
Chapter 2:

Proof Rules for Predicate Logic

2.1 Introduction

Mathematical  activity  can  be  classified  mainly  as  úprovingø,  úsolvingø,  or
úsimplifyingø.  Techniques  for  solving  heavily  depend  on  the  structure  of  the
formulae under consideration and will be discussed in many special lectures on
systems  of  linear  equations,  differential  equations, or  integral  equations. Solv-
ing,  however,  appears  also  as  a  subtask  in  proving,  namely  when  proving
formulae  involving  the  existential  quantifier.  In  many  cases,  the  proof  of  an
existential formula finally amounts to solving some formulae. We will discuss in
this  chapter the transition from proving to  solving,  we will  then not  go  into the
details of actually solving. úSimplificationø is often addressed as úcomputationø
and  most  of  the  times  refers  to  úreplacing  equals  by  equalsø.  Simplification,
however, can be viewed in a much broader context, which will partly be covered
in this chapter in some rules for proving úby symbolic computationø. The empha-
sis of this chapter is being put on an introduction of rules for proving in predicate
logic. These rules should be helpful for both checking the correctness of given
proofs and for generating correct proofs on one’s own.

2.1.1 Proof Situations and Proofs

A proof situation consists of

è a formula to be proved (the úgoal formulaø) together with a couple of free
variables called the úproof variablesø

è and a knowledge base.

The proof problem consists of showing that the goal formula, under the assump-
tions in the knowledge base, is true for all values of the proof variables.

A  proof  starting  from  a  given  proof  situation  consists  of  a  sequence  of
(algorithmic) steps that reduces, by certain úreasoning rulesø the proof situation
to  (hopefully)  simpler  proof  situations  (solution  situations,  simplification  situa-
tions) until one arrives at situations for which an answer is known. The reason-
ing rules also tell  us how, from the answers of  the intermediate situations, the
answer to the initial proof problem may be obtained.
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to  (hopefully)  simpler  proof  situations  (solution  situations,  simplification  situa-
tions) until one arrives at situations for which an answer is known. The reason-
ing rules also tell  us how, from the answers of  the intermediate situations, the
answer to the initial proof problem may be obtained.

We do not give a formal definition of úproofø, it should be understood that a
proof should not only tell whether or not the goal follows from the assumptions
but  it  should  also  convince  the  reader  (listener)  by  giving  arguments  why  the
goal is true whenever the assumptions hold. (úTruthø of a formula here refers to
the semantics of expressions introduced in Chapter 1.)

Example of a proof situation in which the answer úprovedø is trivially known:
Any proof situation in  which the goal formula can be obtained from one of  the
formulae  in  the  knowledge  base  by  substitution,  i.e.  the  goal  formula  is  an
instance of a formula in the knowledge base. The easiest case is when the goal
is equal to one of the formulae in the knowledge base.

Here, we do not discuss in which sense the reasoning steps in a proof must
be algorithmic. However, in each of the reasoning steps which we introduce and
train below, it  should be clear that they can be úcheckedø  by computers. (The
Theorema system is a system that does not only allow to check reasoning steps
algorithmically but also to produce such steps algorithmically to a certain extent.)

2.1.1.1 Conventions on Free Variables

In proof situations we assume the goal and all formulae in the knowledge base
as closed,  i.e.  not  containing free variables. Often the proof variables as intro-
duced  above  are  not  mentioned  explicitely.  In  this  case,  we  assume  all  free
variables bound by a universal quantifier, i.e. we prove the universal closure of
the goal. Analogously, we consider the universal closure of the formulae in the
knowledge base. In the description of the proof rules, we therefore assume that
neither goal nor knowledge base contain free variables.

2.1.2
Intuitive Notion: The úDistanceø between the Goal and the 
Knowledge Base

On  an  informal  level,  it  might  be  helpful  to  view  the  process  of  úprovingø  as
úreducing  the  distance  between  the  goal  and  the  knowledge  baseø,  i.e.  the
distance between the goal  and the knowledge base is  used as  a  measure for
the  úsimplicity  of  a  proof  situationø.  Notice,  however,  that  there  is  no  exact
notion  of  údistanceø  in  this  context,  it  is  meant  only  as  a  metaphor,  through
which some of the characteristics of proving can be explained.

A  proof  is  finished, when the goal  is  contained in  the knowledge base,  i.e.
the  distance  between  goal  and  knowledge  base  is  zero,  or  the  goal  is  an
instance  of  a  formula  in  the  knowledge  base,  i.e.  the  goal  is  very  close  to  a
formula in  the knowledge base, i.e.  the distance between goal and knowledge
base is úsmallø. At the beginning of a proof, the goal is neither contained in the
knowledge base  nor  is  the  goal  already very  close  to  a  formula in  the  knowl-
edge  base,  i.e.  there  is  a  úbigø  distance  between  goal  and  knowledge
base~otherwise the proof is trivial! The aim of each individual proof step should
therefore be to reduce the distance between goal and knowledge base.

Now think of each formula as a point in the plane and the knowledge base
as  the  area  containing  all  formulae  it  is  composed  of.  Each  reasoning  step
modifies the goal or the knowledge base.
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KB
Goal

The  distance  between  the  goal  and  the  knowledge  base  can  be  reduced  by
either moving the goal towards the knowledge base or by expanding the knowl-
edge  base  towards  the  goal.  Similarly,  the  reasoning  rules  that  we  will  study
below, can be subdivided into rules for goal reduction and rules for knowledge
base  expansion.  More  generally,  reasoning proceeds  by  alternating rounds  of
úgoal  reductionsø  (working  backwards  from  the  goals)  and  úknowledge  base
expansionsø (working forward from known facts). Now suppose, we only apply
reasoning  rules,  which  move  the  goal  closer  to  the  knowledge base  or  which
move formulae in the knowledge base closer to the goal.

KB
Goal

KB
Goal

2. Proof Rules for Predicate Logic 51



KB
GoalNew

Goal

The  above  pictures  should  indicate  that  an  expansion of  the  knowledge base
can reduce the distance between goal and knowledge base (see picture 1) but
does not necessarily do so (see picture 2). Reduction of the goal (picture 3) on
the other hand is likely to always reduce the distance between the goal and the
knowledge base. Therefore, as a general principle, it is in most of the examples
better  to  first  reduce the goal  and only  enter  a  round of  expanding the knowl-
edge  base  when  goal  reduction  is  no  longer  possible.  After  knowledge  base
expansion a reduction of the goal might again be possible.

2.1.3 Notation in Reasoning Rules

When explaining reasoning rules in the subsequent sections, upper case letters
like ‘F’, ‘G’, etc. normally will denote formulae, lower case letters like ‘s’, ‘t’, etc.
will  denote  terms,  and  Greek  letters  ‘Ξ’,  ‘Η’,  etc.  will  denote  variables.  If  we
consider universally quantified formula of the form

"
Ξ,Η,¼

F

in the knowledge base, we always assume tacitly that Ξ, Η, ¼ are all the distinct
free variables in F  so that

"
Ξ,Η,¼

F

is closed.
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2.2
The Role of Propositional Logic in Predicate Logic 
Proving

2.2.1 Elementary Parts of Formulae

For  the  propositional  expansion  of  knowledge  bases  and  other  reasoning
techniques  involving  propositional  connectives,  the  notion  of  the  úelementary
partsø  of  formulae  is  important:  The  elementary  parts  of  a  formula  are  deter-
mined  by  going  from  outside  to  inside  and  considering subformulae that  start
with  a  quantifier  or  a  predicate  constant  as  úblack  boxesø  (=  the  elementary
parts).

