Chapter 2:

Proof Rules for Predicate Logic

2.1 Introduction

Mathematical activity can be classified mainly as “proving”, “solving”, or
“simplifying”. Techniques for solving heavily depend on the structure of the
formulae under consideration and will be discussed in many special lectures on
systems of linear equations, differential equations, or integral equations. Solv-
ing, however, appears also as a subtask in proving, namely when proving
formulae involving the existential quantifier. In many cases, the proof of an
existential formula finally amounts to solving some formulae. We will discuss in
this chapter the transition from proving to solving, we will then not go into the
details of actually solving. “Simplification” is often addressed as “computation”
and most of the times refers to “replacing equals by equals”. Simplification,
however, can be viewed in a much broader context, which will partly be covered
in this chapter in some rules for proving “by symbolic computation”. The empha-
sis of this chapter is being put on an introduction of rules for proving in predicate
logic. These rules should be helpful for both checking the correctness of given
proofs and for generating correct proofs on one’s own.

2.1.1 Proof Situations and Proofs

A proof situation consists of

e a formula to be proved (the “goal formula”) together with a couple of free
variables called the “proof variables”

e and a knowledge base.

The proof problem consists of showing that the goal formula, under the assump-
tions in the knowledge base, is true for all values of the proof variables.

50 2. Proof Rules for Predicate Logic

A proof starting from a given proof situation consists of a sequence of
(algorithmic) steps that reduces, by certain “reasoning rules” the proof situation
to (hopefully) simpler proof situations (solution situations, simplification situa-
tions) until one arrives at situations for which an answer is known. The reason-
ing rules also tell us how, from the answers of the intermediate situations, the
answer to the initial proof problem may be obtained.

We do not give a formal definition of “proof”, it should be understood that a
proof should not only tell whether or not the goal follows from the assumptions
but it should also convince the reader (listener) by giving arguments why the
goal is true whenever the assumptions hold. (“Truth” of a formula here refers to
the semantics of expressions introduced in Chapter 1.)

Example of a proof situation in which the answer “proved” is trivially known:
Any proof situation in which the goal formula can be obtained from one of the
formulae in the knowledge base by substitution, i.e. the goal formula is an
instance of a formula in the knowledge base. The easiest case is when the goal
is equal to one of the formulae in the knowledge base.

Here, we do not discuss in which sense the reasoning steps in a proof must
be algorithmic. However, in each of the reasoning steps which we introduce and
train below, it should be clear that they can be “checked” by computers. (The
Theorema system is a system that does not only allow to check reasoning steps
algorithmically but also to produce such steps algorithmically to a certain extent.)

2.1.1.1 Conventions on Free Variables

In proof situations we assume the goal and all formulae in the knowledge base
as closed, i.e. not containing free variables. Often the proof variables as intro-
duced above are not mentioned explicitely. In this case, we assume all free
variables bound by a universal quantifier, i.e. we prove the universal closure of
the goal. Analogously, we consider the universal closure of the formulae in the
knowledge base. In the description of the proof rules, we therefore assume that
neither goal nor knowledge base contain free variables.

Intuitive Notion: The “Distance” between the Goal and the
Knowledge Base

On an informal level, it might be helpful to view the process of “proving” as
“reducing the distance between the goal and the knowledge base”, i.e. the
distance between the goal and the knowledge base is used as a measure for
the “simplicity of a proof situation”. Notice, however, that there is no exact
notion of “distance” in this context, it is meant only as a metaphor, through
which some of the characteristics of proving can be explained.

2. Proof Rules for Predicate Logic 51

A proof is finished, when the goal is contained in the knowledge base, i.e.
the distance between goal and knowledge base is zero, or the goal is an
instance of a formula in the knowledge base, i.e. the goal is very close to a
formula in the knowledge base, i.e. the distance between goal and knowledge
base is “small”. At the beginning of a proof, the goal is neither contained in the
knowledge base nor is the goal already very close to a formula in the knowl-
edge base, i.e. there is a “big” distance between goal and knowledge
base—otherwise the proof is trivial! The aim of each individual proof step should
therefore be to reduce the distance between goal and knowledge base.

Now think of each formula as a point in the plane and the knowledge base
as the area containing all formulae it is composed of. Each reasoning step
modifies the goal or the knowledge base.

° °
°
o Lo o
KB |, o
e . CGoal
°
H .o.o.

The distance between the goal and the knowledge base can be reduced by
either moving the goal towards the knowledge base or by expanding the knowl-
edge base towards the goal. Similarly, the reasoning rules that we will study
below, can be subdivided into rules for goal reduction and rules for knowledge
base expansion. More generally, reasoning proceeds by alternating rounds of
“goal reductions” (working backwards from the goals) and “knowledge base
expansions” (working forward from known facts). Now suppose, we only apply
reasoning rules, which move the goal closer to the knowledge base or which
move formulae in the knowledge base closer to the goal.

° °
°
[°®
KB . o
"t Goal
$.o. o.
° °
°
o Lo o
KB ®
o oo Goal
°
O °

52 2. Proof Rules for Predicate Logic

° °
°
o Lo .
KB |, e o
. g\évl Goal
- .o.o.

The above pictures should indicate that an expansion of the knowledge base
can reduce the distance between goal and knowledge base (see picture 1) but
does not necessarily do so (see picture 2). Reduction of the goal (picture 3) on
the other hand is likely to always reduce the distance between the goal and the
knowledge base. Therefore, as a general principle, it is in most of the examples
better to first reduce the goal and only enter a round of expanding the knowl-
edge base when goal reduction is no longer possible. After knowledge base
expansion a reduction of the goal might again be possible.

2.1.3 Notation in Reasoning Rules

When explaining reasoning rules in the subsequent sections, upper case letters
like ‘F’, ‘G’, etc. normally will denote formulae, lower case letters like ‘s’, ‘t’, etc.
will denote terms, and Greek letters ‘¢, ‘n’, etc. will denote variables. If we
consider universally quantified formula of the form

Y F
én,...

in the knowledge base, we always assume tacitly that &, i, ... are all the distinct
free variables in F so that

Y F
én,...

is closed.

