is in the knowledge base then also

64 2. Proof Rules for Predicate Logic

"
Ξ,Η,¼

Hv = uL
could be added to the knowledge base and, hence, equality rewriting can also
proceed by replacing instances of v by instances of u .

The rule applies accordingly if H is the current proof goal.

2.3.2.12 Rule (úEquality Rewriting in Termsø)

If

"
Ξ,Η,¼

Hu = vL
is in the knowledge base and the subterm at position p in the closed term h has
the form

uΞ,Η,¼®s,t,¼

(i.e. the subterm of h at position p is an instance of u) then also

h = hp!vΞ,Η,¼®s,t,¼

can be added to the knowledge base.

2.3.2.13 Rule (úReflexivity of Equalityø)

The formula

"
Ξ,Η,¼

s = s

can always be added to the knowledge base.

2.3.2.14 Rule (úSymmetry of Equalityø)

If

"
Ξ,Η,¼

s = t

is in the knowledge base then

"
Ξ,Η,¼

t = s

2. Proof Rules for Predicate Logic 65

can be added to the knowledge base.

2.3.2.15 Rule (úTransitivity of Equalityø)

If

"
Ξ,Η,¼

r = s

and

"
Ξ,Η,¼

s = t

are in the knowledge base then

"
Ξ,Η,¼

r = t

can be added to the knowledge base.

2.3.2.16 Notation for Rewriting Chains

Equivalence and equality rewriting together with reflexivity, symmetry, and
transitivity of equivalence and equality plays an important role in the expansion
of knowledge bases (and in the reduction of goals). By transitivity, rewriting
steps can be combined in chains of which only the first and last formula (term)
are interesting as úthe resultø. Basically, also modus ponens and reflexivity and
transitivity of implications can be used in this way only that only one direction is
valid.

Such symbolic computation reasoning chains are presented in various
forms. Here, we introduce one form: The following notation

F0

' by Hlabel 1L with x, y, ¼ ® s1 , t1 , ¼

F1

' by Hlabel 2L with x, y, ¼ ® s2 , t2 , ¼

F2

' by Hlabel 3L with x, y, ¼ ® s3 , t3 , ¼

...

' by Hlabel kL with x, y, ¼ ® sk , tk , ¼

66 2. Proof Rules for Predicate Logic

Fk

means that

è F0 is in the knowledge base,

è (label 1) is an implication or equivalence or equality by which, with
the substitution x, y, ¼ ® s1 , t1 , ¼ , F1 can be derived by modus
ponens or equivalence rewriting or equality rewriting,

è F1 can, hence, be added to the knowledge base,

è (label 2) is an implication or equivalence or equality by which, with
the substitution x, y, ¼ ® s2 , t2 , ¼ , F2 can be derived by modus
ponens or equivalence rewriting or equality rewriting,

è F2 can, hence, be added to the knowledge base,

....

è Fk can, hence, be added to the knowledge base.

Note that this does not just mean that

F0 Þ F1

F1 Þ F2

...

is in the knowledge base! Therefore, it is not a good idea to write these chains
in the following way

F0 Þ F1 Þ F2 ¼

except if the meaning of this notation is completely understood! In particular, it
is very dangerous to describe reasoning chains by saying something like:

Now we know,

F0 Þ F1 Þ ¼

because what one wants to say is

úWe know

F0

and from this

2. Proof Rules for Predicate Logic 67

F1

...

can be concluded by modus ponens, equivalence rewriting or equality rewriting.ø
!

Often, the substitutions used in the symbolic computation steps are not indi-
cated explicitly. Also, the positions at which the replacements are done are
almost never given explicitly although only the explicit indication of the position
would make a given symbolic computation step unique.

2.3.3 Rules for Goal Reduction

2.3.3.1 Rule (úProof by Contradictionø)

If the proof goal has the form

Ø F

where F is a closed formula, add

F

to the knowledge base and try to prove a contradiction, i.e. try to prove a for-
mula of the form

G ß Ø G.

Strategic Remark about Contradictions: Of course, the advice of proving
negations by contradictions does not help much because the question is which
formula G can be found such that

G ß Ø G

can be proved. However, often, there is already a formula G in the knowledge
bases such that Ø G is conjectured to be a good candidate for being provable
from F . Thus, when we derive Ø G and we have G in the knowledge base then
the contradiction G ß Ø G is proven. Proofs by contradiction are also called
úindirect proofsø.

