N

~
/

On Verification of Parameterized
Distributed Systems

Moscow State University
Computational Mathematics and Cybernetics

lgor V. Konnov

i
N

INTAS meeting



Verification by Model
Checking

N

#Given a program P and its specification ¢
build a model M of P on some appropriate
abstraction level.

#Check, whether M satisfies ¢.
#Otherwise, generate a counter-example.




N

The Main Problems of MC

L

#To choose some suitable formalism for
representing abstract models of
programs.

#To choose some expressive formal
language for representing specifications.

#To develop an efficient model-checking
algorithm.
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Modelling Distributed Systems

#|ndividual processes are modelled by
Labelled Transition Systems.

#Model of distributed system is an

asynchronous parallel composition of
L TSes with rendezvous message
passing (synchronous communication).




Example of Model

—criticall,
—Critical2

criticall, d b ~criticall,
—Critical2 critical2
L
—criticall,
—Critical2
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Specifications

# \We specify program and model

behavior by formulas of temporal logic
ACTL*-X.

# Examples:
= AF(critical1)
= AG(~critical1 [ ~critical2)
" -receive2 AU send1.




Parameterized Distributed

N

Systems

=l |

#Many distributed algorithms are
parameterized by:

ne number of similar processes,

"t
"t

ne size of data types,

ne size of communication channels.

#Many distributed algorithms have
unbounded data types.
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Models Parameterized by Number
of Processes

L

#\We study the verification problem for
families of distributed systems {M },
n>=1

#Every system M_is composed of some
distinguished process Q and a number
of isomorphic processes that are

instances of the same prototype process
P

&M =Q||P||P]| .. || P.




Specifications of
Parameterized Systems

N

#®To specify a behavior of parameterized
distributed system M_=Q||P || P || ... || P we

may:
= either specify a desirable behaviour of the
distinguished process Q; in this case we

deal with the same specification for the
whole family of systems {M }

® or consider parameterized family of
formulae ¢ ;

" or use formulae over regular expressions.




Parameterized Model
Checking

N

#For a family S_ of specifications and a
family M_ of models we need to check,
whether M_ |= S..

#The problem is undecidable [Apt,
Kozen, 1986].

#The problem is undecidable even for
ring networks that are composed of very
simple processes.
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PMC by Invariants

N

! # Suppose that we are given some partial order
< on LTSes which complies with the following
requirements:

= |t is conservative under a class of
specifications Y. Forany ¢ € ¥ prop. A<B
and B |= @ implies A |= y
® |t is monotonic. Relation A<Band C<D
implies A||B< C|| D.
#Then to check that M. |= ¢ holds for every n

it is sufficient to find LTS / (invariant) such
that Q|| P / and /|| P I, hold, and check

thatl|= Y. 11
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Partial Orders on LTSes

#\We should choose some order <

#Some partial orders on LTSes that may be
used for the purpose of invariant-aided
parameterized verification:

" trace inclusion,

® (strong) simulation,

" weak simulation,

" branching simulation,

® block simulation (close to visible simulation),
" quasi-block simulation.
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How to find an invariant?

L

# To guess it...

# To build another abstraction of P using
heuristics and specification.

# To find N such that M., = M || P £ M.
In this we have M., = (M| P) || P <
My|| P, and for every n,n>= N+ 1,
Mn+1 < I\/IN holds. Thus it is sufficient to
check models M., ..., M.
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If we can't find an invariant

N

# Think more.

# Change the level of abstraction.

# Choose a more suitable partial order relation.

® Strong simulation is applicable to synchronous
systems, but it is poorely suited for finding an
iInvariant of asynchronous systems (though it is
possible with combination of abstraction
[Clarke, Grumberg, Jha, 1997]).

" To extend invariant based technique on
asynchronous systems we introduce block and
quasi-block simulations.
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(Strong) Simulation

#Conservative
under ACTL*

#Too strong to
us
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Weak Simulation

A
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Neither
conservative

Nor monotonic
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Block Simulation

N
\J

#Conservative
under ACTL*-X

@ Sill not

IS iIn some
limited cases)
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Definition of Block Simulation

N

L

#Let Mi = (Si, SiO, Ai, Ri, 2i, Li), 1=1,2, be
LTSes. Let20in21 N22. He S1 X S2is a
block simulation iff for each (s , t.) € H:
= L1(s,) N EO = L2(t) N EO,

= For every finite block s, ~1—'s -1— ... -1—>'s_
-a—s__thereisablockt -7—=t -1— ... -1=>1
-a—»t suchthat(s ,t )eHand(s, tj) e H
= For any infinite block s, -t—s_-1— ... from s,

there is an infinite block t1 —T— t2 -T— ... such
that (s, tj) In H.

n+
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M3 block simulates M1,
KM4 block simulates M2

Ml M?2 M3 M4
‘/50\5 a \b
O O _
b C d a \ b
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But the composition does not
preserve block simulation
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Quasi-block Simulation

A

21
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Properties of Quasi-block
Simulation

L

#Block simulation is a quasi-block
simulation.

#As a consequence, quasi-block

simulation is conservative under AC
X.

#|t is monotonic (if synchronization is

L*-

performed in the same way In the both

pairs of models).
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Our Verification Framework

N

#Family of parameterized models is
described by network grammars (as in
[Clarke, Grumberg, Jha, 1995]).

#Fragments derived from the same non-
terminal are checked against block
simulation.

#|f for some Mitholds M || P|| ... || P <
M., then invariant of non-terminal is
found.
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Example:

Tree Wave Algorithm

N

#®The root node sends message to its
successors and waits for response.

#An intermediate node waits for a message
from its parent, sends message to its
successors, walits for responses, and relays
these replies to the parent.

#A leaf node waits for a message from its
parent and sends a response back.
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Checking Invariant

/N

block
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block
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It Is enough to check the model
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Another models

L

#We are looking for interesting (and
practical) models as case study for
running experiments

#Now we are trying to build an abstraction
of Resource ReserVation Protocol
(RSVP) and check its properties.
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Computing Block Simulation,
straightforward approach

L

#To check M' < M" one may:

® begin with including all pairs (s', s"): s'in §',
s" in S" of nodes having the same labels

= refine the set by removing one by one those
pairs that do not fit the definition

® until only those pairs that agree the
definition remain.

#Pairs may be added on demand.
#Models may be built on-the-fly.
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Computing Block Simulation,
game-theoretic approach

L

# Simulation-like relations may be interpreted as
a parity game of two players: Spoiler and
Duplicator [T. Henzinger, O. Kupferman, S. Rajamani, 2002].

#®Spoiler tries to find a move which testifies
against the simulation while Duplicator should
find an adequate response to certify the
simulation.

#If Duplicator provides a winning strategy, then
the simulation do exists.
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Hierarchy of Simulations

Simulation
A

Block
Simulation

N

Branching Quasi-block
Simulation Simulation

~.

Weak
Simulation
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