2. Proof Rules for Predicate Logic 53

2 The Role of Propositional Logic in Predicate Logic
Proving

2.2.1 Elementary Parts of Formulae

For the propositional expansion of knowledge bases and other reasoning
techniques involving propositional connectives, the notion of the “elementary
parts” of formulae is important: The elementary parts of a formula are deter-
mined by going from outside to inside and considering subformulae that start
with a quantifier or a predicate constant as “black boxes” (= the elementary
parts).

We first illustrate the process of determining the elementary parts of formulae in
a couple of examples:

Example
xe A=>(Xe AVxeB).

The elementary parts (“black boxes” which we do not any more decompose)
are

xe A
and
xeB.
The formula now writes as
A= AVSB) .
Example
(ANB=0) = ~I(xe AAXeB)
The elementary parts are
ANB=0
and

d(xe AAxeB)
X

54 2. Proof Rules for Predicate Logic

and the formula writes as

A -8B

2.2.2 Truth Tables

Propositional expansion of knowledge bases and other reasoning techniques
involving propositional connectives are based on truth tables that describe the
behavior of the propositional connectives as functions on the truth values “true”
and “false”. We assume the truth tables for propositional connectives (-, A, V, =
, ©) are known, they can be looked up in the lecture notes Analysis or Linear
Algebra.

Propositional Consequences, Propositional Tautologies,

2.2.3 .. .
Propositional Equivalences

A formula U is a propositional consequence of formulae F, G, ... iff U is true
whenever F, G, ... are true “only because of the meaning of the propositional
connectives”. More precisely, for finding out whether or not U is a propositional
consequence of F, G, ..., the formulae are decomposed into their elementary
parts and then it is checked whether or not, for all assignments of the possible
two truth values “true” and “false” to the elementary parts, U obtains the truth
value “true” whenever F, G, ... obtain the truth value “true”. For this check, the
truth tables for the propositional connectives are applied.

A formula U is a propositional tautology iff U is (always) true iff U obtains
the truth value “true” for all assignments of truth values to the elementary parts
of U.

Formulae U and V are propositionally equivalent iff U is a propositional
consequence of V and V is a propositional consequence of U.

It is clear that formulae U and V are propositionally equivalent iff, for any
assignment of truth values to the elementary parts of U and V, they obtain
identical truth values.

Also, U and V are propositionally equivalent iff U & V is a propositional
tautology.

Example

The formula

xe AAxeC)V(xeBAxeC)

is a propositional consequence of the formulae

2. Proof Rules for Predicate Logic 55

Xxe AVxeB
and
xeC .

In order to check this we determine the elementary parts of the formulae and
then look to the truth tables

xe A xeB xeC xe AVxeB xe AAxeC)VixeBAxe(C)

true true true true true
true true O true O
true O true true true
true O O true O

O true true true true

O true O true O

O O true O O

| O O | O

(We write ‘0’ instead of ‘false’ in order to identify the positions of the ‘true’ in the
tables more easily.)

One sees that for all combinations of truth values, for which xe C and
xe AV xe B are both true, also (xe AAxe C)V (xe BAxe C) is true. Hence,

xe AAxeC)V(xeBAxe(C)
is a propositional consequence of xe C and xe AV x € B.
Example
The formula

(xe AVxeBAxeC) o (xe AAxeC)V(xeBAxe Q)

is a tautology (which is also called “propositional distributivity of A over V”). In
fact, when we check the truth tables

56 2. Proof Rules for Predicate Logic

xeA xeB xeC (xe AVxeB)AxeC (xXxeAAxeC)VxeBAxe()

true true true true true
true true O O O
true O true true true
true O O O O

O true true true true

O true O O O

O O true O O

O O O O |

we see that the columns of (xe AVxeB)AxeO and
(xe AAxe C)V (xe BAxe Q) are identical and, hence, the column of

(xe AVxeBAxeCO o (xeAAXxeC)V(xeBAXxe Q)
would consist of all ‘true’. Hence, we also see that
(xe AVxeB)AxeC)
is a propositional consequence of
(xe AAXeC)V(xeBAxe Q)
and that, in fact,
(xe AVxeB)Axe O
and
(xe AAxeC)V(xeBAxeQ))

are propositionally equivalent.

2.2.4 Pure Propositional Logic Proof Parts

At rare occasions, it may happen that an entire part of a proof can be estab-
lished by just looking to the elementary propositional parts of the goal formula
and the relevant formulae in the knowledge base and by establishing that the
goal is a propositional consequence of the relevant formulae in the knowledge
base. There are basically two methods for establishing that a goal formula is a
propositional consequence of certain formulae in the knowledge base:

e the truth table method,

2. Proof Rules for Predicate Logic 57

e the “natural deduction method”: this is the method that results from
applying the proof techniques for the propositional connectives described
below that reduce proof situations to other proof situations until one
arrives at trivial proof situations; we will illustrate this method in the exam-
ples. In most practical situations, the natural deduction method is applied.
In contrast to the truth table method, a proof by natural deduction gives a
“logical argumentation” why the goal formula is a consequence of the
formulae in the knowledge base.

Example

The formula
xe AAxeC)V(xeBAxeO)
is a propositional consequence of the formulae

Xxe AVxeB
and

xeC .

This is so because if we know xe AV x e B then we know that either x e A or
x € B holds. We distinguish the two cases:

e X e A: Together with x e C we then know x e AA x e C and therefore also
xe AAxeC)V(xe BAxeC).

e X € B: Together with x e C we then know x € BA x e C and therefore also
xXxe AAxeC)V(xeBAxe(C).