In principle, the proof technique of proving by contradiction can be applied in
just every proof problem: In order to prove a closed formula

F

68 2. Proof Rules for Predicate Logic

assume

Ø F

and derive a contraction.

However, is it advisable to attempt, first, a údirect proofø before one attempts
an úindirect proofø because, sometimes, direct proofs give more information
than indirect proofs. It is also worth mentioning that úreal life provingø as a
fundamental part of mathematical exploration is typically applied in situations
where it is not known whether or not a given formula F is true or false (under a
given knowledge base). Hence, the basic exploration cycle for analyzing the
truth of a úconjecturedø formula F by proving is as follows:

(1) try to prove F (in which case F is true),

(2) assume Ø F and try to prove a contradiction (in which case F
is also true)

(3) try to prove Ø F (in which case F is false),

(4) assume F and try to prove a contradiction (in which case F is
also false),

go back to (1).

Going a couple of times through this basic exploration cycle is not a standstill:
The insight gained from a failing proof in one of the phases (1)−(4) may well
help to be successful in a later phase!

2.3.3.2 Rule (úEquivalence Rewritingø)

If the proof goal has the form

F

and we have

F � G

in the knowledge base then try to prove

G .

Strategic Remark: In particular, when the proof goal is

Ø F

2. Proof Rules for Predicate Logic 69

there are some useful equivalences to be applied for rewriting the negated proof
goal, e.g.

Ø HF ß GL � Ø F Þ Ø G

Ø HF Þ GL � Ø F ß Ø G

Ø "
x

F � $
x

Ø F

Ø $
x

F � "
x

Ø F

Rewriting the negated proof goal may then allow a direct proof instead of an
indirect proof.

2.3.3.3 Rule (úDecomposition of Conjunctionsø)

If the proof goal has the form

F ß G ß ¼

where F, G, ¼ are closed formulae then prove

F

and prove

G

and prove

¼

under the given knowledge base.

2.3.3.4 Rule (úSplitting Disjunctions Iø)

If the proof goal has the form

F Þ G Þ ¼

where F, G, ¼ are closed formulae then prove

F

or prove

70 2. Proof Rules for Predicate Logic

G

or prove

¼

under the given knowledge base.

2.3.3.5 Rule (úDeduction Ruleø)

If the proof goal has the form

F Þ G

where F and G are closed formulae then prove

G

under the additional assumption

F .

2.3.3.6 Rule (úContrapositionø)

Use the equivalenceHF Þ GL � HØ G Þ Ø FL .

If the proof goal has the form

F Þ G

where F and G are closed formulae then prove

Ø F

under the additional assumption

Ø G .

(This rule, essentially, is a version of the úproof by contradictionø rule. Proofs by
contradiction and proofs by contraposition are both also called úindirect proofsø.)

2. Proof Rules for Predicate Logic 71

2.3.3.7 Rule (úContradictionø)

Use the equivalenceHF Þ GL � HØ F Þ GL .

If the proof goal has the form

F Þ G

where F and G are closed formulae then assume

F

Ø G

and derive a contradiction.

2.3.3.8 Rule (úSplitting Disjunctions IIø)

Use the equivalenceHF Þ G Þ H Þ ¼L � HØ HG Þ H Þ ¼L Þ FL � HØ G ß Ø H ß ¼ Þ FL .

in order to prove the goal

F Þ G Þ H Þ ¼

assume

Ø G

Ø H

Ø ¼

and prove

F .

2.3.3.9 Rule (úProve Both Directionsø)

If the proof goal has the form

F � G

72 2. Proof Rules for Predicate Logic

then prove

G

under the additional assumption

F

and prove

F

under the additional assumption

G .

2.3.3.10 Rule (úProve Multi Equivalenceø)

If the proof goal has the form

F � G � ¼ � H

then prove

F Þ G

and prove

G Þ ¼

¼

and prove

H Þ F .

Remark: Proof goals of the form F � G � ¼ � H are commonly formulated in
the following way: úThe following are equivalent:

è F

è G

è ¼

è H .

2. Proof Rules for Predicate Logic 73

Before applying the rule above the formulae may be re|ordered. Transitivity of
implication justifies this rule.

