Automated Generation of Polynomial
Invariants for Imperative Program
Verification in  Theorema

Laura Kovacs, Tudor Jebelean

Research Institute for Symbolic Computation, Linz

e-Austria Institute, Timisoara

{kovacs,jebelean  }@risc.uni-linz.ac.at

Joint work with:
D. Kapur (Univ. of New Mexico)



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Outline

Program Verification

The Theorema System

Imperative Program Verification in ~ Theorema
P-solvable Imperative Loops
Automatized Invariant Generation

Conclusions



Outline
Program Verification

The Theorema System

Imperative Program Verification in
P-solvable Imperative Loops

Theorema
Automatized Invariant Generation

Conclusions

N
£
«O>» «Fr «=>»

DA

<

v
it



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Program Verification

Rule—based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher—order predicate logic)

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Program Verification

Rule—based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher—order predicate logic)

e (consequence) verification: checking that each clause is true.
Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)
e Backward Reasoning



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Program Verification

Rule—based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher—order predicate logic)

e (consequence) verification: checking that each clause is true.
Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)
e Backward Reasoning

1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Program Verification

Rule—based Programming Theorema — B.Buchberger, A.Cr &ciun,
N.Popov, T.Jebelean

Specifications, programs and verification can be viewed in a uniform
framework (higher—order predicate logic)

e (consequence) verification: checking that each clause is true.
Imperative Programming Theorema — L.Kov acs, T.Jebelean

Additional assertions are needed (invariants, termination terms)
e Backward Reasoning

1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]



Outline
Program Verification

The Theorema System

Imperative Program Verification in
P-solvable Imperative Loops

Theorema
Automatized Invariant Generation

Conclusions

N
£
«O>» «Fr «=>»

DA

<

v
it



Program Verification The Theorema System Imperative Program Verification in ~ Theorema

o]
000000000

The Theorema System

Theorema : A computer aided mathematical assistant

Conclusions



Program Verification The Theorema System Imperative Program Verification in ~ Theorema

o]
000000000

The Theorema System

Theorema : A computer aided mathematical assistant

Proving
° Computing
Solving

Conclusions



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

The Theorema System

Theorema : A computer aided mathematical assistant

Proving
° Computing
Solving
using: specified “knowledge bases”



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

The Theorema System

Theorema : A computer aided mathematical assistant

Proving
° Computing
Solving
using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

The Theorema System

Theorema : A computer aided mathematical assistant

Proving
° { Computing
Solving
using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library
Composing
o { Structuring  mathematical texts
Manipulating



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

The Theorema System

Theorema : A computer aided mathematical assistant

Proving
° { Computing
Solving
using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library
Composing
° { Structuring  mathematical texts
Manipulating

e Advantages of Program Verification in Theorema :



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions
o

The Theorema System
Theorema : A computer aided mathematical assistant

Computing

Solving
using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

{ Composing

{ Proving

Structuring  mathematical texts
Manipulating

e Advantages of Program Verification in Theorema :
1. proofs in natural language and using natural style inference



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

The Theorema System
Theorema : A computer aided mathematical assistant

Computing

Solving
using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

{ Composing

{ Proving

Structuring  mathematical texts
Manipulating

e Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms
(Mathematica)



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Outline

Imperative Program Verification in ~ Theorema
P-solvable Imperative Loops
Automatized Invariant Generation



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Imperative Program Verification in  Theorema

Specification

| Polynomial Invariant Generation |

| Verification Conditions |




Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Imperative Program Verificationin ~ Theorema

Specification
.

| Polynomial Invariant Generation | <_| Generating Fct. |

| Alg.Dep. of Exp. |

Gosper Alg.

| Verification Conditions |




Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Overview of our Method - using Algebraic

Techniques
e Based on the difference equations method [ElspasGreen72]:



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Overview of our Method - using Algebraic

Techniques

e Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(— compute algebraic dependencies of exponential sequences);



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Overview of our Method - using Algebraic

Techniques

e Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(— compute algebraic dependencies of exponential sequences);
2. Polynomial Eq. Generation: variable elimination by Grobner basis



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Overview of our Method - using Algebraic
Techniques

e Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(— compute algebraic dependencies of exponential sequences);
2. Polynomial Eq. Generation: variable elimination by Grobner basis
generators of the ideal of valid polynomials relations among loop
variables — all poly invariants;