We first illustrate the process of determining the elementary parts of formulae in
a couple of examples:

Example

x Î A Þ Hx Î A Þ x Î BL .

The  elementary  parts  (úblack  boxesø  which  we  do  not  any  more  decompose)
are 

x Î A

and

x Î B .

The formula now writes as

A Þ HA Þ BL .

ExampleHA Ý B = ÆL � Ø $
x

Hx Î A ß x Î BL
The elementary parts are 

A Ý B = Æ

and

$
x

Hx Î A ß x Î BL
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and the formula writes as

A � Ø B

2.2.2 Truth Tables

Propositional  expansion  of  knowledge  bases  and  other  reasoning  techniques
involving propositional connectives are based on truth tables  that  describe the
behavior of the propositional connectives as functions on the truth values útrueø
and úfalseø. We assume the truth tables for propositional connectives (¬, ß, Þ, Þ
,  �) are known, they can be looked up in the lecture notes Analysis or Linear
Algebra.

2.2.3
Propositional Consequences, Propositional Tautologies, 
Propositional Equivalences

A formula U  is  a  propositional consequence of  formulae F, G, ¼  iff  U  is  true
whenever F, G, ¼  are true úonly because of  the meaning of  the propositional
connectivesø. More precisely, for finding out whether or not U  is a propositional
consequence of  F, G, ¼ ,  the formulae are  decomposed into their  elementary
parts and then it is checked whether or not, for all assignments of the possible
two truth values útrueø and úfalseø to the elementary parts, U  obtains the truth
value útrueø whenever F, G, ¼  obtain the truth value útrueø. For this check, the
truth tables for the propositional connectives are applied.

A formula U  is  a  propositional tautology iff  U  is  (always) true iff  U  obtains
the truth value útrueø for all assignments of truth values to the elementary parts
of U .

Formulae  U  and  V  are  propositionally  equivalent  iff  U  is  a  propositional
consequence of V  and V  is a propositional consequence of U . 

It  is  clear  that  formulae U  and  V  are  propositionally equivalent  iff,  for  any
assignment  of  truth  values  to  the  elementary  parts  of  U  and  V ,  they  obtain
identical truth values. 

Also,  U  and  V  are  propositionally  equivalent  iff  U � V  is  a  propositional
tautology.

Example

The formulaHx Î A ß x Î CL Þ Hx Î B ß x Î CL
is a propositional consequence of the formulae
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x Î A Þ x Î B

and

x Î C .

In  order  to  check  this  we  determine the  elementary parts  of  the  formulae and
then look to the truth tables 

x Î A x Î B x Î C x Î A Þ x Î B Hx Î A ß x Î CL Þ Hx Î B ß x Î CL
true true true true true
true true � true �
true � true true true
true � � true �

� true true true true
� true � true �
� � true � �
� � � � �

(We write ‘�’ instead of ‘false’ in order to identify the positions of the ‘true’ in the
tables more easily.)

One  sees  that  for  all  combinations  of  truth  values,  for  which  x Î C  and
x Î A Þ x Î B  are both true, also Hx Î A ß x Î CL Þ Hx Î B ß x Î CL  is true. Hence,Hx Î A ß x Î CL Þ Hx Î B ß x Î CL
is a propositional consequence of x Î C  and x Î A Þ x Î B .

Example

The formulaHHx Î A Þ x Î BL ß x Î CL � HHx Î A ß x Î CL Þ Hx Î B ß x Î CLL
is  a tautology (which is  also called úpropositional distributivity of ß  over Þø).  In
fact, when we check the truth tables
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x Î A x Î B

true true
true true
true �
true �

� true
� true
� �
� �

 

x Î C

true
�

true
�

true
�

true
�

 

Hx Î A Þ x Î BL ß x Î C

true
�

true
�

true
�
�
�

 

Hx Î A ß x Î CL Þ Hx Î B ß x Î CL
true

�
true

�
true

�
�
�

we  see  that  the  columns  of  HHx Î A Þ x Î BL ß x Î CL  andHHx Î A ß x Î CL Þ Hx Î B ß x Î CLL  are identical and, hence, the column of  HHx Î A Þ x Î BL ß x Î CL � HHx Î A ß x Î CL Þ Hx Î B ß x Î CLL
would consist of all ‘true’. Hence, we also see thatHHx Î A Þ x Î BL ß x Î CL
is a propositional consequence of HHx Î A ß x Î CL Þ Hx Î B ß x Î CLL
and that, in fact,HHx Î A Þ x Î BL ß x Î CL
and HHx Î A ß x Î CL Þ Hx Î B ß x Î CLL
are propositionally equivalent.

2.2.4 Pure Propositional Logic Proof Parts

At  rare  occasions,  it  may  happen that  an  entire  part  of  a  proof  can  be  estab-
lished by  just  looking to the elementary propositional parts of  the goal formula
and  the  relevant formulae in  the  knowledge base and by  establishing that  the
goal is  a propositional consequence of  the relevant formulae in the knowledge
base. There are basically two methods for establishing that a goal formula is a
propositional consequence of certain formulae in the knowledge base:

è the truth table method,

è the  únatural  deduction  methodø:  this  is  the  method  that  results  from
applying the proof techniques for the propositional connectives described
below  that  reduce  proof  situations  to  other  proof  situations  until  one
arrives at trivial proof situations; we will illustrate this method in the exam-
ples. In most practical situations, the natural deduction method is applied.
In contrast to the truth table method, a proof by natural deduction gives a
úlogical  argumentationø  why  the  goal  formula  is  a  consequence  of  the
formulae in the knowledge base.
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Example

The formulaHx Î A ß x Î CL Þ Hx Î B ß x Î CL
is a propositional consequence of the formulae

x Î A Þ x Î B

and

x Î C .

This is  so because if  we know x Î A Þ x Î B  then we know that either  x Î A  or
x Î B  holds. We distinguish the two cases:

è x Î A : Together with x Î C  we then know x Î A ß x Î C  and therefore alsoHx Î A ß x Î CL Þ Hx Î B ß x Î CL .

è x Î B : Together with x Î C  we then know x Î B ß x Î C  and therefore alsoHx Î A ß x Î CL Þ Hx Î B ß x Î CL .

2.2.5
Propositional Proof Rules for Structuring General Proofs in a 
Natural Way

The  more  important  role  of  the  proof  rules  for  propositional  connectives  is  in
general  predicate  logic  proofs  for  structuring  the  main  part  in  the  proof  into
subproofs, for which quantifier rules are then necessary. The proof rules for the
connectives, which reduce proof  situations to  other  proofs  situations, yield  the
únatural deduction styleø proofs. The name únatural deductionø stems from the
fact  that,  actually,  a  very  natural  way  of  understanding the  connectives  is  by
explaining their  role  in  proofs,  i.e.  in  the  reduction of  proof  situations  to  other
proof situations.