Propositional Proof Rules for Structuring General Proofs in a
Natural Way

The more important role of the proof rules for propositional connectives is in
general predicate logic proofs for structuring the main part in the proof into
subproofs, for which quantifier rules are then necessary. The proof rules for the
connectives, which reduce proof situations to other proofs situations, yield the
“natural deduction style” proofs. The name “natural deduction” stems from the
fact that, actually, a very natural way of understanding the connectives is by
explaining their role in proofs, i.e. in the reduction of proof situations to other
proof situations.

We will explain this important role of propositional logic within predicate logic
in the examples. In fact, most of the proofs that occur in practice, use proposi-
tional logic for structuring proofs before one applies (general and special)

58 2. Proof Rules for Predicate Logic

quantifier rules. Hence, although propositional logic is trivial as a stand-alone
proof technique, it is of essential importance as a structuring tool for full predi-
cate logic proofs.

Roughly, the natural deduction rules for connectives contain (at least) one
proof rule for each propositional connective occurring as outermost symbol in
the goal or in a formula in the knowledge base. In addition to those there are
natural deduction rules for the quantifiers ‘v’ and ‘', again both for the quantifier
occurring as outermost symbol in the goal or in a formula in the knowledge
base.

Natural Deduction Proof Rules for Propositional
Connectives

2.3.1 Rules for Knowledge Base Expansion

2.3.1.1 Rule (“Propositional Consequence”)

If

F
Gl

are in the knowledge base and U is a propositional consequence of F, G, ...
then

U

can be added to the knowledge base.

2.3.1.2 Rule (“Propositional Tautology™)

If
U

is a propositional tautology then

u

can be added to the knowledge base.

2. Proof Rules for Predicate Logic 59

2.3.1.3 Rule (“Case Distinction on Disjunction in Knowledge Base”)

If the proof goal has the form

F

and the knowledge base contains the closed formula

GVH

then prove

F

under the additional assumption

G

and prove

F

under the additional assumption

H .
Analogously for disjunctions with more alternatives.

Usually, one announces the application of this rule in a concrete proof with a
phrase similar to

“Now we distinguish two cases.

Case 1: Assume G ...

Case 2: Now assume H ...".

2.3.2 Rules for Universally Quantified Propositional Formulae

In fact, many rules for propositional connectives in the knowledge base do not
work only when the propositional connective is the outermost formula symbol,
but also when the propositional connective occurs inside a universal quantifier.
We will only describe the rules for the quantified case, it should be obvious, how
the rules specialize for the case where the universal quantifier is omitted.

60 2. Proof Rules for Predicate Logic

Rule (“Expansion of Universally Quantified Conjunction in
Knowledge Base™)

2321

Y (FAG)
én,...

is in the knowledge base then both

Y F
én,...

v G
én,...

can be added to the knowledge base. (Analogously for conjunctions with more
than two formulae.)

Rule (“Universally Quantified Implication in Knowledge Base:

23.2.2
Modus Ponens™)

Y F=G
ém,...

and
Fen,..ost,...

(i.e. an instance of F) are in the knowledge base then also
Gey,..ost...

(i.e. the corresponding instance of G) and hence also

Y Gepo s
@ f.. ém,...—>st

yeos

(where «a, 8, ... are the free variables in s, t, ...) can be added to the knowledge
base.

Strategic Remark: In the phase of knowledge base expansion, applying modus
ponens never is a mistake although some of the new statements generated
may never be used subsequently.

2. Proof Rules for Predicate Logic 61

Rule (“Universally Quantified Implication in Knowledge Base:
Modus Ponens Special Case”)

23.2.3

YV (FAH)=>G
én,...

and
Fen,..ost,...
Hf,n,..ﬁst,..‘
are in the knowledge base then also
Gey,..ost..
(i.e. the corresponding instance of G) and hence also

Y Gepo s
af... ém,...—>st

PR

(where «a, 8, ... are the free variables in s, t, ...) can be added to the knowledge
base.
2.3.2.4 Rule (“Reflexivity of Implication)

The formula

Y F=>F
én,...

can always be added to the knowledge base.

2.3.2.5 Rule (“Transitivity of Implication™)

If
Y F=G
U/

and
Y G=>H

én,...

62 2. Proof Rules for Predicate Logic

are in the knowledge base then

Vv FoH
én,...

can be added to the knowledge base.

2.3.2.6 Rule (“Equivalence Rewriting™)

If

Y (Fe06)
3/

and
H

are in the knowledge base and the subformula at position p in H has the form
Fen..ost,...

(i.e. the subformula of H at position p is an instance of F) then also
Hpoce,, s

(i.e. H with the subformula at position p replaced by the corresponding instance
of G) can be added to the knowledge base. Using this rule, all occurrences of
instances of F can be replaced subsequently by instances of G.

Note that, if

Y (Fe06)
én,...

is in the knowledge base then also

vV GeF)
én,...

could be added to the knowledge base and, hence, equivalence rewriting can
also proceed by replacing instances of G by instances of F.

The rule applies accordingly if H is the current proof goal.

2. Proof Rules for Predicate Logic

63

2.3.2.7 Rule (“Reflexivity of Equivalence™)

The formula

YV FoF
ém,...

can always be added to the knowledge base.

2.3.2.8 Rule (“Symmetry of Equivalence”)

If

vV Fe G
&

is in the knowledge base then

YV GeF
én,...

can be added to the knowledge base.

2.3.2.9 Rule (“Transitivity of Equivalence™)

If

YV Fe G
én,...

and

Y G H
én,...

are in the knowledge base then

YV FeH
én,...

can be added to the knowledge base.

2.3.2.10 Rule (“Split Equivalence into Implication™)

If

64 2. Proof Rules for Predicate Logic

vV Fe G
én,...

is in the knowledge base then both

Y F=>G
ém,...

Y G=>F
3%/

can be added to the knowledge base.

Note that this rule follows from already known rules! F < Gand
(F=>G)A(G=F) are propositionally equivalent, hence, the tautology
FeG)o(F=G)A(G>F)) can be added to the knowledge base. By
“Equivalence Rewriting”, we can replace F & G by (F>G)A(G=F) in the
knowledge base. Then use the rule “Split Conjunction” for splitting conjunctions
in the knowledge base in order to derive the two desired formulae.