2.3.3.11 Rule (úSymbolic Computation Goal Reductionø)

If the proof goal has the form

F � G

where F and G are closed formulae then try to reduce the goal

G

by equivalence symbolic computation to

F .

Strategic Remark: Try to establish a sequence

G � H

H � ¼

¼

¼ � F ,

which, by transitivity and symmetry of equivalence, proves F � G . Of course,
one can also start with F and establish a sequence of equivalences ending up
in G .

2.3.3.12 Rule (úSymbolic Computation Equality Provingø)

If the proof goal has the form

s = t

where s and t are closed terms then try to transform

s

to

t

by symbolic computation using equalities in the knowledge base.

74 2. Proof Rules for Predicate Logic

2.3.3.13 Rule (úEquality Proving by Simplificationø)

If the proof goal has the form

s = t

where s and t are closed terms then simplify

s

to

s�

and simplify

t

to

t�

and then prove

s� = t� .

2.3.3.14 Rule (úGoal Reduction using Implicationsø)

If the proof goal has the form

GΞ,Η,¼®s,t,¼

and we have a formula

"
Ξ,Η,¼

F Þ G

in the knowledge base then it is sufficient to prove

FΞ,Η,¼®s,t,¼

Important Remark: If any of the variables Ξ, Η, ¼ does not occur in G , say Ζ ,
then the substitution Ξ, Η, ¼ ® s, t, ¼ would not substitute a term for Ζ , and
therefore leave Ζ free in FΞ,Η,¼®s,t,¼ . In this situation, the goal

GΞ,Η,¼®s,t,¼

2. Proof Rules for Predicate Logic 75

can only be reduced to

$
Ζ

FΞ,Η,¼®s,t,¼ .

In this version, the rule introduces a quantifier, hence, it transforms the proof
situation into a generally more complicated proof situation! Use this rule with
caution.

Example: Suppose we know

"
x,y,z

Hx £ y ß y £ zL Þ x £ z HTransL
Then, for proving

a £ b

it is sufficient to prove

$
y

Ha £ y ß y £ bL .

The presentation of the successful proof would typically proceed by first present-
ing a proof for

a £ y0 and

y0 £ b

for some (well chosen) y0 and then derive from this

a £ b

by knowledge base expansion using Modus Ponens for (Trans). However, the
goal reduction introducing the $|quantifier represents the úideaø to search for a
y0 .

2.4 Natural Deduction Rules for Quantified Formulae

2.4.1 Rules for Knowledge Base Expansion

2.4.1.1 Rule (úInstanciation of Universal Quantifierø)

If

76 2. Proof Rules for Predicate Logic

"
Ξ,Η,¼

F

is in the knowledge base then also

FΞ,Η,¼®s,t,¼

and hence also

"
Α,Β,¼

FΞ,Η,¼®s,t,¼

(where Α, Β, ¼ are the free variables in s , t , ¼) can be added to the knowledge
base.

Strategic Remark: This rule is fundamental but strategically not very useful for
reasoning because infinitely many new formulae could be generated in the
knowledge base by this rule without making any contribution to achieving a
specified goal. Therefore, special cases of this rule (in dependence on the
structure of F) are more useful, see Section 2.3.2 above. In many cases, the
proof goal can give an idea on how to choose the terms s , t , ¼ appropriately in
order to being able to continue goal reduction.

An instanciation step is usually announced in a proof by saying:

Since we know

"
Ξ,Η,¼

F

we know in particular

FΞ,Η,¼®s,t,¼

2.4.1.2 Rule (úSkolem Constantsø)

If

$
Ξ,Η,¼

F

is in the knowledge base (where Ξ, Η, ¼ are the only free variables in F) then
you can add

FΞ,Η,¼®x0,y0,¼

2. Proof Rules for Predicate Logic 77

to the knowledge base, where x0, y0, ¼ are new object constants (i.e. object
constants that do neither occur in the knowledge base nor in the goal formula).
x0, y0, ¼ are called úSkolem constantsø.

Application of this rule is often announced in the following way: We know

$
Ξ,Η,¼

F

Therefore we can choose x0, y0, ¼ such that

FΞ,Η,¼®x0,y0,¼ .