We will explain this important role of propositional logic within predicate logic
in the examples. In fact, most of the proofs that occur in practice, use proposi-
tional  logic  for  structuring  proofs  before  one  applies  (general  and  special)
quantifier  rules.  Hence,  although propositional  logic  is  trivial  as  a  stand|alone
proof technique, it  is  of essential importance as a structuring tool for full predi-
cate logic proofs.

Roughly,  the  natural  deduction rules  for  connectives contain  (at  least)  one
proof  rule  for  each  propositional connective  occurring  as  outermost  symbol  in
the goal  or  in  a  formula in  the knowledge base.  In  addition to  those there are
natural deduction rules for the quantifiers ‘"’ and ‘$’, again both for the quantifier
occurring  as  outermost  symbol  in  the  goal  or  in  a  formula  in  the  knowledge
base.
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proof technique, it  is  of essential importance as a structuring tool for full predi-
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2.3
Natural Deduction Proof Rules for Propositional 
Connectives

2.3.1 Rules for Knowledge Base Expansion

2.3.1.1 Rule (úPropositional Consequenceø)

If

F,
G,
¼

are  in  the  knowledge base  and  U  is  a  propositional  consequence of  F, G, ¼
then

U

can be added to the knowledge base.

2.3.1.2 Rule (úPropositional Tautologyø)

If

U

is a propositional tautology then

U

can be added to the knowledge base.
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2.3.1.3 Rule (úCase Distinction on Disjunction in Knowledge Baseø)

If the proof goal has the form

F

and the knowledge base contains the closed formula

G Þ H

then prove

F

under the additional assumption

G

and prove

F

under the additional assumption

H .

Analogously for disjunctions with more alternatives.

Usually,  one  announces the  application of  this  rule  in  a  concrete proof  with  a
phrase similar to 
úNow we distinguish two cases. 
Case 1: Assume G  ¼  
Case 2: Now assume H  ¼ø.

2.3.2 Rules for Universally Quantified Propositional Formulae

In fact, many rules for propositional connectives in the knowledge base do not
work  only  when the  propositional connective is  the outermost  formula symbol,
but also when the propositional connective occurs inside a universal quantifier.
We will only describe the rules for the quantified case, it should be obvious, how
the rules specialize for the case where the universal quantifier is omitted.
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2.3.2.1
Rule (úExpansion of Universally Quantified Conjunction in 

Knowledge Baseø)

If

"
Ξ,Η,¼

HF ß GL
is in the knowledge base then both

"
Ξ,Η,¼

F

"
Ξ,Η,¼

G

can be added to the knowledge base. (Analogously for conjunctions with more
than two formulae.)

2.3.2.2
Rule (úUniversally Quantified Implication in Knowledge Base: 

Modus Ponensø)

If

"
Ξ,Η,¼

F Þ G

and

FΞ,Η,¼®s,t,¼

(i.e. an instance of F ) are in the knowledge base then also

GΞ,Η,¼®s,t,¼

(i.e. the corresponding instance of G) and hence also

"
Α,Β,¼

GΞ,Η,¼®s,t,¼

(where Α, Β, ¼ are the free variables in s , t , ¼) can be added to the knowledge
base.

Strategic Remark: In the phase of knowledge base expansion, applying modus
ponens  never  is  a  mistake  although  some  of  the  new  statements  generated
may never be used subsequently.
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2.3.2.3
Rule (úUniversally Quantified Implication in Knowledge Base: 

Modus Ponens Special Caseø)

If

"
Ξ,Η,¼

HF ß HL Þ G

and

FΞ,Η,¼®s,t,¼

HΞ,Η,¼®s,t,¼

are in the knowledge base then also

GΞ,Η,¼®s,t,¼

(i.e. the corresponding instance of G) and hence also

"
Α,Β,¼

GΞ,Η,¼®s,t,¼

(where Α, Β, ¼ are the free variables in s , t , ¼) can be added to the knowledge
base.

2.3.2.4 Rule (úReflexivity of Implicationø)

The formula

"
Ξ,Η,¼

F Þ F

can always be added to the knowledge base.

2.3.2.5 Rule (úTransitivity of Implicationø)

If 

"
Ξ,Η,¼

F Þ G

and

"
Ξ,Η,¼

G Þ H
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are in the knowledge base then

"
Ξ,Η,¼

F Þ H

can be added to the knowledge base.

2.3.2.6 Rule (úEquivalence Rewritingø)

If

"
Ξ,Η,¼

HF � GL
and

H

are in the knowledge base and the subformula at position p  in H  has the form

FΞ,Η,¼®s,t,¼

(i.e. the subformula of H  at position p  is an instance of F ) then also

Hp#GΞ,Η,¼®s,t,¼

(i.e. H  with the subformula at position p  replaced by the corresponding instance
of G)  can be added to the knowledge base. Using this rule, all  occurrences of
instances of F  can be replaced subsequently by instances of G .

Note that, if

"
Ξ,Η,¼

HF � GL
is in the knowledge base then also

"
Ξ,Η,¼

HG � FL
could  be  added to  the  knowledge base and,  hence, equivalence rewriting can
also proceed by replacing instances of G  by instances of F .

The rule applies accordingly if H  is the current proof goal.
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2.3.2.7 Rule (úReflexivity of Equivalenceø)

The formula

"
Ξ,Η,¼

F � F

can always be added to the knowledge base.

2.3.2.8 Rule (úSymmetry of Equivalenceø)

If

"
Ξ,Η,¼

F � G

is in the knowledge base then

"
Ξ,Η,¼

G � F

can be added to the knowledge base.

2.3.2.9 Rule (úTransitivity of Equivalenceø)

If 

"
Ξ,Η,¼

F � G

and

"
Ξ,Η,¼

G � H

are in the knowledge base then

"
Ξ,Η,¼

F � H

can be added to the knowledge base.

2.3.2.10 Rule (úSplit Equivalence into Implicationø)

If 
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"
Ξ,Η,¼

F � G

is in the knowledge base then both

"
Ξ,Η,¼

F Þ G

"
Ξ,Η,¼

G Þ F

can be added to the knowledge base.

Note  that  this  rule  follows  from  already  known  rules!  F � G andHF Þ GL ß HG Þ FL  are  propositionally  equivalent,  hence,  the  tautologyHF � G L � HHF Þ GL ß HG Þ FLL  can  be  added  to  the  knowledge  base.  By
úEquivalence  Rewritingø,  we  can  replace  F � G  by  HF Þ GL ß HG Þ FL  in  the
knowledge base. Then use the rule úSplit Conjunctionø for splitting conjunctions
in the knowledge base in order to derive the two desired formulae.