2.3.2.11 Rule (“Equality Rewriting in Formulae™)

If

Y (U=v)
én,...

and

H

are in the knowledge base and the subterm at position p in H has the form
Us ... ost....

(i.e. the subterm of H at position p is an instance of u) then also
Hpove, st

(i.e. H with the subterm at position p replaced by the corresponding instance of
V) can be added to the knowledge base.

Note that, if

Y (Uu=v)
ém,...

is in the knowledge base then also

2. Proof Rules for Predicate Logic 65

v =
. (V=)

could be added to the knowledge base and, hence, equality rewriting can also
proceed by replacing instances of v by instances of u.

The rule applies accordingly if H is the current proof goal.

2.3.2.12 Rule (“Equality Rewriting in Terms™)

If
YV U=V
e (u=v)
is in the knowledge base and the subterm at position p in the closed term h has

the form

u.f,;],, ..—oSt,...

(i.e. the subterm of h at position p is an instance of u) then also

can be added to the knowledge base.

2.3.2.13 Rule (“Reflexivity of Equality)

The formula

Y s=s
én,...

can always be added to the knowledge base.

2.3.2.14 Rule (“Symmetry of Equality”)

If

YV s=t
ém,...

is in the knowledge base then

YV t=s
én,...

66

2. Proof Rules for Predicate Logic

can be added to the knowledge base.

2.3.2.15 Rule (“Transitivity of Equality™)

If
Y r=s
&y
and
Y s=t
3/

are in the knowledge base then

YV r=t
én,...

can be added to the knowledge base.

2.3.2.16 Notation for Rewriting Chains

Equivalence and equality rewriting together with reflexivity, symmetry, and
transitivity of equivalence and equality plays an important role in the expansion
of knowledge bases (and in the reduction of goals). By transitivity, rewriting
steps can be combined in chains of which only the first and last formula (term)
are interesting as “the result”. Basically, also modus ponens and reflexivity and
transitivity of implications can be used in this way only that only one direction is

valid.

Such symbolic computation reasoning chains are presented in various
forms. Here, we introduce one form: The following notation

Fo
U by (label 1) withx, y, ... » 5, 11, ...
F1
I by (label 2) withx, y, ... > 5, o, ...
F2

U by (label 3)withx, y, ... » s3, 13, ...

U by (label kywithx, y, ... = &, t, ...

2. Proof Rules for Predicate Logic 67

Fx

means that

Fo is in the knowledge base,

(label 1) is an implication or equivalence or equality by which, with
the substitution x, Yy, ... >, t1, ..., F1 can be derived by modus
ponens or equivalence rewriting or equality rewriting,

F, can, hence, be added to the knowledge base,

(label 2) is an implication or equivalence or equality by which, with
the substitution x, Y, ... > $, t2, ..., F> can be derived by modus
ponens or equivalence rewriting or equality rewriting,

F, can, hence, be added to the knowledge base,

Fx can, hence, be added to the knowledge base.

Note that this does not just mean that

FoﬁFl

F1=>F2

is in the knowledge base! Therefore, it is not a good idea to write these chains
in the following way

Fo = F1:> Fz...

except if the meaning of this notation is completely understood! In particular, it
is very dangerous to describe reasoning chains by saying something like:

Now we know,

F()=>F1=>...

because what one wants to say is

“We know

Fo

and from this

68 2. Proof Rules for Predicate Logic

F1

can be concluded by modus ponens, equivalence rewriting or equality rewriting.”
!

Often, the substitutions used in the symbolic computation steps are not indi-
cated explicitly. Also, the positions at which the replacements are done are
almost never given explicitly although only the explicit indication of the position
would make a given symbolic computation step unique.

2.3.3 Rules for Goal Reduction

2.3.3.1 Rule (“Proof by Contradiction™)

If the proof goal has the form
-F
where F is a closed formula, add

F

to the knowledge base and try to prove a contradiction, i.e. try to prove a for-
mula of the form

GA-G.

Strategic Remark about Contradictions: Of course, the advice of proving
negations by contradictions does not help much because the question is which
formula G can be found such that

GA-G

can be proved. However, often, there is already a formula G in the knowledge
bases such that = G is conjectured to be a good candidate for being provable
from F. Thus, when we derive = G and we have G in the knowledge base then
the contradiction GA - G is proven. Proofs by contradiction are also called
“indirect proofs”.

In principle, the proof technique of proving by contradiction can be applied in
just every proof problem: In order to prove a closed formula

=

2. Proof Rules for Predicate Logic 69

assume
-F
and derive a contraction.

However, is it advisable to attempt, first, a “direct proof” before one attempts
an “indirect proof” because, sometimes, direct proofs give more information
than indirect proofs. It is also worth mentioning that “real life proving” as a
fundamental part of mathematical exploration is typically applied in situations
where it is not known whether or not a given formula F is true or false (under a
given knowledge base). Hence, the basic exploration cycle for analyzing the
truth of a “conjectured” formula F by proving is as follows:

(1) try to prove F (in which case F is true),

(2) assume — F and try to prove a contradiction (in which case F
is also true)

(3) try to prove = F (in which case F is false),

(4) assume F and try to prove a contradiction (in which case F is
also false),

go back to (2).

Going a couple of times through this basic exploration cycle is not a standstill:
The insight gained from a failing proof in one of the phases (1)-(4) may well
help to be successful in a later phase!

2.3.3.2 Rule (“Equivalence Rewriting™)
If the proof goal has the form

F
and we have
Fe o
in the knowledge base then try to prove
G .
Strategic Remark: In particular, when the proof goal is

~F

70 2. Proof Rules for Predicate Logic

there are some useful equivalences to be applied for rewriting the negated proof
goal, e.g.