2.4.1.3 Rule (úSkolem Functionsø)

If

"
Α,Β,¼

$
Ξ,Η,¼

F

is in the knowledge base (where Α, Β, Ξ, Η, ¼ are the only free variables in F)
then you can add

"
Α,Β,¼

FΞ,Η,¼®x0@Α,Β,¼D,y0@Α,Β,¼D,¼
to the knowledge base, where x0, y0, ¼ are new function constants (i.e.
function constants that do neither occur in the knowledge base nor in the goal
formula). x0, y0, ¼ are called úSkolem function constantsø.

Application of this rule is often announced in the following way: We know

"
Α,Β,¼

$
Ξ,Η,¼

F

Therefore we can choose functions x0, y0, ¼ such that

"
Α,Β,¼

FΞ,Η,¼®x0@Α,Β,¼D,y0@Α,Β,¼D,¼ .

2.4.2 Rules for Goal Reduction

2.4.2.1 Rule (úArbitrary But Fixedø)

If the proof goal is a formula

78 2. Proof Rules for Predicate Logic

"
Ξ,Η,¼

F

in which Ξ, Η, ¼ are the free variables of F , then prove

FΞ,Η,¼®Ξ0 ,Η0 ,¼

where Ξ0 , Η0 , ¼ have to be new object constants, i.e. object constants that do
not occur in the knowledge base and neither in the goal formula.

One often announces the application of this proof technique by saying:

We take arbitrary but fixed Ξ0 , Η0 , ¼ and prove

FΞ,Η,¼®Ξ0 ,Η0 ,¼

(In this formulation, úfixedø expresses the fact that the symbols ‘Ξ0 ’ etc. are
object constants and úarbitraryø expresses the fact that the symbols ‘Ξ0 ’ etc.
have to be new symbols that do not occur anywhere else in the goal and the
knowledge base.)

Explanation

The proof technique úarbitrary but fixedø is the most important elementary proof
technique that bridges quantifier|free with quantifier proving. It is important that
one understands, intuitively, why this technique works. Therefore, we give here
an intuitive explanation of the correctness of the technique:

Assume one succeeds to prove that

FΞ,Η,¼®Ξ0 ,Η0 ,¼

for new constant symbols ‘Ξ0 ’ etc. Then it is clear that no specific knowledge
on the objects denoted by ‘Ξ0 ’ etc. went into the proof because ‘Ξ0 ’ etc. are
symbols that do not occur anywhere in the knowledge base. Hence, it would be
possible to give the proof, without any change, for any specific object constants
‘c ’, etc. denoting specific objects. Hence, the proof could be repeated, without
any change, for all objects in the domain of discourse. Hence,

"
Ξ,Η,¼

F

is true. Note that it is important that the new symbols ‘Ξ0 ’ etc. are constants:
Thereby

FΞ,Η,¼®Ξ0 ,Η0 ,¼

2. Proof Rules for Predicate Logic 79

becomes a formula without free variables that can then be treated with other
proof techniques, i.e. can be decomposed in parts according to the proof
techniques to be discussed earlier.

It is also important that symbols ‘Ξ0 ’ etc. are really new, i.e. they do not
occur anywhere in the knowledge base and neither in F . If we use symbols ‘c ’,
‘d ’, etc. for which there is already knowledge available in the knowledge base,
the proof of

FΞ,Η,¼®c,c,¼

might work only because of this knowledge and, maybe, would not work without
this knowledge. Thus, we could not rely on the fact that the proof could be
repeated for arbitrary constants denoting arbitry objects.

The proof technique úarbitrary but fixedø is very important in situations
where formulae containing free variables are nested and the proof process for
the individual quantifiers must be carefully distinguished. Sometimes, however,
only the outermost universal quantifier has to be treated by the úarbitrary but
fixedø. In such cases, it is unusual to really introduce new constants by the
úarbitrary but fixedø technique. Rather, one just uses the variable names ‘Ξ ’,
etc. as new constants and one may say, for example,

úLet now Ξ, Η, ¼ be arbitrary but fixed and prove F .ø

This is alright as long as everybody understands that, from now on, ‘Ξ ’, etc. are
constants and one does not use, in the proof of F , any knowledge about ‘Ξ ’, etc.
that may perhaps appear somewhere in the knowledge base.

2.4.2.2 Rule (úFind Appropriate Termsø)

If the proof goal is

$
Ξ,Η,¼

F

where Ξ, Η, ¼ are the only free variables in F then it suffices to find terms
s, t, ¼ such that

FΞ,Η,¼®s,t,¼

can be proved.