2.3.2.11 Rule (úEquality Rewriting in Formulaeø)

If

"
Ξ,Η,¼

Hu = vL
and

H

are in the knowledge base and the subterm at position p  in H  has the form

uΞ,Η,¼®s,t,¼

(i.e. the subterm of H  at position p  is an instance of u ) then also

Hp!vΞ,Η,¼®s,t,¼

(i.e. H  with the subterm at position p  replaced by the corresponding instance of
v) can be added to the knowledge base.

Note that, if

"
Ξ,Η,¼

Hu = vL
is in the knowledge base then also
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"
Ξ,Η,¼

Hv = uL
could be added to the knowledge base and, hence, equality rewriting can also
proceed by replacing instances of v  by instances of u .

The rule applies accordingly if H  is the current proof goal.

2.3.2.12 Rule (úEquality Rewriting in Termsø)

If

"
Ξ,Η,¼

Hu = vL
is in the knowledge base and the subterm at position p  in the closed term h  has
the form

uΞ,Η,¼®s,t,¼

(i.e. the subterm of h  at position p  is an instance of u ) then also

h = hp!vΞ,Η,¼®s,t,¼

can be added to the knowledge base.

2.3.2.13 Rule (úReflexivity of Equalityø)

The formula

"
Ξ,Η,¼

s = s

can always be added to the knowledge base.

2.3.2.14 Rule (úSymmetry of Equalityø)

If

"
Ξ,Η,¼

s = t

is in the knowledge base then

"
Ξ,Η,¼

t = s
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can be added to the knowledge base.

2.3.2.15 Rule (úTransitivity of Equalityø)

If 

"
Ξ,Η,¼

r = s

and

"
Ξ,Η,¼

s = t

are in the knowledge base then

"
Ξ,Η,¼

r = t

can be added to the knowledge base.

2.3.2.16 Notation for Rewriting Chains

Equivalence  and  equality  rewriting  together  with  reflexivity,  symmetry,  and
transitivity of equivalence and equality plays an important role in the expansion
of  knowledge  bases  (and  in  the  reduction  of  goals).  By  transitivity,  rewriting
steps can be combined in chains of which only the first and last formula (term)
are interesting as úthe resultø. Basically, also modus ponens and reflexivity and
transitivity of implications can be used in this way only that only one direction is
valid. 

Such  symbolic  computation  reasoning  chains  are  presented  in  various
forms. Here, we introduce one form: The following notation

F0

' by Hlabel 1L with x, y, ¼ ® s1 , t1 , ¼

F1

' by Hlabel 2L with x, y, ¼ ® s2 , t2 , ¼

F2

' by Hlabel 3L with x, y, ¼ ® s3 , t3 , ¼

...

' by Hlabel kL with x, y, ¼ ® sk , tk , ¼
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Fk

means that

è F0  is in the knowledge base,

è (label 1) is an implication or equivalence or equality by which, with
the  substitution  x, y, ¼ ® s1 , t1 , ¼ ,  F1  can  be  derived  by  modus
ponens or equivalence rewriting or equality rewriting,

è F1  can, hence, be added to the knowledge base,

è (label 2) is an implication or equivalence or equality by which, with
the  substitution  x, y, ¼ ® s2 , t2 , ¼ ,  F2  can  be  derived  by  modus
ponens or equivalence rewriting or equality rewriting,

è F2  can, hence, be added to the knowledge base,

....

è Fk  can, hence, be added to the knowledge base.

Note that this does not just mean that 

F0 Þ F1

F1 Þ F2

...

is in the knowledge base! Therefore, it is not a good idea to write these chains
in the following way

F0 Þ F1 Þ F2 ¼

except if  the meaning of this notation is completely understood! In particular, it
is very dangerous to describe reasoning chains by saying something like: 

Now we know,

F0 Þ F1 Þ ¼

because what one wants to say is 

úWe know

F0

and from this
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F1

...

can be concluded by modus ponens, equivalence rewriting or equality rewriting.ø
!

Often,  the  substitutions  used  in  the  symbolic  computation  steps  are  not  indi-
cated  explicitly.  Also,  the  positions  at  which  the  replacements  are  done  are
almost never given explicitly although only the explicit indication of the position
would make a given symbolic computation step unique.

2.3.3 Rules for Goal Reduction

2.3.3.1 Rule (úProof by Contradictionø)

If the proof goal has the form

Ø F

where F  is a closed formula, add

F

to  the knowledge base and try  to  prove a  contradiction, i.e.  try  to  prove a for-
mula of the form

G ß Ø G.

Strategic  Remark  about  Contradictions:  Of  course,  the  advice  of  proving
negations by contradictions does not help much because the question is which
formula G  can be found such that 

G ß Ø G

can be proved. However, often, there is already a formula G  in the knowledge
bases such that Ø G  is  conjectured to be a good candidate for being provable
from F . Thus, when we derive Ø G  and we have G  in the knowledge base then
the  contradiction  G ß Ø G  is  proven.  Proofs  by  contradiction  are  also  called
úindirect proofsø.

In principle, the proof technique of proving by contradiction can be applied in
just every proof problem: In order to prove a closed formula

F
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assume

Ø F

and derive a contraction.

However, is it advisable to attempt, first, a údirect proofø before one attempts
an  úindirect  proofø  because,  sometimes,  direct  proofs  give  more  information
than  indirect  proofs.  It  is  also  worth  mentioning  that  úreal  life  provingø  as  a
fundamental  part  of  mathematical  exploration  is  typically  applied  in  situations
where it is not known whether or not a given formula F  is true or false (under a
given  knowledge base).   Hence,  the  basic  exploration cycle  for  analyzing  the
truth of a úconjecturedø formula F  by proving is as follows:

(1) try to prove F  (in which case F  is true),

(2) assume Ø F  and try to prove a contradiction (in which case F
is also true)

(3) try to prove  Ø F  (in which case F  is false),

(4) assume F  and try to prove a contradiction (in which case F  is
also false),

go back to (1). 

Going a couple of times through this basic exploration cycle is not a standstill:
The  insight  gained from  a  failing  proof  in  one  of  the  phases  (1)−(4)  may  well
help to be successful in a later phase!

2.3.3.2 Rule (úEquivalence Rewritingø)

If the proof goal has the form

F

and we have

F � G

in the knowledge base then try to prove 

G .

Strategic Remark: In particular, when the proof goal is

Ø F
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there are some useful equivalences to be applied for rewriting the negated proof
goal, e.g.

Ø HF ß GL � Ø F Þ Ø G

Ø HF Þ GL � Ø F ß Ø G

Ø "
x

F � $
x

Ø F

Ø $
x

F � "
x

Ø F

Rewriting  the  negated  proof  goal  may  then  allow  a  direct  proof  instead  of  an
indirect proof.

2.3.3.3 Rule (úDecomposition of Conjunctionsø)

If the proof goal has the form

F ß G ß ¼

where F, G, ¼  are closed formulae then prove

F

and prove

G

and prove 

¼

under the given knowledge base.

2.3.3.4 Rule (úSplitting Disjunctions Iø)

If the proof goal has the form

F Þ G Þ ¼

where F, G, ¼  are closed formulae then prove

F

or prove
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G

or prove 

¼

under the given knowledge base.