ﬂ(F/\G)@—lFVﬁG
-(FVG e -FA-G
-VFed-F

X X

Rewriting the negated proof goal may then allow a direct proof instead of an
indirect proof.
2.3.3.3 Rule (“Decomposition of Conjunctions™)

If the proof goal has the form
FAGA...
where F, G, ... are closed formulae then prove

F

and prove
G

and prove

under the given knowledge base.

2.3.3.4 Rule (“Splitting Disjunctions I”’)

If the proof goal has the form

FVGV...

where F, G, ... are closed formulae then prove

F

or prove

2. Proof Rules for Predicate Logic

71

G

or prove

under the given knowledge base.

2.3.3.5 Rule (“Deduction Rule”)
If the proof goal has the form
F=>G

where F and G are closed formulae then prove

G

under the additional assumption

F .

2.3.3.6 Rule (“Contraposition”)

Use the equivalence
F=>60>-G=2-F) .

If the proof goal has the form
F=>G

where F and G are closed formulae then prove
~F

under the additional assumption

-G .

(This rule, essentially, is a version of the “proof by contradiction” rule. Proofs by
contradiction and proofs by contraposition are both also called “indirect proofs™.)

72 2. Proof Rules for Predicate Logic

2.3.3.7 Rule (“Contradiction™)

Use the equivalence
F=>6-FVG) .

If the proof goal has the form
F=G

where F and G are closed formulae then assume
F
-G

and derive a contradiction.

2.3.3.8 Rule (“Splitting Disjunctions 1I”*)
Use the equivalence
(FVGVHV..)& (=(GVHV.)3F) o (-GA-HA...>F) .
in order to prove the goal
FVGVHV...
assume
-G
-H
and prove

F .

2.3.3.9 Rule (“Prove Both Directions™)

If the proof goal has the form

Fe G

2. Proof Rules for Predicate Logic 73

then prove
G

under the additional assumption
F

and prove
F

under the additional assumption

G .

2.3.3.10 Rule (“Prove Multi Equivalence”)

If the proof goal has the form

FeGe...oH
then prove

F=>G
and prove

G=> ...

and prove

H=F .

Remark: Proof goals of the form F & G & ... & H are commonly formulated in
the following way: “The following are equivalent:

o F
e G

74 2. Proof Rules for Predicate Logic

Before applying the rule above the formulae may be re-ordered. Transitivity of
implication justifies this rule.
2.3.3.11 Rule (““Symbolic Computation Goal Reduction”)
If the proof goal has the form
Fe G
where F and G are closed formulae then try to reduce the goal
G

by equivalence symbolic computation to

F .

Strategic Remark: Try to establish a sequence
GoeH

He ...

e F

which, by transitivity and symmetry of equivalence, proves F & G. Of course,
one can also start with F and establish a sequence of equivalences ending up
in G.
2.3.3.12 Rule (“Symbolic Computation Equality Proving™)
If the proof goal has the form
s=t
where s and t are closed terms then try to transform
s
to

t

by symbolic computation using equalities in the knowledge base.

2. Proof Rules for Predicate Logic

75

2.3.3.13 Rule (“Equality Proving by Simplification™)
If the proof goal has the form
s=t

where s and t are closed terms then simplify

s
to
S
and simplify
t
to
t

and then prove

5=1.

2.3.3.14 Rule (“Goal Reduction using Implications™)
If the proof goal has the form

Geyp,.. ost...
and we have a formula

vV F=>G
én,...

in the knowledge base then it is sufficient to prove

Ff,n,‘..ast,...

Important Remark: If any of the variables &, n, ... does not occur in G, say ¢,
then the substitution &, n, ... » s, t, ... would not substitute a term for , and

e

G.f,n,...—»s,t,...

76 2. Proof Rules for Predicate Logic

can only be reduced to

In this version, the rule introduces a quantifier, hence, it transforms the proof
situation into a generally more complicated proof situation! Use this rule with
caution.

Example: Suppose we know

YV X=syAy=z=>x=<z (Trans)
XY,z

Then, for proving
a<b
it is sufficient to prove

d@<yAy<h) .
y

The presentation of the successful proof would typically proceed by first present-
ing a proof for

a<yp and
Yo<b

for some (well chosen) yp and then derive from this
asb

by knowledge base expansion using Modus Ponens for (Trans). However, the
goal reduction introducing the 3-quantifier represents the “idea” to search for a

Yo
2.4 Natural Deduction Rules for Quantified Formulae

2.4.1 Rules for Knowledge Base Expansion

2.4.1.1 Rule (“Instanciation of Universal Quantifier”)

If

2. Proof Rules for Predicate Logic 77

Y F
én,...

is in the knowledge base then also
Fen..ost,...
and hence also

YV Fep
af... SMoSte

(where «a, B, ... are the free variables in s, t, ...) can be added to the knowledge
base.

Strategic Remark: This rule is fundamental but strategically not very useful for
reasoning because infinitely many new formulae could be generated in the
knowledge base by this rule without making any contribution to achieving a
specified goal. Therefore, special cases of this rule (in dependence on the
structure of F) are more useful, see Section 2.3.2 above. In many cases, the
proof goal can give an idea on how to choose the terms s, t, ... appropriately in
order to being able to continue goal reduction.

An instanciation step is usually announced in a proof by saying:

Since we know

Y F
én,...

we know in particular

Ff,n,‘..ﬁst,...

2.4.1.2 Rule (“Skolem Constants”)

is in the knowledge base (where &, 1, ... are the only free variables in F) then
you can add

Ff,n,...ﬂXO,yO,...

78 2. Proof Rules for Predicate Logic

to the knowledge base, where x0, y0, ... are new object constants (i.e. object
constants that do neither occur in the knowledge base nor in the goal formula).
X0, yO, ... are called “Skolem constants”.

Application of this rule is often announced in the following way: We know

i F
&y

Therefore we can choose x0, y0, ... such that

Ff,l],“.ﬁXO,yO““ .

