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Verification by Model 
Checking

Given a program P and its specification ϕ 
build a model M of P on some appropriate 
abstraction level.

Check, whether M satisfies ϕ.

Otherwise, generate a counter-example.
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The Main Problems of MC

To choose some suitable formalism for 
representing abstract models of 
programs.
To choose some expressive formal 
language for representing specifications.
To develop an efficient model-checking 
algorithm.
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Modelling Distributed Systems

Individual processes are modelled by 
Labelled Transition Systems.

Model of distributed system is an 
asynchronous parallel composition of 
LTSes with rendezvous message 
passing (synchronous communication).
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Example of Model
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Specifications

We specify program and model 
behavior by formulas of temporal logic 
ACTL*-X.

Examples:
 AF(critical1)
 AG(¬critical1 ∧ ¬critical2)
 ¬receive2 AU send1.
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Parameterized Distributed 
Systems

Many distributed algorithms are 
parameterized by:
 the number of similar processes,
 the size of data types,
 the size of communication channels.

Many distributed algorithms have 
unbounded data types.
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Models Parameterized by Number 
of Processes

We study the verification problem for 
families of distributed systems {Mn}, 
n >= 1

Every system Mn is composed of some 
distinguished process Q and a number 
of isomorphic processes that are 
instances of the same prototype process 
P.
 Mn = Q || P || P || … || P.
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Specifications of 
Parameterized Systems

To specify a behavior of parameterized 
distributed system Mn = Q || P || P || … || P we 
 may:
 either specify a desirable behaviour of the 

distinguished process Q; in this case we 
deal with the same specification for the 
whole family of systems {Mn}

 or consider parameterized family of 
formulae ϕn ;

 or use formulae over regular expressions.
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Parameterized Model 
Checking

For a family Sn of specifications and a 
family Mn of models we need to check, 
whether Mn |= Sn.

The problem is undecidable [Apt, 
Kozen, 1986].

The problem is undecidable even for 
ring networks that are composed of very 
simple processes.
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PMC by Invariants
Suppose that we are given some partial order 
≤ on LTSes which complies with the following 
requirements:
 It is conservative under a class of 

specifications . For any  ∈  prop. A ≤ B 
and B |=  implies A |= 

 It is monotonic. Relation A ≤ B and C ≤ D 
implies A || B ≤ C || D.

Then to check that Mn |=  holds for every n 
it is sufficient to find LTS I (invariant) such 
that Q || P I    and I || P I,    hold, and check 
that I |= .
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Partial Orders on LTSes
We should choose some order ≤
Some partial orders on LTSes that may be 
used for the purpose of invariant-aided 
parameterized verification:
 trace inclusion,
 (strong) simulation, 
 weak simulation, 
 branching simulation,
 block simulation (close to visible simulation),
 quasi-block simulation.
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How to find an invariant?

 To guess it...
 To build another abstraction of P using 
heuristics and specification.
 To find N such that MN+1 = MN || P ≤ MN. 
In this we have MN+2 = (MN || P) || P ≤ 
MN || P , and for every n, n >= N + 1, 
Mn+1 ≤ MN  holds. Thus it is sufficient to 
check models M1, …, MN.
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If we can't find an invariant

 Think more.

 Change the level of abstraction.

 Choose a more suitable partial order relation.
 Strong simulation is applicable to synchronous 

systems, but it is poorely suited for finding an 
invariant of asynchronous systems (though it is 
possible with combination of abstraction 
[Clarke, Grumberg, Jha, 1997]).

 To extend invariant based technique on 
asynchronous systems we introduce block and 
quasi-block simulations.
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(Strong) Simulation

Conservative 
under ACTL*

Monotonic

Easy to check!

Too strong to 
us
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Weak Simulation

Neither 
conservative

Nor monotonic
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Block Simulation

Conservative 
under ACTL*-X

Still not 
monotonic (but it 
is in some 
limited cases)
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Definition of Block Simulation

Let Mi = (Si, Si
0
, Ai, Ri, Σi, Li), i = 1,2, be 

LTSes. Let Σ0 in Σ1 ∩ Σ2. H ∈ S1  S2 is a 
block simulation iff for each (s

1
, t

1
) ∈ H:

 L1(s
1
) ∩ E0 = L2(t

1
) ∩ E0,

 For every finite block s
1
 − s

2
 − ... − s

m
 

−a s
m+1

 there is a block t
1
 − t

2
 − ... − t

n
 

−a t
n+1

 such that (s
m+1

, t
n+1

) ∈ H and (s
i
, t

j
) ∈ H

 For any infinite block s
1
 − s

2
 − ... from s

1
 

there is an infinite block t
1
 − t

2
 − ... such 

that (s
i
, t

j
) in H.
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M3 block simulates M1,
M4 block simulates M2
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But the composition does not 
preserve block simulation



  21

Quasi-block Simulation
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Properties of Quasi-block 
Simulation

Block simulation is a quasi-block 
simulation.

As a consequence, quasi-block 
simulation is conservative under ACTL*-
X.

It is monotonic (if synchronization is 
performed in the same way in the both 
pairs of models).
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Our Verification Framework

Family of parameterized models is 
described by network grammars (as in 
[Clarke, Grumberg, Jha, 1995]).

Fragments derived from the same non-
terminal are checked against block 
simulation.

If for some M it holds M || P || ... || P ≤ 
M, then invariant of non-terminal is 
found.
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Example:
Tree Wave Algorithm

The root node sends message to its 
successors and waits for response.

An intermediate node waits for a message 
from its parent, sends message to its 
successors, waits for responses, and relays 
these replies to the parent.

A leaf node waits for a message from its 
parent and sends a response back.
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Checking Invariant
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It is enough to check the model
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Another models

We are looking for interesting (and 
practical) models as case study for 
running experiments

Now we are trying to build an abstraction 
of Resource ReserVation Protocol 
(RSVP) and check its properties.
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Computing Block Simulation, 
straightforward approach

To check M' ≤ M'' one may:
 begin with including all pairs (s', s''): s' in S', 

s'' in S'' of nodes having the same labels
 refine the set by removing one by one those 

pairs that do not fit the definition
 until only those pairs that agree the 

definition remain.

Pairs may be added on demand.

Models may be built on-the-fly.
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Computing Block Simulation,
game-theoretic approach

Simulation-like relations may be interpreted as 
a parity game of two players: Spoiler and 
Duplicator [T. Henzinger, O. Kupferman, S. Rajamani, 2002].

Spoiler tries to find a move which testifies 
against the simulation while Duplicator should 
find an adequate response to certify the 
simulation.

If Duplicator provides a winning strategy, then 
the simulation do exists.
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Hierarchy of Simulations
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