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Overview of our Method - using Algebraic

Techniques

e Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(— compute algebraic dependencies of exponential sequences);
2. Polynomial Eq. Generation: variable elimination by Grobner basis
generators of the ideal of valid polynomials relations among loop
variables — all poly invariants;

e Loops with assignments and with/without conditionals.
Assignments are:
e Non-mutual recurrences:
o Gosper—summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1)
is a hypergeometric term;
o geometric series: x(k 4+ 1) = ¢ x x(k);
o C-finite:
x(k+d) =cqg_1*x(k+d—1)+...+c1*x(k+1)+co*x(k)+f(k);
e Mutual recurrences: generating functions;



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Overview of our Method - using Algebraic
Techniques

e Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(— compute algebraic dependencies of exponential sequences);
2. Polynomial Eq. Generation: variable elimination by Grobner basis
generators of the ideal of valid polynomials relations among loop
variables — all poly invariants;

e Loops with assignments and with/without conditionals.
Assignments are:
e Non—-mutual recurrences:
o Gosper—summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1)
is a hypergeometric term;
o geometric series: x(k 4+ 1) = ¢ x x(k);
o C-finite:
x(k+d) =cqg_1*x(k+d—1)+...+c1*x(k+1)+co*x(k)+f(k);
e Mutual recurrences: generating functions;
e Implementation successfully applied to many programs working 2,
on numbers. bl



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Algebraic Dependencies among Exponential
Seqguences

Let6y,...,0s € K, and their exponential sequences 67,..., 07 € K.
An algebraic dependency of these sequences is a polynomial p :

p(O].....0) =0, (vn>1).



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions
o

Algebraic Dependencies among Exponential
Seqguences

Let6y,...,0s € K, and their exponential sequences 67,..., 07 € K.
An algebraic dependency of these sequences is a polynomial p :

p(O].....0) =0, (vn>1).

Example

e The algebraic dependency among the exponential sequences of
01 =2and 0, =4 is:
62" — 95 =0

e There is no algebraic dependency among the exponential
sequences of §; = 2 and 6, = 3.



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

P-solvable Imperative Loops

The recursively changed variables x4, ..., Xy have their closed forms
of the following nature:

xi(n) = pra(n)7 + -+ pa1,s(n)6g
X2(N) = p21(n)f7 + -+ p2s(n)og
Xm(N) = Pm,a(n)6] + -+ Pms(n)oq

where:
1. nis the loop counter;

2. xi(n) (1 <i < m) represent the value of x; at iteration n;
3. P11y Plsyeene- ,Pm1s -5 Pms € K[N];

4. 01,...,0s €K;

5. there exist algebraic dependencies among 67, ..., 6¢.



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

[
000000000

P-solvable Imperative Loops

The recursively changed variables x4, ..., Xy have their closed forms
of the following nature:

xi(n) = qi(n,67,...,67)
X2(n) = d2(n,607,...,67)
Xm(n) = am(n,07,...,08)
where:
e there exist algebraic dependencies among 67, ..., 6q.



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
900000000

Invariant Generation for Loops with Conditionals

Example: Program for Computing Square Roots, by K. Zuse

Specification



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

Invariant Generation for Loops with Conditionals
Example: Program for Computing Square Roots, by K. Zuse

Specification Specification[*SqrtZuse”, SqrtZusel| a, | err, T q],
Pre — (a > 1) A (err > 0),
Post — (q° < a) A (a < g° +err))]



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

Invariant Generation for Loops with Conditionals
Example: Program for Computing Square Roots, by K. Zuse

Specification Specification[*SqrtZuse”, SqrtZusel| a, | err, T q],
Pre — (a > 1) A (err > 0),
Post — (q° < a) A (a < g° +err))]

Program



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
900000000

Invariant Generation for Loops with Conditionals
Example: Program for Computing Square Roots, by K. Zuse

Specification Specification[*SqrtZuse”, SqrtZusel| a, | err, T q],
Pre — (a > 1) A (err > 0),
Post — (q° < a) A (a < g° +err))]