2.4.1.3 Rule (“Skolem Functions”)

is in the knowledge base (where a, B, &, 1, ... are the only free variables in F)
then you can add

Y Fea..ox0.B.. 1y0@B....I....
a,pB,...

to the knowledge base, where x0, y0, ... are new function constants (i.e.
function constants that do neither occur in the knowledge base nor in the goal
formula). x0, YO0, ... are called “Skolem function constants”.

Application of this rule is often announced in the following way: We know

v 3 F
a,B,... En,...

Therefore we can choose functions x0, y0, ... such that

Vo Fen . ox0B,...1y0laB,...],... -
a,B,...

2.4.2 Rules for Goal Reduction

2.4.2.1 Rule (“Arbitrary But Fixed™)

If the proof goal is a formula

2. Proof Rules for Predicate Logic 79

Y F
én,...

in which &, n, ... are the free variables of F, then prove

Ffﬂ]p..—fo /I

where &, ng, ... have to be new object constants, i.e. object constants that do
not occur in the knowledge base and neither in the goal formula.

One often announces the application of this proof technique by saying:
We take arbitrary but fixed &, 19, ... and prove

Fen,..ogomo...

(In this formulation, “fixed” expresses the fact that the symbols ‘4, etc. are
object constants and “arbitrary” expresses the fact that the symbols ‘4, etc.
have to be new symbols that do not occur anywhere else in the goal and the
knowledge base.)

Explanation

The proof technique “arbitrary but fixed” is the most important elementary proof
technique that bridges quantifier-free with quantifier proving. It is important that
one understands, intuitively, why this technique works. Therefore, we give here
an intuitive explanation of the correctness of the technique:

Assume one succeeds to prove that

Fen,..ogomo...

for new constant symbols ‘4;’ etc. Then it is clear that no specific knowledge
on the objects denoted by ‘4’ etc. went into the proof because ‘&’ etc. are
symbols that do not occur anywhere in the knowledge base. Hence, it would be
possible to give the proof, without any change, for any specific object constants
‘c’, etc. denoting specific objects. Hence, the proof could be repeated, without
any change, for all objects in the domain of discourse. Hence,

Y F
én,...

is true. Note that it is important that the new symbols ‘£’ etc. are constants:
Thereby

Fen,..ogomo...

80 2. Proof Rules for Predicate Logic

becomes a formula without free variables that can then be treated with other
proof techniques, i.e. can be decomposed in parts according to the proof
techniques to be discussed earlier.

It is also important that symbols ‘4’ etc. are really new, i.e. they do not
occur anywhere in the knowledge base and neither in F. If we use symbols ‘c’,
‘d’, etc. for which there is already knowledge available in the knowledge base,
the proof of

Ff,q,,,,—m,c,. ..

might work only because of this knowledge and, maybe, would not work without
this knowledge. Thus, we could not rely on the fact that the proof could be
repeated for arbitrary constants denoting arbitry objects.

The proof technique ‘“arbitrary but fixed” is very important in situations
where formulae containing free variables are nested and the proof process for
the individual quantifiers must be carefully distinguished. Sometimes, however,
only the outermost universal quantifier has to be treated by the “arbitrary but
fixed”. In such cases, it is unusual to really introduce new constants by the
“arbitrary but fixed” technique. Rather, one just uses the variable names ‘¢’,
etc. as new constants and one may say, for example,

“Letnow &, n, ... be arbitrary but fixed and prove F.”

This is alright as long as everybody understands that, from now on, ‘¢’, etc. are
constants and one does not use, in the proof of F, any knowledge about ‘¢’, etc.
that may perhaps appear somewhere in the knowledge base.

2.4.2.2 Rule (“Find Appropriate Terms™)

If the proof goal is

1 F
én,...

where &, 7, ... are the only free variables in F then it suffices to find terms
S t, ... such that

Ff,r],,,,—>s,t,...

can be proved.

2. Proof Rules for Predicate Logic 81

2.4.3 Case Distinction

Case distinctions do usually not appear stand-alone but inside predicates or

logical connectives, i.e.
Gl = Fl
H y {Gz & Fz }

tl = F]_
plt, {tz <
t3 « otherwise G; « otherwise

or C

where p is some predicate constant and C is some logical connective. The
predicate constant or the logical connective move inside the case distinction so
that the above formulae stand for

plt,] « F1 CH,G1] « F;
{p[t,] € F2 or {C[H,Gz] e F> , respectively.
pit, tz3] < otherwise C[H, G3] & otherwise

The convention is that a case distinction

Gz = F2 (1)

{Gl < kK
G; <« otherwise

is an abbreviation for the formula
F13G1 /\—|F1/\F2:>G2 A —|F1/\—|F2:>G3. (2)
(Analogously proceed for case statements with less or more than three cases.)

Case distinctions are most commonly used in definitions of functions or predi-
cates, such as

tl = F]_ G]_ (= F]_
f[X] ZI{tz < F or H :@{Gz Fs

t3 « otherwise G; « othewise

i

By the rules above, these definitions mean

f[X] =t & F; HoeG <« F
{f[x] =b & F or {H oG <
f[X]:=t3 « otherwise H :© G3 « otherwise

82 2. Proof Rules for Predicate Logic

The rules for handling case distinctions are based on replacing of a case
distinction of the form (1) by a formula of the form (2) and then apply the appro-
priate rule for a conjunction.

2.4.3.1 Rule (“Expansion of Case Distinction™)

If a case distinction
G1 (= Fl
{Gg (= Fz
Gz <« otherwise
is in the knowledge base then
Fl = Gl
= F]_ A F2 = G2
- F]_ A= F2 = G3

can be added to the knowledge base.

2.4.3.2 Rule (“Reduction of Case Distinction™)

The rule for reduction of case distinctions in the proof goal combines the rule
for reducing conjunctions with the rule for reducing implications.