80 2. Proof Rules for Predicate Logic

2.4.3 Case Distinction

Case distinctions do usually not appear stand|alone but inside predicates or
logical connectives, i.e.

p

�
�
������������t,

looomnooo
t1 Ü F1

t2 Ü F2

t3 Ü otherwise

�
�
������������ or C

�
�
������������H ,

looomnooo
G1 Ü F1

G2 Ü F2

G3 Ü otherwise

�
�
������������

where p is some predicate constant and C is some logical connective. The
predicate constant or the logical connective move inside the case distinction so
that the above formulae stand forlooomnooo

p@t, t1 D Ü F1

p@t, t2 D Ü F2

p@t, t3 D Ü otherwise
or

looomnooo
C@H, G1 D Ü F1

C@H, G2 D Ü F2

C@H, G3 D Ü otherwise
, respectively.

The convention is that a case distinction

(1)
looomnooo

G1 Ü F1

G2 Ü F2

G3 Ü otherwise

is an abbreviation for the formula

(2)F1 Þ G1 ß Ø F1 ß F2 Þ G2 ß Ø F1 ß Ø F2 Þ G3 .

(Analogously proceed for case statements with less or more than three cases.)

Case distinctions are most commonly used in definitions of functions or predi-
cates, such as

f @xD :=
looomnooo

t1 Ü F1

t2 Ü F2

t3 Ü otherwise
or H :�

looomnooo
G1 Ü F1

G2 Ü F2

G3 Ü otherwise

By the rules above, these definitions meanlooomnooo
f @xD := t1 Ü F1

f @xD := t2 Ü F2

f @xD := t3 Ü otherwise
or

looomnooo
H :� G1 Ü F1

H :� G2 Ü F2

H :� G3 Ü otherwise

2. Proof Rules for Predicate Logic 81

The rules for handling case distinctions are based on replacing of a case
distinction of the form (1) by a formula of the form (2) and then apply the appro-
priate rule for a conjunction.

2.4.3.1 Rule (úExpansion of Case Distinctionø)

If a case distinction looomnooo
G1 Ü F1

G2 Ü F2

G3 Ü otherwise

is in the knowledge base then

F1 Þ G1

Ø F1 ß F2 Þ G2

Ø F1 ß Ø F2 Þ G3

can be added to the knowledge base.

2.4.3.2 Rule (úReduction of Case Distinctionø)

The rule for reduction of case distinctions in the proof goal combines the rule
for reducing conjunctions with the rule for reducing implications.

For proving a case distinction looomnooo
G1 Ü F1

G2 Ü F2

G3 Ü otherwise

we split the proof into cases:

Prove G1 under the assumption F1

Prove G2 under the assumption Ø F1 ß F2

Prove G3 under the assumption Ø F1 ß Ø F2

Example:

Let for all x Î R

82 2. Proof Rules for Predicate Logic

 x¤ := : x Ü x ³ 0
-x Ü otherwise

Prove

"
x,yÎR

 x + y¤ £ x¤ + y¤
Let x0 , y0 arbitrary but fixed and show x0 + y0 ¤ £ x0 ¤ + y0 ¤ . We substitute the
definition for absolute value on the left hand side and move the predicate
symbol ú£ ø into the case distinction and have to prove

: x0 + y0 £ x0 ¤ + y0 ¤ Ü x0 + y0 ³ 0
-Hx0 + y0 L £ x0 ¤ + y0 ¤ Ü x0 + y0 < 0

First we assume x0 + y0 ³ 0 and show x0 + y0 £ x0 ¤ + y0 ¤ . Analogously, we
substitute the definition on the right hand side for x0 and have to prove

: x0 + y0 £ x0 + y0 ¤ Ü x0 ³ 0
x0 + y0 £ -x0 + y0 ¤ Ü x0 < 0

First we assume x0 ³ 0 and show x0 + y0 £ x0 + y0 ¤ . We substitute the
definition on the right hand side for y0 and have to prove

: x0 + y0 £ x0 + y0 Ü y0 ³ 0
x0 + y0 £ -x0 + H-y0 L Ü y0 < 0

First we assume y0 ³ 0 and show x0 + y0 £ x0 + y0 .
Now we assume y0 < 0 and show x0 + y0 £ x0 + H-y0 L .