Program Program[“SqrtZuse”, SqrtZuse[| a, | err, T q],
Module[{r, p},
r=a-1,9q:=1, p:=1/2
While[(2xp 1 > err),
If2xr—2xq*xp>0
Thenr:=2xr—2%q—p; q:=q+p; p:=p/2,
Elser :=2xr; p:=p/2]]]]



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
900000000

Invariant Generation for Loops with Conditionals
Example: Program for Computing Square Roots, by K. Zuse

Specification Specification[*SqrtZuse”, SqrtZusel| a, | err, T q],
Pre — (a > 1) A (err > 0),
Post — (q° < a) A (a < g° +err))]

Program Program[“SqrtZuse”, SqrtZuse[| a, | err, T q],
Module[{r, p},
r=a-1,9q:=1, p:=1/2
While[(2xp 1 > err),
If2xr—2xq*xp>0
Thenr:=2xr—2%q—p; q:=q+p; p:=p/2,
Elser :=2xr; p:=p/2],
Invariant — 1]]]



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
O@0000000

Invariant Generation - The Algorithm

| Program Transformation |

| Setting up system of rec. egs. |

| Recurrence Solving |

Eliminate Loop Counter-bounds and Extra Vars




Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
0@0000000

Invariant Generation - The Algorithm

| Program Transformation |

| Setting up system of rec. egs. |

| Recurrence Solving

Eliminate Loop Counter-bounds and Extra Vars

| Grébner Basis N




Program Verification

{1

The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
00@000000

Program Transformation

{1}
While[b,

Whilelb, While[b A b1’ c1;c2; c4;
c1;If[bl Then c2 Else c3];c4] — While[b A —b1’, c1;c3; c4]]
{I A b} {I A —b}



Program Verification The Theorema System Imperative Program Verification in ~ Theorema

o]
00@000000

Program Transformation

Module[{r,p},

r-=a—-1,q:=1; p:=1/2;

While[(2pr > err),

If[2r —2gp > 0

Thenr :=2r —2q — p;
q:=qd+p; p:=p/2

Elser :=2r; p:=p/2]]]

Conclusions



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

008000000

Program Transformation

Module[{r,p},

r-=a-1,q9:=1, p:=1/2;

While[(2pr > err),

While[(2pr > err) A (2r —2gp > 0),
— r:=2r—2q-—p;

q:=a+p; p:=p/2;

While[(2pr > err) A =(2r — 2gp > 0),

ri=2r; p:=p/2

Module[{r,p},

r-=a-1q:=1;, p:=1/2;

While[(2pr > err),

Iff2r —2gp >0

Thenr :=2r —2q —p;
q:=q+p; p:=p/2

Elser :=2r; p:=p/2]]]



Program Verification The Theorema System Imperative Program Verification in ~ Theorema

o]
000e00000

Extracting system of recurrences

r-=a-1,q9:=1;, p:=1/2;
While[(2pr > err),
While[(2pr > err) A (2r — 2gp > 0),
r:=2r —2q-0p;
q:=a+p; p:=p/2;

While[(2pr > err) A =(2r — 2gp > 0),
ri=2r; p:=p/2

Conclusions



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000e00000

Extracting system of recurrences

i=0,l
r-=a-1,q9:=1;, p:=1/2; . B .
While[(2pr > err), gg: 11; ; gg:g/f p(i)
While[(2pr > err) A (2r — 2gp > 0), r(i+1) = 2r(i)—2q() - p(i)
r:=2r —2q-0p;

q:=q+p; p:=p/2;

While[(2pr > err) A =(2r — 2gp > 0),
ri=2r; p:=p/2



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000e00000

Extracting system of recurrences

i=0,l

r-=a-1,q9:=1;, p:=1/2; , )
While[(2pr > err), { EE: 11; - 32:;/—5 o)
While[(2pr > err) A (2r — 2gp > 0), r(i+1) = 2r(i)—2q(i) - p(i)

r.=2r—2q-—p;

9:=q+p;p:=p/2; =00, j" =i+l

_ { p(i’+1) = p(')/2
While[(2pr > err) A =(2r — 2gqp > 0), a(i’ +1) = q(’)

r.=2r; p:=p/2 r@'+1) = 2r(j’)