For proving a case distinction

Gz = Fz
G; <« otherwise

{ G F
we split the proof into cases:
Prove G; under the assumption F;
Prove G, under theassumption— F; A F;
Prove G3 under theassumption— F; A = F»
Example:

Letforallxe R

2. Proof Rules for Predicate Logic 83

|x|'—{x & x=z0
" l—-x & otherwise

Prove
Yo X+yl <Ix+|yl
X,yeR
Let xo, Yo arbitrary but fixed and show |xg + Yo| < [Xo| + |Yo|. We substitute the

definition for absolute value on the left hand side and move the predicate
symbol “<” into the case distinction and have to prove

{X0+YOS|X0|+|YO| & X +Y =0
—(Xo +Yo) <Xl + 1Yol & X +Yo <0

First we assume Xy +Yo =0 and show Xg + VYo < [Xo| + |Yo| . Analogously, we
substitute the definition on the right hand side for xo and have to prove

{XO+yosxO+Iyo| € % =0
Xo+Yo =—X +1IYol & X% <0

First we assume xg = 0 and show xg + Yo < X0 + |Yo| . We substitute the
definition on the right hand side for y; and have to prove

{X0+YOSX0+YO & Yoz0
Xo+Yo=-X +(=Yo) & Yo<O0

First we assume yp = 0 and show Xg + Yo < Xo + Yo -
Now we assume Yo < 0 and show Xy + Yo < Xp + (Vo) -

Now we assume Xo < 0 and show —Xg + Yo < X + [Yo! - ...
Now we assume Xg + Yo < 0 and show —(xg + Vo) < |Xo| + IYo - ...
The presentation of the proof above would typically be given as follows:

Casel:Xp+Yp =0, Xp=0, yop =0: ...
Case2: X9 +Y¥0 =0, x0=0, yo <O0: ...

84 2. Proof Rules for Predicate Logic

2.5 Theory-Specific Proof Rules and Strategies

2.5.1 Set Theory

Set theory is an extension of predicate logic that is frequently used in every-day
mathematics. Intuitively, a “set” is a collection of objects. For some set M and
an object s the most interesting property to study is whether s is a member of M
or not . As long as we are speaking about sets containing only finitely many
objects (whatever this means ...) this question is easy to answer by checking
finitely many cases. However, we want to handle also collections of infinitely
many objects (whatever this means ...). It is desirable to define a set by a
characteristic property of its elements, i.e. the set of all x satisfying the property
P written as {x| P}. If one continues beyond this point on an intuitive level, one
quickly runs into paradoxa like Russell's paradox (see lecture notes Algorithmic
Methods 1) or the barber’s paradox (see lecture notes Linear Algebra).

Set theory can, however, be introduced in an axiomatic fashion. Roughly
speaking, set theory introduces a binary predicate ‘e’ (membership) and certain
axioms that characterize the behaviour of membership. In addition, certain new
function and predicate symbols are introduced through explicit definitions in
terms of membership. There are several axiomatizations of set theory (Zermelo-
Frankel set theory (ZF), von Neuman-Gé&del-Bernays set theory (NGB), or type
theory of Russell and Whitehead to name a few), which differ in the way how to
avoid the well-known paradoxa, but which, on the other hand, do not affect the
way how set theory is used in every-day mathematics (at least, the author is not
aware of concrete situations in “usual mathematics”, where it would make a
difference).

We show the flavour of axiomatic set theory based on axioms of ZF. Most of
the axioms deal with the existence of certain sets that are characterized by the
way how membership in them can be decided, e.g. there is for each formula P
with free variable x and for each set M (where M and S do not occur in P) an
axiom of the form

EIS!VXES@(XEM/\P) .
X

Since, by the above axiom—the axiom scheme of separation—, we know the
existence of such a set S we can define

set[M, P := %!(VXES@(XEM/\P)) . ©)

set[M, P] is commonly written as

2. Proof Rules for Predicate Logic 85

xeM|P}

and it should be noted that the language construct {xe M| ...} again binds the
variable x in the expression and, thus, should be considered a quantifier. From
the definition of set[M, P] we know

Vxe set[M, Pl & (xe MAP)
X

or, using the notation just introduced
\;VE{XeMIP}@(yeM/\PXw) , (4)
respectively. Note that we renamed the bound variable in the universal quanti-

fier in order to distinguish it from the bound variable in the inner quantifier.
Without this renaming formula (4) would read as

Vxe{xeM|Ple xeMAP) |,

X
which is not wrong but confusing, at least for the author. Formula (4) also tells
exactly how to check membership for a set defined in this way. The ZF axiom
system contains the necessary axioms that guarantee the existence of certain

sets and thereby justify to introduce certain sets implicitely like in (3). The axiom
of extensionality, i.e.

A=B o VYxeAs xeB
X

tells when two sets are equal. A predicate ‘C’ is introduced explicitely:

AcCB:e V¥xe A=>xeB .
X
The construction of sets of the form {x|xe M AP} is allowed by the axioms
of separation, the construction of sets of different shape must be claimed by
axioms. In the sequel, we will introduce certain set constructions or list the rules

how to test for membership in various set constructions. All definitions and all
membership rules are justified by the underlying axioms of ZF.

O :={x|x+Xx
ANB:={x|xe AAxeB}

ﬂA::{x

AUB:={x|xe AVxeB}

e

86 2. Proof Rules for Predicate Logic

UA::{X

PlA] .= {X|xC A}
=0

{a} :={x|x=a}

{a,b}:={a} U {b} ={x|x=aV x=Dh}

{ag, ...,an}:={a1}U...U{an}z{x|x=a1V...Vx:an}z{x’_ 3 x=a}

i=1,...n

{Tx | Cx} = {y|erIM Cx /\szx}

XeM

For a term Ay with free variable y it is often convenient to use the abbreviations

ﬂAx for N{A« | }

xeM xeM
LA for UfAc 1)
xeM xeM

These abbreviations must again be viewed as quantifiers binding x. Using these
abbreviations, it can be shown that

ae ﬂAX@X:’MaeAX

XeM

anAX@XGHMaeAX .

XeM

In many cases proving with sets reduces to standard predicate logic proving
using the definitions and conventions above.