2.3.3.5 Rule (úDeduction Ruleø)

If the proof goal has the form

F Þ G

where F  and G  are closed formulae then prove

G

under the additional assumption

F .

2.3.3.6 Rule (úContrapositionø)

Use the equivalenceHF Þ GL � HØ G Þ Ø FL .

If the proof goal has the form

F Þ G

where F  and G  are closed formulae then prove

Ø F

under the additional assumption

Ø G .

(This rule, essentially, is a version of the úproof by contradictionø rule. Proofs by
contradiction and proofs by contraposition are both also called úindirect proofsø.)
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2.3.3.7 Rule (úContradictionø)

Use the equivalenceHF Þ GL � HØ F Þ GL .

If the proof goal has the form

F Þ G

where F  and G  are closed formulae then assume

F

Ø G

and derive a contradiction.

2.3.3.8 Rule (úSplitting Disjunctions IIø)

Use the equivalenceHF Þ G Þ H Þ ¼L � HØ HG Þ H Þ ¼L Þ FL � HØ G ß Ø H ß ¼ Þ FL .

in order to prove the goal

F Þ G Þ H Þ ¼

assume

Ø G

Ø H

Ø ¼

and prove

F .

2.3.3.9 Rule (úProve Both Directionsø)

If the proof goal has the form

F � G
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then prove

G

under the additional assumption

F

and prove

F

under the additional assumption

G .

2.3.3.10 Rule (úProve Multi Equivalenceø)

If the proof goal has the form

F � G � ¼ � H

then prove

F Þ G

and prove

G Þ ¼

¼

and prove

H Þ F .

Remark: Proof goals of the form F � G � ¼ � H  are commonly formulated in
the following way: úThe following are equivalent:

è F

è G

è ¼

è H .
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Before applying the rule above the formulae may be re|ordered. Transitivity of
implication justifies this rule.

2.3.3.11 Rule (úSymbolic Computation Goal Reductionø)

If the proof goal has the form

F � G

where F  and G  are closed formulae then try to reduce the goal 

G

by equivalence symbolic computation to

F .

Strategic Remark: Try to establish a sequence

G � H

H � ¼

¼

¼ � F ,

which,  by  transitivity  and symmetry  of  equivalence, proves F � G .  Of  course,
one can also start with F  and establish a sequence of equivalences ending up
in G .

2.3.3.12 Rule (úSymbolic Computation Equality Provingø)

If the proof goal has the form

s = t

where s  and t  are closed terms then try to transform

s

to

t

by symbolic computation using equalities in the knowledge base.
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2.3.3.13 Rule (úEquality Proving by Simplificationø)

If the proof goal has the form

s = t

where s  and t  are closed terms then simplify

s

to

s�

and simplify

t

to

t�

and then prove

s� = t� .

2.3.3.14 Rule (úGoal Reduction using Implicationsø)

If the proof goal has the form

GΞ,Η,¼®s,t,¼

and we have a formula

"
Ξ,Η,¼

F Þ G

in the knowledge base then it is sufficient to prove

FΞ,Η,¼®s,t,¼

Important Remark: If  any of the variables Ξ, Η, ¼  does not occur in G ,  say Ζ ,
then  the  substitution  Ξ, Η, ¼ ® s, t, ¼  would  not  substitute  a  term  for  Ζ ,  and
therefore leave Ζ  free in FΞ,Η,¼®s,t,¼ . In this situation, the goal

GΞ,Η,¼®s,t,¼
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can only be reduced to

$
Ζ

FΞ,Η,¼®s,t,¼ .

In  this  version,  the  rule  introduces  a  quantifier,  hence,  it  transforms the  proof
situation  into  a  generally  more  complicated  proof  situation!  Use  this  rule  with
caution.

Example: Suppose we know

"
x,y,z

Hx £ y ß y £ zL Þ x £ z HTransL
Then, for proving

a £ b

it is sufficient to prove

$
y

Ha £ y ß y £ bL .

The presentation of the successful proof would typically proceed by first present-
ing a proof for

a £ y0 and

y0 £ b

for some (well chosen) y0  and then derive from this

a £ b

by knowledge base expansion using Modus Ponens for  (Trans). However, the
goal reduction introducing the $|quantifier represents the úideaø to search for a
y0 .

2.4 Natural Deduction Rules for Quantified Formulae

2.4.1 Rules for Knowledge Base Expansion

2.4.1.1 Rule (úInstanciation of Universal Quantifierø)

If

76 2. Proof Rules for Predicate Logic



"
Ξ,Η,¼

F

is in the knowledge base then also

FΞ,Η,¼®s,t,¼

and hence also

"
Α,Β,¼

FΞ,Η,¼®s,t,¼

(where Α, Β, ¼ are the free variables in s , t , ¼) can be added to the knowledge
base.

Strategic Remark: This rule is fundamental but strategically not very useful for
reasoning  because  infinitely  many  new  formulae  could  be  generated  in  the
knowledge  base  by  this  rule  without  making  any  contribution  to  achieving  a
specified  goal.  Therefore,  special  cases  of  this  rule  (in  dependence  on  the
structure of  F )  are  more  useful,  see  Section 2.3.2  above.  In  many cases,  the
proof goal can give an idea on how to choose the terms s , t , ¼ appropriately in
order to being able to continue goal reduction.

An instanciation step is usually announced in a proof by saying:

Since we know

"
Ξ,Η,¼

F

we know in particular

FΞ,Η,¼®s,t,¼

2.4.1.2 Rule (úSkolem Constantsø)

If

$
Ξ,Η,¼

F

is  in the knowledge base (where Ξ, Η, ¼  are the only free variables in F )  then
you can add

FΞ,Η,¼®x0,y0,¼
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to  the knowledge base,  where x0, y0, ¼  are  new object  constants  (i.e.  object
constants that do neither occur in the knowledge base nor in the goal formula).
x0, y0, ¼  are called úSkolem constantsø.

Application of this rule is often announced in the following way: We know

$
Ξ,Η,¼

F

Therefore we can choose x0, y0, ¼  such that

FΞ,Η,¼®x0,y0,¼ .

2.4.1.3 Rule (úSkolem Functionsø)

If

"
Α,Β,¼

$
Ξ,Η,¼

F

is  in the knowledge base (where Α, Β, Ξ, Η, ¼  are the only free variables in F )
then you can add

"
Α,Β,¼

FΞ,Η,¼®x0@Α,Β,¼D,y0@Α,Β,¼D,¼
to  the  knowledge  base,  where  x0, y0, ¼  are  new  function  constants  (i.e.
function constants that do neither occur in the knowledge base nor in the goal
formula). x0, y0, ¼  are called úSkolem function constantsø.

Application of this rule is often announced in the following way: We know

"
Α,Β,¼

$
Ξ,Η,¼

F

Therefore we can choose functions x0, y0, ¼  such that

"
Α,Β,¼

FΞ,Η,¼®x0@Α,Β,¼D,y0@Α,Β,¼D,¼ .

