
On Verification of Parameterized
Distributed Systems

Moscow State University
Computational Mathematics and Cybernetics

Igor V. Konnov

INTAS meeting

 2

Verification by Model
Checking

Given a program P and its specification ϕ
build a model M of P on some appropriate
abstraction level.

Check, whether M satisfies ϕ.

Otherwise, generate a counter-example.

 3

The Main Problems of MC

To choose some suitable formalism for
representing abstract models of
programs.
To choose some expressive formal
language for representing specifications.
To develop an efficient model-checking
algorithm.

 4

Modelling Distributed Systems

Individual processes are modelled by
Labelled Transition Systems.

Model of distributed system is an
asynchronous parallel composition of
LTSes with rendezvous message
passing (synchronous communication).

 5

Example of Model

a b

¬critical1,
¬critical2

τ

 critical1,
¬critical2

¬critical1,
 critical2

τ τ
τ

¬critical1,
¬critical2

 6

Specifications

We specify program and model
behavior by formulas of temporal logic
ACTL*-X.

Examples:
 AF(critical1)
 AG(¬critical1 ∧ ¬critical2)
 ¬receive2 AU send1.

 7

Parameterized Distributed
Systems

Many distributed algorithms are
parameterized by:
 the number of similar processes,
 the size of data types,
 the size of communication channels.

Many distributed algorithms have
unbounded data types.

 8

Models Parameterized by Number
of Processes

We study the verification problem for
families of distributed systems {Mn},
n >= 1

Every system Mn is composed of some
distinguished process Q and a number
of isomorphic processes that are
instances of the same prototype process
P.
 Mn = Q || P || P || … || P.

 9

Specifications of
Parameterized Systems

To specify a behavior of parameterized
distributed system Mn = Q || P || P || … || P we
 may:
 either specify a desirable behaviour of the

distinguished process Q; in this case we
deal with the same specification for the
whole family of systems {Mn}

 or consider parameterized family of
formulae ϕn ;

 or use formulae over regular expressions.

 10

Parameterized Model
Checking

For a family Sn of specifications and a
family Mn of models we need to check,
whether Mn |= Sn.

The problem is undecidable [Apt,
Kozen, 1986].

The problem is undecidable even for
ring networks that are composed of very
simple processes.

 11

PMC by Invariants
Suppose that we are given some partial order
≤ on LTSes which complies with the following
requirements:
 It is conservative under a class of

specifications . For any  ∈  prop. A ≤ B
and B |=  implies A |= 

 It is monotonic. Relation A ≤ B and C ≤ D
implies A || B ≤ C || D.

Then to check that Mn |=  holds for every n
it is sufficient to find LTS I (invariant) such
that Q || P I and I || P I, hold, and check
that I |= .

 12

Partial Orders on LTSes
We should choose some order ≤
Some partial orders on LTSes that may be
used for the purpose of invariant-aided
parameterized verification:
 trace inclusion,
 (strong) simulation,
 weak simulation,
 branching simulation,
 block simulation (close to visible simulation),
 quasi-block simulation.

 13

How to find an invariant?

 To guess it...
 To build another abstraction of P using
heuristics and specification.
 To find N such that MN+1 = MN || P ≤ MN.
In this we have MN+2 = (MN || P) || P ≤
MN || P , and for every n, n >= N + 1,
Mn+1 ≤ MN holds. Thus it is sufficient to
check models M1, …, MN.

 14

If we can't find an invariant

 Think more.

 Change the level of abstraction.

 Choose a more suitable partial order relation.
 Strong simulation is applicable to synchronous

systems, but it is poorely suited for finding an
invariant of asynchronous systems (though it is
possible with combination of abstraction
[Clarke, Grumberg, Jha, 1997]).

 To extend invariant based technique on
asynchronous systems we introduce block and
quasi-block simulations.

 15

(Strong) Simulation

Conservative
under ACTL*

Monotonic

Easy to check!

Too strong to
us

 16

Weak Simulation

Neither
conservative

Nor monotonic

 17

Block Simulation

Conservative
under ACTL*-X

Still not
monotonic (but it
is in some
limited cases)

 18

Definition of Block Simulation

Let Mi = (Si, Si
0
, Ai, Ri, Σi, Li), i = 1,2, be

LTSes. Let Σ0 in Σ1 ∩ Σ2. H ∈ S1  S2 is a
block simulation iff for each (s

1
, t

1
) ∈ H:

 L1(s
1
) ∩ E0 = L2(t

1
) ∩ E0,

 For every finite block s
1
 − s

2
 − ... − s

m

−a s
m+1

 there is a block t
1
 − t

2
 − ... − t

n

−a t
n+1

 such that (s
m+1

, t
n+1

) ∈ H and (s
i
, t

j
) ∈ H

 For any infinite block s
1
 − s

2
 − ... from s

1

there is an infinite block t
1
 − t

2
 − ... such

that (s
i
, t

j
) in H.

 19

M3 block simulates M1,
M4 block simulates M2

 20

But the composition does not
preserve block simulation

 21

Quasi-block Simulation

 22

Properties of Quasi-block
Simulation

Block simulation is a quasi-block
simulation.

As a consequence, quasi-block
simulation is conservative under ACTL*-
X.

It is monotonic (if synchronization is
performed in the same way in the both
pairs of models).

 23

Our Verification Framework

Family of parameterized models is
described by network grammars (as in
[Clarke, Grumberg, Jha, 1995]).

Fragments derived from the same non-
terminal are checked against block
simulation.

If for some M it holds M || P || ... || P ≤
M, then invariant of non-terminal is
found.

 24

Example:
Tree Wave Algorithm

The root node sends message to its
successors and waits for response.

An intermediate node waits for a message
from its parent, sends message to its
successors, waits for responses, and relays
these replies to the parent.

A leaf node waits for a message from its
parent and sends a response back.

 25

Checking Invariant

 26

It is enough to check the model

 27

Another models

We are looking for interesting (and
practical) models as case study for
running experiments

Now we are trying to build an abstraction
of Resource ReserVation Protocol
(RSVP) and check its properties.

 28

Computing Block Simulation,
straightforward approach

To check M' ≤ M'' one may:
 begin with including all pairs (s', s''): s' in S',

s'' in S'' of nodes having the same labels
 refine the set by removing one by one those

pairs that do not fit the definition
 until only those pairs that agree the

definition remain.

Pairs may be added on demand.

Models may be built on-the-fly.

 29

Computing Block Simulation,
game-theoretic approach

Simulation-like relations may be interpreted as
a parity game of two players: Spoiler and
Duplicator [T. Henzinger, O. Kupferman, S. Rajamani, 2002].

Spoiler tries to find a move which testifies
against the simulation while Duplicator should
find an adequate response to certify the
simulation.

If Duplicator provides a winning strategy, then
the simulation do exists.

 30

Hierarchy of Simulations

 31

References

 K.R. Apt, D. Kozen. Limits for automatic program verification of
finite-state concurrent systems. Information Processing Letters,
22(6), 1986, pp. 307-309.

E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized
networks using abstraction and regular languages. Proceedings
of the 6-th International Conference on Concurrency Theory,
1995.

E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized
networks. ACM Transactions on Programming Languages and
Systems, vol. 19, N 5, 1997, pp. 726—750.

Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani.
Fair Simulation. Information and Computation 173:64-81, 2002.