Now we assume x0 < 0 and show -x0 + y0 £ x0 + y0 ¤ . ¼

Now we assume x0 + y0 < 0 and show -Hx0 + y0 L £ x0 ¤ + y0 ¤ . ¼

The presentation of the proof above would typically be given as follows:

Case 1: x0 + y0 ³ 0, x0 ³ 0, y0 ³ 0 : ¼
Case 2: x0 + y0 ³ 0, x0 ³ 0, y0 < 0 : ¼
¼

2. Proof Rules for Predicate Logic 83

2.5 Theory|Specific Proof Rules and Strategies

2.5.1 Set Theory

Set theory is an extension of predicate logic that is frequently used in every|day
mathematics. Intuitively, a úsetø is a collection of objects. For some set M and
an object s the most interesting property to study is whether s is a member of M
or not . As long as we are speaking about sets containing only finitely many
objects (whatever this means ¼) this question is easy to answer by checking
finitely many cases. However, we want to handle also collections of infinitely
many objects (whatever this means ¼). It is desirable to define a set by a
characteristic property of its elements, i.e. the set of all x satisfying the property
P written as 8x È P< . If one continues beyond this point on an intuitive level, one
quickly runs into paradoxa like Russell’s paradox (see lecture notes Algorithmic
Methods 1) or the barber’s paradox (see lecture notes Linear Algebra).

Set theory can, however, be introduced in an axiomatic fashion. Roughly
speaking, set theory introduces a binary predicate ‘Î’ (membership) and certain
axioms that characterize the behaviour of membership. In addition, certain new
function and predicate symbols are introduced through explicit definitions in
terms of membership. There are several axiomatizations of set theory (Zermelo|
Frankel set theory (ZF), von Neuman|Gödel|Bernays set theory (NGB), or type
theory of Russell and Whitehead to name a few), which differ in the way how to
avoid the well|known paradoxa, but which, on the other hand, do not affect the
way how set theory is used in every|day mathematics (at least, the author is not
aware of concrete situations in úusual mathematicsø, where it would make a
difference).

We show the flavour of axiomatic set theory based on axioms of ZF. Most of
the axioms deal with the existence of certain sets that are characterized by the
way how membership in them can be decided, e.g. there is for each formula P
with free variable x and for each set M (where M and S do not occur in P) an
axiom of the form

$!
S

"
x

x Î S � Hx Î M ß PL .

Since, by the above axiom~the axiom scheme of separation~, we know the
existence of such a set S we can define

(3)set@M, PD := '!
S

J"
x

x Î S � Hx Î M ß PLN .

set@M, PD is commonly written as

84 2. Proof Rules for Predicate Logic

8x Î M È P<
and it should be noted that the language construct 8x Î M È ¼< again binds the
variable x in the expression and, thus, should be considered a quantifier. From
the definition of set@M, PD we know

"
x

x Î set@M, PD � Hx Î M ß PL
or, using the notation just introduced

(4)"
y

y Î 8x Î M È P< � Hy Î M ì Px®y L ,

respectively. Note that we renamed the bound variable in the universal quanti-
fier in order to distinguish it from the bound variable in the inner quantifier.
Without this renaming formula (4) would read as

"
x

x Î 8x Î M È P< � Hx Î M ß PL ,

which is not wrong but confusing, at least for the author. Formula (4) also tells
exactly how to check membership for a set defined in this way. The ZF axiom
system contains the necessary axioms that guarantee the existence of certain
sets and thereby justify to introduce certain sets implicitely like in (3). The axiom
of extensionality, i.e.

A = B � "
x

x Î A � x Î B

tells when two sets are equal. A predicate ‘Í’ is introduced explicitely:

A Í B :� "
x

x Î A Þ x Î B .

The construction of sets of the form 8x È x Î M ß P< is allowed by the axioms
of separation, the construction of sets of different shape must be claimed by
axioms. In the sequel, we will introduce certain set constructions or list the rules
how to test for membership in various set constructions. All definitions and all
membership rules are justified by the underlying axioms of ZF.