2.4.2 Rules for Goal Reduction

2.4.2.1 Rule (úArbitrary But Fixedø)

If the proof goal is a formula
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"
Ξ,Η,¼

F

in which Ξ, Η, ¼  are the free variables of F , then prove

FΞ,Η,¼®Ξ0 ,Η0 ,¼

where Ξ0 , Η0 , ¼  have to be new object constants,  i.e. object constants that do
not occur in the knowledge base and neither in the goal formula.

One often announces the application of this proof technique by saying: 

We take arbitrary but fixed Ξ0 , Η0 , ¼  and prove

FΞ,Η,¼®Ξ0 ,Η0 ,¼

(In  this  formulation,  úfixedø  expresses  the  fact  that  the  symbols  ‘Ξ0 ’  etc.  are
object  constants  and  úarbitraryø  expresses  the  fact  that  the  symbols  ‘Ξ0 ’  etc.
have to  be new symbols  that  do not  occur  anywhere else in  the goal  and the
knowledge base.)

Explanation

The proof technique úarbitrary but fixedø is the most important elementary proof
technique that bridges quantifier|free with quantifier proving. It is important that
one understands, intuitively, why this technique works. Therefore, we give here
an intuitive explanation of the correctness of the technique:

Assume one succeeds to prove that

FΞ,Η,¼®Ξ0 ,Η0 ,¼

for  new constant symbols ‘Ξ0 ’  etc.   Then it  is  clear that no specific knowledge
on  the  objects  denoted  by  ‘Ξ0 ’  etc.  went  into  the  proof  because  ‘Ξ0 ’  etc.  are
symbols that do not occur anywhere in the knowledge base. Hence, it would be
possible to give the proof, without any change, for any specific object constants
‘c ’,  etc.  denoting specific  objects. Hence, the proof could be repeated, without
any change, for all objects in the domain of discourse. Hence, 

"
Ξ,Η,¼

F

is  true.  Note  that  it  is  important  that  the  new symbols  ‘Ξ0 ’  etc.  are  constants:
Thereby

FΞ,Η,¼®Ξ0 ,Η0 ,¼
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becomes  a  formula  without  free  variables  that  can  then  be  treated  with  other
proof  techniques,  i.e.  can  be  decomposed  in  parts  according  to  the  proof
techniques to be discussed earlier.

It  is  also  important  that   symbols  ‘Ξ0 ’  etc.  are  really  new,  i.e.  they  do  not
occur anywhere in the knowledge base and neither in F . If we use symbols ‘c ’,
‘d ’,  etc. for which there is already knowledge available in the knowledge base,
the proof of

FΞ,Η,¼®c,c,¼

might work only because of this knowledge and, maybe, would not work without
this  knowledge.  Thus,  we  could  not  rely  on  the  fact  that  the  proof  could  be
repeated for arbitrary constants denoting arbitry objects.

The  proof  technique  úarbitrary  but  fixedø  is  very  important  in  situations
where formulae containing free variables are nested and the proof process for
the individual quantifiers must be carefully distinguished. Sometimes, however,
only  the  outermost  universal  quantifier  has  to  be  treated  by  the  úarbitrary  but
fixedø.  In  such  cases,  it  is  unusual  to  really  introduce  new  constants  by  the
úarbitrary  but  fixedø  technique.  Rather,  one  just  uses  the  variable  names  ‘Ξ ’,
etc. as new constants and one may say, for example,

úLet now Ξ, Η, ¼  be arbitrary but fixed and prove F .ø

This is alright as long as everybody understands that, from now on, ‘Ξ ’, etc. are
constants and one does not use, in the proof of F , any knowledge about ‘Ξ ’, etc.
that may perhaps appear somewhere in the knowledge base.

2.4.2.2 Rule (úFind Appropriate Termsø)

If the proof goal is

$
Ξ,Η,¼

F

where  Ξ, Η, ¼  are  the  only  free  variables  in  F  then  it  suffices  to  find  terms
s, t, ¼  such that

FΞ,Η,¼®s,t,¼

can be proved.
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2.4.3 Case Distinction

Case  distinctions  do  usually  not  appear  stand|alone  but  inside  predicates  or
logical connectives, i.e.

p

�
�
������������t,

looomnooo
t1 Ü F1

t2 Ü F2

t3 Ü otherwise

�
�
������������ or C

�
�
������������H ,

looomnooo
G1 Ü F1

G2 Ü F2

G3 Ü otherwise

�
�
������������

where  p  is  some  predicate  constant  and  C  is  some  logical  connective.  The
predicate constant or the logical connective move inside the case distinction so
that the above formulae stand forlooomnooo

p@t, t1 D Ü F1

p@t, t2 D Ü F2

p@t, t3 D Ü otherwise
or

looomnooo
C@H, G1 D Ü F1

C@H, G2 D Ü F2

C@H, G3 D Ü otherwise
, respectively.

The convention is that a case distinction

(1)
looomnooo

G1 Ü F1

G2 Ü F2

G3 Ü otherwise

is an abbreviation for the formula

(2)F1 Þ G1 ß Ø F1 ß F2 Þ G2 ß Ø F1 ß Ø F2 Þ G3 .

(Analogously proceed for case statements with less or more than three cases.)

Case distinctions are  most  commonly used in  definitions of  functions or  predi-
cates, such as

f @xD :=
looomnooo

t1 Ü F1

t2 Ü F2

t3 Ü otherwise
or H :�

looomnooo
G1 Ü F1

G2 Ü F2

G3 Ü otherwise

By the rules above, these definitions meanlooomnooo
f @xD := t1 Ü F1

f @xD := t2 Ü F2

f @xD := t3 Ü otherwise
or

looomnooo
H :� G1 Ü F1

H :� G2 Ü F2

H :� G3 Ü otherwise
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The  rules  for  handling  case  distinctions  are  based  on  replacing  of  a  case
distinction of the form (1) by a formula of the form (2) and then apply the appro-
priate rule for a conjunction.

2.4.3.1 Rule (úExpansion of Case Distinctionø)

If a case distinction looomnooo
G1 Ü F1

G2 Ü F2

G3 Ü otherwise

is in the knowledge base then

F1 Þ G1

Ø F1 ß F2 Þ G2

Ø F1 ß Ø F2 Þ G3

can be added to the knowledge base.

2.4.3.2 Rule (úReduction of Case Distinctionø)

The rule for reduction of   case distinctions in the proof goal combines the rule
for reducing conjunctions with the rule for reducing implications.