2.5.2 Natural Numbers

Induction Proofs for Universally Quantified Goals over the Natural

2521
Numbers

Natural numbers allow one special proof technique, namely induction. The
principle of proving by induction is derived from the induction axioms for natural
numbers, i.e. for each formula A, with free variable x a formula of the form

2. Proof Rules for Predicate Logic 87

(AXHO /\ nZN Acn = Ax»ml) = XZN Ay

where n does not occur in A. An induction axiom can be used to reduce a proof
goal (see “Goal Reduction using Implications™)

Vo A
xeN
to proving
Axs0 ®)
ngN Axn 2 Ao (6)

Formula (5) is called the induction base, for proving (6) one assumes

Ao (7
and proves
AX% np+1 (8)

for arbitrary but fixed np € N. Assumption (7) is called induction hypothesis, the
proof goal (8) is called induction step. Intuitively, it should be clear that after
having proved (5) and (6) the formula really holds for all natural numbers: From
(6) we know in particular

Ao = A
and from this, together with (5) by Modus Ponens,
At
by this, together with the instance of (6)
A1 = A
by Modus Ponens
Axs2

etc. and we can continue application of Modus Ponens together with appropri-

ate instances of (6) in order to derive A, for all natural numbers n, i.e. A is

true for each assignment for x, i.e. VN Ay is true according to the semantics of
Xel

the Y-quantifier.
Here we considered the set of natural numbers to start with 0. However, for
some applications it can be convenient to consider 1 the smallest natural

88 2. Proof Rules for Predicate Logic

number. Ng is in this case commonly written for N |J {0}. The induction axioms
are available with respective modification, i.e. the induction base is then

A1 -
In general, using the induction base
AX—)S

and induction hypothesis and induction step as usual (with the additional
assumption that the arbitrary but fixed ny satisfies ng =s) can be used for
proving

Y A .

XeN
X=s

2.5.2.2 Comment on Presentation of Inference Chains

It can often be observed that an argument as above is presented in the
following way (see also Section 2.3.2.16):

“Weknow Ao =2 At =2 A2 > ... 2 Aun”

Note that “=” in this case is not the propositional connective “implication” but it
is just a symbol abbreviating the word “therefore” (or similar). In fact, it is not
that we only know Ay o = A1 = A2 = ... = An but we know all of Ay,
A1, A2 ,.--,Acsn - Consider alternatively,

“Weknow Ao :¢> A1 :¢> Ao =T> .. = Aon”,

A0 2Ax1 A1 =2Acs2 Az >Axs3 Axon-1=Acn

which is now completely confusing, because the “=” in the top line is
“therefore” and the “=" in the underscript is “implication”. One could live with

“Weknow Av,o = Aol = A = ... = Aon’”,
by an |Es(ance by an |Es(ance by an |I15[anoe by aninstance
of (6) of (6) of (6) of (6)
and a convention that :¢> always means ‘“therefore, by ...” instead of

“implication”. Whatever notation you use, always follow the principle:

Save the time of the reader!

i.e. mathematical notation should help the reader to understand the text rather
than making it more difficult to follow the ideas.

2. Proof Rules for Predicate Logic 89

2.5.2.3 Complete Induction

The principle of complete induction is a consequence of the induction axioms
given in the previous section. The axiom reads

YIV Acml=2Acnl= ¥V A
neN | meN xeN
m<n

where m and n do not occur in A and x is a free variable in A. By this axiom,
the proof of

VoA

XeN

reduces to proving

¥V Acm | = Acn
meN

m<ng

for arbitrary but fixed ng . At this point, typically, a case distinction is made:
Case 1 (Induction base): np = 0. We have to show

Ax—>0

Case 2: ng = 1. We assume (induction hypothesis)

and show (induction step)

Ax»no

2.5.3 Tuples

Similar to the domain of natural numbers, we can use an induction principle for
tuples. In a first formulation, an induction principle for tuples allows to prove a
formula

VoA
X
is-tuple{x]

90 2. Proof Rules for Predicate Logic

by proving

Ay 9)

YV VAL =2 Aoy O Vo VAG = Aoy
Ty Ty

(10)
is-tuplefr] is-tupleft]

Formula (9) is called the induction base, for proving (10) one assumes

Axry (11)
and proves

Acroye OF Ay or (12)

for arbitrary but fixed yo and an arbitrary but fixed tuple 7o, where y-r and
T~y stand for “the object y prepended/appended to the tuple 77, respectively.
Assumption (11) is again called induction hypothesis, the proof goal (12) is
again called induction step. Whether one chooses to prepend or append an
object in the induction step depends in most of the cases on the structure of the
formula or on additional knowledge in the knowledge base.

Similar to natural numbers, there is also a complete induction for tuples. In
order to prove

v Aq
X
is-tuple[X]A|x|=L

it is sufficient to prove

v Ax

X
istuple[x]A|x|=L

v VoA Y A

I>L X X
is-tuple[x]A[x|<I is-tuple[x]A|x|=I

In this case, the induction base is then to prove
AX—>T0

for an arbitrary but fixed tuple 7o of length L. As the induction hypothesis, we
assume (for arbitrary but fixed I; > L)

V Ax
X
is-tuple[X]A|X|<]y

and show in the induction step

2. Proof Rules for Predicate Logic 91

AX%Tl

for an arbitrary but fixed tuple v, of length 1, .

2.5.4 Polynomials

Since we saw (see lecture notes Algorithmic Methods 1) that polynomials can
be represented by (coefficient) tuples, induction over tuples is a commonly used
prove technique for polynomials. Since the length of the tuple corresponds to
the degree of the polynomial, tuple induction is in this context often referred to
as “induction over the degree of the polynomial”: First prove the formula for all
polynomials of degree 0, then assume the formula for all polynomials of degree
n and prove the formual for all polynomials of degree n+ 1, or in the case of
complete induction: show the formula for all polynomials of degree n assuming
the induction hypothesis for all polynomials of degree less than n.

2.5.4.1 Organization