Æ := 8x È x ¹ x<
A Ý B := 8x È x Î A ß x Î B<
è A := 9x

ÄÄÄÄÄÄÄÄÄ "
yÎA

x Î y=
A Ü B := 8x È x Î A Þ x Î B<

2. Proof Rules for Predicate Logic 85

æ A := 9x
ÄÄÄÄÄÄÄÄÄ $

yÎA
x Î y=

P@AD := 8x È x Í A<8< := Æ8a< := 8x È x = a<8a, b< := 8a< Ü 8b< = 8x È x = a Þ x = b<8a1 , ¼, an < := 8a1 < Ü ¼ Ü 8an < = 8x È x = a1 Þ ¼ Þ x = an < = 9x Ë $
i=1,¼,n

x = ai =
9Tx È

xÎM
Cx = := 9y Ë $

xÎM
Cx í y = Tx =

For a term Ay with free variable y it is often convenient to use the abbreviations

è
xÎM

Ax for Ý 9Ax È
xÎM

=
æ
xÎM

Ax for Ü 9Ax È
xÎM

=
These abbreviations must again be viewed as quantifiers binding x . Using these
abbreviations, it can be shown that

a Î è
xÎM

Ax � "
xÎM

a Î Ax

a Î æ
xÎM

Ax � $
xÎM

a Î Ax .

In many cases proving with sets reduces to standard predicate logic proving
using the definitions and conventions above.

2.5.2 Natural Numbers

2.5.2.1
Induction Proofs for Universally Quantified Goals over the Natural

Numbers

Natural numbers allow one special proof technique, namely induction. The
principle of proving by induction is derived from the induction axioms for natural
numbers, i.e. for each formula Ax with free variable x a formula of the form

86 2. Proof Rules for Predicate Logic

JAx®0 í "
nÎN

Ax®n Þ Ax®n+1 N Þ "
xÎN

Ax

where n does not occur in A . An induction axiom can be used to reduce a proof
goal (see úGoal Reduction using Implicationsø)

"
xÎN

Ax

to proving

(5)Ax®0

(6)"
nÎN

Ax®n Þ Ax®n+1

Formula (5) is called the induction base, for proving (6) one assumes

(7)Ax®n0

and proves

(8)Ax®n0 +1

for arbitrary but fixed n0 Î N . Assumption (7) is called induction hypothesis, the
proof goal (8) is called induction step. Intuitively, it should be clear that after
having proved (5) and (6) the formula really holds for all natural numbers: From
(6) we know in particular

Ax®0 Þ Ax®1

and from this, together with (5) by Modus Ponens,

Ax®1 ,

by this, together with the instance of (6)

Ax®1 Þ Ax®2

by Modus Ponens

Ax®2

etc. and we can continue application of Modus Ponens together with appropri-
ate instances of (6) in order to derive Ax®n for all natural numbers n , i.e. Ax is
true for each assignment for x , i.e. "

xÎN
Ax is true according to the semantics of

the "|quantifier.
Here we considered the set of natural numbers to start with 0. However, for

some applications it can be convenient to consider 1 the smallest natural
number. N0 is in this case commonly written for N Ü 80< . The induction axioms
are available with respective modification, i.e. the induction base is then

2. Proof Rules for Predicate Logic 87

Here we considered the set of natural numbers to start with 0. However, for
some applications it can be convenient to consider 1 the smallest natural
number. N0 is in this case commonly written for N Ü 80< . The induction axioms
are available with respective modification, i.e. the induction base is then

Ax®1 .

In general, using the induction base

Ax®s

and induction hypothesis and induction step as usual (with the additional
assumption that the arbitrary but fixed n0 satisfies n0 ³ s) can be used for
proving

"
xÎN

x³s

Ax .

2.5.2.2 Comment on Presentation of Inference Chains

It can often be observed that an argument as above is presented in the
following way (see also Section 2.3.2.16):

úWe know Ax®0 Þ Ax®1 Þ Ax®2 Þ ¼ Þ Ax®n ø

Note that úÞø in this case is not the propositional connective úimplicationø but it
is just a symbol abbreviating the word úthereforeø (or similar). In fact, it is not
that we only know Ax®0 Þ Ax®1 Þ Ax®2 Þ ¼ Þ Ax®n but we know all of Ax®0 ,
Ax®1 , Ax®2 ,¼,Ax®n . Consider alternatively,