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
0O000@0000

Solving system of recurrences

i=0,l
ri=a- 1,q:=1p:=1/2 p(i) eomsetes  Lp(0)

Whilel.... q(i) = q(0)+ 2p( ) — 5=:P(0)
While[.. ., r(i) cime  2(r(0) —29(0) - 2p(0))—
ri=2r—2q—p; 5=:P(0) + 2q(0) + 4p(0)

q:=q+p; p:=p/2; .
=03, =j+I
H geomseries 1 |
While[.. ., 28/; - éj(ﬁ))( )
r:=2r; p:=p/2] r(j/) oeomseies  2ir(])



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
0O0000e000

Solving system of recurrences

=0,1, x(i)=2y()=2""

o () = pOy()
(o STHATEPTUE g = q0)+20(0) - 20(0)y(0)
llef...., ri) = x(i)r(0) - 2q(0) — 2p(0))-
Whilef. .., 2p(0)y (i) +2q(0) + 4p(0)
ri=2r—2q-p; 0 e X(y(i) -1
q:=q-+p; p:=p/2
j=03, i =j+1, u(i’)=2,v(")=2"
_ p(’) = p(Hv(i’)
While[.. ., a(’) = q(l)
r:=2r; p:=p/2]] rgi’) = r(Hu(’)
0 e WAV —1



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
0O00000e00

Variable Elimination

p = lxyxv

q = 2-y

r = ((a—4)xx—-y+4)xu
xxy—-—1 = 0

uxv—1 = 0



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
0O00000e00

Variable Elimination

p = Zxyxv

q = 2-y

r = ((@a—4)xx—-y+4)xu
xxy—-—1 = 0

uxv—1 = 0

Eliminate loop counter-bounds (1,J) and extra vars (u,v,X,y)

a—2xpxr = @?



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000080

Invariant Generation for Loops with Conditionals

r-=a—-1,q:=1, p:=1/2;

While[(2pr > err), a—2xpxr = q?
Ifl2r —2gp > 0 A
Thenr :=2r —2q —p; (err >0)A(p>0)A(r>0)

q:=q+p;, p:=p+2
Elser :=2r; p:=p/2]]]



Implementation on a Pentium 4, 1.6GHz processor with 512 Mb RAM.

Imperative Program Verification in

0O0000000e

More Examples

Theorema

Example [ Comb. Methods [ Nr.Poly. T (sec)
P-solvable loops with assignments only
Division Gosper 1 0.08
Integer square root Gosper 2 0.09
Integer cubic root Gosper 2 0.15
Fibonacci Generating Functions, Alg.Dependencies 1 0.73
P-solvable loops with conditionals and assignments

Wensley’s Algorithm Gosper, geom.series, Alg.Dependcies 2 0.48
LCM-GCD computation Gosper 1 0.33
Extended GCD Gosper 3 0.65
Fermat's factorization Gosper 1 0.32
Square root C-finite, Gosper, geom.series, Alg.Dependencies 1 1.28
Binary Division C-finite, Gosper, geom.series, Alg.Dependencies 1 0.72
Floor of square root Gosper, C-finite, geom.series, Alg.Dependencies 1 1.06
Factoring Large Numbers C-finite, Gosper 1 1.9
Hardware Integer Division 0.62
1st Loop geom.series, Alg.Dependencies 3

2nd Loop Gosper, geom. series, Alg.Dependencies 2

&,



Outline
Program Verification

The Theorema System

Imperative Program Verification in
P-solvable Imperative Loops

Theorema
Automatized Invariant Generation

Conclusions

N
£
«O>» «Fr «=>»

DA

<

v
it



Imperative Program Verification in ~ Theorema

Program Verification The Theorema System
o
000000000

Generation of Invariant (Inequalities)

Loop body
3

System of recurrence equations

quiod

System of closed forms

Invariant equalities

Conclusions



Program Verification The Theorema System Imperative Program Verification in ~ Theorema Conclusions

o]
000000000

Generation of Invariant (Inequalities)

Loop body
3

System of recurrence equations

quiod

System of closed forms

Invariant equalities Invariant inequalities PN
2




	Main Part
	Program Verification
	The Theorema System
	Imperative Program Verification in Theorema 
	P-solvable Imperative Loops
	Automatized Invariant Generation

	Conclusions