For proving a case distinction looomnooo
G1 Ü F1

G2 Ü F2

G3 Ü otherwise

we split the proof into cases:

Prove G1 under the assumption F1

Prove G2 under the assumption Ø F1 ß F2

Prove G3 under the assumption Ø F1 ß Ø F2

Example:

Let for all x Î R
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 x¤ := : x Ü x ³ 0
-x Ü otherwise

Prove

"
x,yÎR

 x + y¤ £  x¤ +  y¤
Let  x0 , y0  arbitrary  but  fixed  and  show   x0 + y0 ¤ £  x0 ¤ +  y0 ¤ .  We  substitute  the
definition  for  absolute  value  on  the  left  hand  side  and  move  the  predicate
symbol ú£ ø into the case distinction and have to prove

: x0 + y0 £  x0 ¤ +  y0 ¤ Ü x0 + y0 ³ 0
-Hx0 + y0 L £  x0 ¤ +  y0 ¤ Ü x0 + y0 < 0

First  we  assume  x0 + y0 ³ 0  and  show  x0 + y0 £  x0 ¤ +  y0 ¤ .  Analogously,  we
substitute the definition on the right hand side for x0  and have to prove

: x0 + y0 £ x0 +  y0 ¤ Ü x0 ³ 0
x0 + y0 £ -x0 +  y0 ¤ Ü x0 < 0

First  we assume x0 ³ 0  and show x0 + y0 £ x0 +  y0 ¤ .  We substitute the
definition on the right hand side for y0  and have to prove

: x0 + y0 £ x0 + y0 Ü y0 ³ 0
x0 + y0 £ -x0 + H-y0 L Ü y0 < 0

First we assume y0 ³ 0  and show x0 + y0 £ x0 + y0 . 
Now we assume y0 < 0  and show x0 + y0 £ x0 + H-y0 L . 

Now we assume x0 < 0  and show -x0 + y0 £ x0 +  y0 ¤ . ¼

Now we assume x0 + y0 < 0  and show -Hx0 + y0 L £  x0 ¤ +  y0 ¤ . ¼

The presentation of the proof above would typically be given as follows:

Case 1: x0 + y0 ³ 0, x0 ³ 0, y0 ³ 0 : ¼
Case 2: x0 + y0 ³ 0, x0 ³ 0, y0 < 0 : ¼
¼
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2.5 Theory|Specific Proof Rules and Strategies

2.5.1 Set Theory

Set theory is an extension of predicate logic that is frequently used in every|day
mathematics. Intuitively, a úsetø is a collection of objects. For some set M  and
an object s  the most interesting property to study is whether s  is a member of M
or  not  .  As  long  as  we  are  speaking  about  sets  containing  only  finitely  many
objects  (whatever this  means ¼)  this  question is  easy to  answer by  checking
finitely  many  cases.  However,  we  want  to  handle  also  collections  of  infinitely
many  objects  (whatever  this  means  ¼).  It  is  desirable  to  define  a  set  by  a
characteristic property of its elements, i.e. the set of all x  satisfying the property
P  written as 8x È P< .  If one continues beyond this point on an intuitive level, one
quickly runs into paradoxa like Russell’s paradox (see lecture notes Algorithmic
Methods 1) or the barber’s paradox (see lecture notes Linear Algebra).

Set  theory  can,  however,  be  introduced  in  an  axiomatic  fashion.  Roughly
speaking, set theory introduces a binary predicate ‘Î’ (membership) and certain
axioms that characterize the behaviour of membership. In addition, certain new
function  and  predicate  symbols  are  introduced  through  explicit  definitions  in
terms of membership. There are several axiomatizations of set theory (Zermelo|
Frankel set theory (ZF), von Neuman|Gödel|Bernays set theory (NGB), or type
theory of Russell and Whitehead to name a few), which differ in the way how to
avoid the well|known paradoxa, but which, on the other hand, do not affect the
way how set theory is used in every|day mathematics (at least, the author is not
aware  of  concrete  situations  in  úusual  mathematicsø,  where  it  would  make  a
difference).

We show the flavour of axiomatic set theory based on axioms of ZF. Most of
the axioms deal with the existence of certain sets that are characterized by the
way how membership in them can be decided, e.g. there is for each formula P
with free variable x  and for each set M  (where M  and S  do not occur in P) an
axiom of the form

$!
S

"
x

x Î S � Hx Î M ß PL .

Since,  by  the  above  axiom~the axiom scheme of  separation~,  we  know the
existence of such a set S  we can define

(3)set@M, PD := '!
S

J"
x

x Î S � Hx Î M ß PLN .

set@M, PD  is commonly written as
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8x Î M È P<
and it  should be noted that the language construct 8x Î M È ¼<  again binds  the
variable x  in the expression and, thus, should be considered a quantifier. From
the definition of set@M, PD  we know

"
x

x Î set@M, PD � Hx Î M ß PL
or, using the notation just introduced

(4)"
y

y Î 8x Î M È P< � Hy Î M ì Px®y L ,

respectively. Note that we renamed the bound variable in the universal quanti-
fier  in  order  to  distinguish  it  from  the  bound  variable  in  the  inner  quantifier.
Without this renaming formula (4) would read as

"
x

x Î 8x Î M È P< � Hx Î M ß PL ,

which is not wrong but confusing, at least for the author. Formula (4) also tells
exactly how to check membership for a set defined in this way. The ZF axiom
system contains the necessary axioms that  guarantee the existence of  certain
sets and thereby justify to introduce certain sets implicitely like in (3). The axiom
of extensionality, i.e.

A = B � "
x

x Î A � x Î B

tells when two sets are equal. A predicate ‘Í’ is introduced explicitely:

A Í B :� "
x

x Î A Þ x Î B .

The construction of sets of the form 8x È x Î M ß P<  is allowed by the axioms
of  separation,  the  construction  of  sets  of  different  shape  must  be  claimed  by
axioms. In the sequel, we will introduce certain set constructions or list the rules
how to  test  for  membership in  various set  constructions. All  definitions and all
membership rules are justified by the underlying axioms of ZF. 

Æ := 8x È x ¹ x<
A Ý B := 8x È x Î A ß x Î B<
è A := 9x

ÄÄÄÄÄÄÄÄÄ "
yÎA

x Î y=
A Ü B := 8x È x Î A Þ x Î B<
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æ A := 9x
ÄÄÄÄÄÄÄÄÄ $

yÎA
x Î y=

P@AD := 8x È x Í A<8< := Æ8a< := 8x È x = a<8a, b< := 8a< Ü 8b< = 8x È x = a Þ x = b<8a1 , ¼, an < := 8a1 < Ü ¼ Ü 8an < = 8x È x = a1 Þ ¼ Þ x = an < = 9x Ë $
i=1,¼,n

x = ai =
9Tx È

xÎM
Cx = := 9y Ë $

xÎM
Cx í y = Tx =

For a term Ay  with free variable y  it is often convenient to use the abbreviations

è
xÎM

Ax for Ý 9Ax È
xÎM

=
æ
xÎM

Ax for Ü 9Ax È
xÎM

=
These abbreviations must again be viewed as quantifiers binding x . Using these
abbreviations, it can be shown that

a Î è
xÎM

Ax � "
xÎM

a Î Ax

a Î æ
xÎM

Ax � $
xÎM

a Î Ax .

In  many  cases  proving  with  sets  reduces  to  standard  predicate  logic  proving
using the definitions and conventions above.