úWe know Ax®0 �
­

Ax®0 ÞAx®1

Ax®1 �
­

Ax®1 ÞAx®2

Ax®2 �
­

Ax®2 ÞAx®3

¼ �
­

Ax®n-1 ÞAx®n

Ax®n ø ,

which is now completely confusing, because the úÞø in the top line is
úthereforeø and the úÞø in the underscript is úimplicationø. One could live with

úWe know Ax®0 �
­

by an instance
of H6L

Ax®1 �
­

by an instance
of H6L

Ax®2 �
­

by an instance
of H6L

¼ �
­

by an instance
of H6L

Ax®n ø ,

and a convention that úÞ
­
¼

ø always means útherefore, by ¼ø instead of

úimplicationø. Whatever notation you use, always follow the principle:

Save the time of the reader!

i.e. mathematical notation should help the reader to understand the text rather
than making it more difficult to follow the ideas.

88 2. Proof Rules for Predicate Logic

2.5.2.3 Complete Induction

The principle of complete induction is a consequence of the induction axioms
given in the previous section. The axiom readsi

k
jjjjjjjj "

nÎN

i
k
jjjjjjjj "

mÎN

m<n

Ax®m

y
{
zzzzzzzz Þ Ax®n

y
{
zzzzzzzz Þ "

xÎN
Ax

where m and n do not occur in A and x is a free variable in A . By this axiom,
the proof of

"
xÎN

Ax

reduces to provingi
k
jjjjjjjjj "

mÎN

m<n0

Ax®m

y
{
zzzzzzzzz Þ Ax®n0

for arbitrary but fixed n0 . At this point, typically, a case distinction is made:
Case 1 (Induction base): n0 = 0 . We have to show

Ax®0

Case 2: n0 ³ 1 . We assume (induction hypothesis)

"
mÎN

m<n0

Ax®m

and show (induction step)

Ax®n0 .

2.5.3 Tuples

Similar to the domain of natural numbers, we can use an induction principle for
tuples. In a first formulation, an induction principle for tuples allows to prove a
formula

"
x

is|tuple@xD Ax

2. Proof Rules for Predicate Logic 89

by proving

(9)Ax®X \
(10)

"
Τ

is|tuple@ΤD "
y

Ax®Τ Þ Ax®Τ[y or "
Τ

is|tuple@ΤD "
y

Ax®Τ Þ Ax®y\Τ

Formula (9) is called the induction base, for proving (10) one assumes

(11)Ax®Τ0

and proves

(12)Ax®Τ0 [y0 or Ax®y0 \Τ0

for arbitrary but fixed y0 and an arbitrary but fixed tuple Τ0 , where y \ Τ and
Τ [y stand for úthe object y prepended/appended to the tuple Τø, respectively.
Assumption (11) is again called induction hypothesis, the proof goal (12) is
again called induction step. Whether one chooses to prepend or append an
object in the induction step depends in most of the cases on the structure of the
formula or on additional knowledge in the knowledge base.

Similar to natural numbers, there is also a complete induction for tuples. In
order to prove

"
x

is|tuple@xDß x¤³L

Ax

it is sufficient to prove

"
x

is|tuple@xDß x¤=L

Ax

"
l>L

"
x

is|tuple@xDß x¤<l

Ax Þ "
x

is|tuple@xDß x¤=l

Ax

In this case, the induction base is then to prove

Ax®Τ0

for an arbitrary but fixed tuple Τ0 of length L . As the induction hypothesis, we
assume (for arbitrary but fixed l1 > L)

"
x

is|tuple@xDß x¤<l1

Ax

and show in the induction step

90 2. Proof Rules for Predicate Logic

Ax®Τ1

for an arbitrary but fixed tuple Τ1 of length l1 .

2.5.4 Polynomials

Since we saw (see lecture notes Algorithmic Methods 1) that polynomials can
be represented by (coefficient) tuples, induction over tuples is a commonly used
prove technique for polynomials. Since the length of the tuple corresponds to
the degree of the polynomial, tuple induction is in this context often referred to
as úinduction over the degree of the polynomialø: First prove the formula for all
polynomials of degree 0, then assume the formula for all polynomials of degree
n and prove the formual for all polynomials of degree n + 1 , or in the case of
complete induction: show the formula for all polynomials of degree n assuming
the induction hypothesis for all polynomials of degree less than n .

2.5.4.1 Organization

2. Proof Rules for Predicate Logic 91