2.5.2 Natural Numbers

2.5.2.1
Induction Proofs for Universally Quantified Goals over the Natural 

Numbers

Natural  numbers  allow  one  special  proof  technique,  namely  induction.  The
principle of proving by induction is derived from the induction axioms for natural
numbers, i.e. for each formula Ax  with free variable x  a formula of the form
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JAx®0 í "
nÎN

Ax®n Þ Ax®n+1 N Þ "
xÎN

Ax

where n  does not occur in A . An induction axiom can be used to reduce a proof
goal (see úGoal Reduction using Implicationsø)

"
xÎN

Ax

to proving

(5)Ax®0

(6)"
nÎN

Ax®n Þ Ax®n+1

Formula (5) is called the induction base, for proving (6) one assumes

(7)Ax®n0

and proves

(8)Ax®n0 +1

for arbitrary but fixed n0 Î N . Assumption (7) is called induction hypothesis, the
proof  goal  (8)  is  called  induction  step.  Intuitively,  it  should  be  clear  that  after
having proved (5) and (6) the formula really holds for all natural numbers: From
(6) we know in particular

Ax®0 Þ Ax®1

and from this, together with (5) by Modus Ponens,

Ax®1 ,

by this, together with the instance of (6)

Ax®1 Þ Ax®2

by Modus Ponens

Ax®2

etc.  and we can continue application of  Modus Ponens together with appropri-
ate instances of (6) in order to derive Ax®n  for all natural numbers n ,  i.e. Ax  is
true for each assignment for x , i.e. "

xÎN
Ax  is true according to the semantics of

the "|quantifier.
Here we considered the set of natural numbers to start with 0. However, for

some  applications  it  can  be  convenient  to  consider  1  the  smallest  natural
number. N0  is  in this case commonly written for N Ü 80< .  The induction axioms
are available with respective modification, i.e. the induction base is then
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Here we considered the set of natural numbers to start with 0. However, for
some  applications  it  can  be  convenient  to  consider  1  the  smallest  natural
number. N0  is  in this case commonly written for N Ü 80< .  The induction axioms
are available with respective modification, i.e. the induction base is then

Ax®1 .

In general, using the induction base

Ax®s

and  induction  hypothesis  and  induction  step  as  usual  (with  the  additional
assumption  that  the  arbitrary  but  fixed  n0  satisfies  n0 ³ s)  can  be  used  for
proving

"
xÎN

x³s

Ax .

2.5.2.2 Comment on Presentation of Inference Chains

It can often be observed that an argument as above is presented in the 
following way (see also Section 2.3.2.16): 

úWe know Ax®0 Þ Ax®1 Þ Ax®2 Þ ¼ Þ Ax®n ø

Note that úÞø in this case is not the propositional connective úimplicationø but it
is  just  a  symbol  abbreviating the word úthereforeø  (or  similar).  In  fact,  it  is  not
that  we  only  know  Ax®0 Þ Ax®1 Þ Ax®2 Þ ¼ Þ Ax®n  but  we  know  all  of  Ax®0 ,
Ax®1 , Ax®2 ,¼,Ax®n . Consider alternatively,

úWe know Ax®0 �
­

Ax®0 ÞAx®1

Ax®1 �
­

Ax®1 ÞAx®2

Ax®2 �
­

Ax®2 ÞAx®3

¼ �
­

Ax®n-1 ÞAx®n

Ax®n ø ,

which  is  now  completely  confusing,  because  the  úÞø  in  the  top  line  is
úthereforeø and the úÞø in the underscript is úimplicationø. One could live with

úWe know Ax®0 �
­

by an instance
of H6L

Ax®1 �
­

by an instance
of H6L

Ax®2 �
­

by an instance
of H6L

¼ �
­

by an instance
of H6L

Ax®n ø ,

and  a  convention  that  úÞ
­
¼

ø  always  means  útherefore,  by  ¼ø  instead  of

úimplicationø. Whatever notation you use, always follow the principle:

Save the time of the reader!

i.e.  mathematical notation should help the reader to understand the text rather
than making it more difficult to follow the ideas.
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2.5.2.3 Complete Induction

The  principle  of  complete induction  is  a  consequence of  the  induction axioms
given in the previous section. The axiom readsi

k
jjjjjjjj "

nÎN

i
k
jjjjjjjj "

mÎN

m<n

Ax®m

y
{
zzzzzzzz Þ Ax®n

y
{
zzzzzzzz Þ "

xÎN
Ax

where m  and n  do not occur in A  and x  is a free variable in A .  By this axiom,
the proof of 

"
xÎN

Ax

reduces to provingi
k
jjjjjjjjj "

mÎN

m<n0

Ax®m

y
{
zzzzzzzzz Þ Ax®n0

for arbitrary but fixed n0 . At this point, typically, a case distinction is made:
Case 1 (Induction base): n0 = 0 . We have to show

Ax®0

Case 2: n0 ³ 1 . We assume (induction hypothesis)

"
mÎN

m<n0

Ax®m

and show (induction step)

Ax®n0 .

2.5.3 Tuples

Similar to the domain of natural numbers, we can use an induction principle for
tuples. In  a first  formulation, an induction principle for  tuples allows to prove a
formula

"
x

is|tuple@xD Ax

2. Proof Rules for Predicate Logic 89



by proving

(9)Ax®X \
(10)

"
Τ

is|tuple@ΤD "
y

Ax®Τ Þ Ax®Τ[y or "
Τ

is|tuple@ΤD "
y

Ax®Τ Þ Ax®y\Τ

Formula (9) is called the induction base, for proving (10) one assumes

(11)Ax®Τ0

and proves

(12)Ax®Τ0 [y0 or Ax®y0 \Τ0

for  arbitrary  but  fixed  y0  and  an  arbitrary  but  fixed  tuple  Τ0 ,  where  y \ Τ  and
Τ [ y  stand for  úthe object y  prepended/appended to the tuple Τø,  respectively.
Assumption  (11)  is  again  called  induction  hypothesis,  the  proof  goal  (12)  is
again  called  induction  step.  Whether  one  chooses  to  prepend  or  append  an
object in the induction step depends in most of the cases on the structure of the
formula or on additional knowledge in the knowledge base.

Similar to natural numbers, there is also a complete induction for tuples. In
order to prove

"
x

is|tuple@xDß x¤³L

Ax

it is sufficient to prove

"
x

is|tuple@xDß x¤=L

Ax

"
l>L

"
x

is|tuple@xDß x¤<l

Ax Þ "
x

is|tuple@xDß x¤=l

Ax

In this case, the induction base is then to prove

Ax®Τ0

for  an arbitrary but  fixed tuple Τ0  of  length L .  As the induction hypothesis, we
assume (for arbitrary but fixed l1 > L )

"
x

is|tuple@xDß x¤<l1

Ax

and show in the induction step
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Ax®Τ1

for an arbitrary but fixed tuple Τ1  of length l1 .

2.5.4 Polynomials

Since we saw (see lecture notes Algorithmic Methods 1)  that  polynomials can
be represented by (coefficient) tuples, induction over tuples is a commonly used
prove  technique for  polynomials.  Since  the  length  of  the  tuple  corresponds to
the degree of the polynomial, tuple induction is in this context often referred to
as úinduction over the degree of the polynomialø: First prove the formula for all
polynomials of degree 0, then assume the formula for all polynomials of degree
n  and  prove  the  formual  for  all  polynomials of  degree n + 1 ,  or  in  the  case  of
complete induction: show the formula for all polynomials of degree n  assuming
the induction hypothesis for all polynomials of degree less than n .

2.5.4.1 Organization
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