Automated Generation of Polynomial Invariants for Imperative Program Verification in *Theorema*

Laura Kovács, Tudor Jebelean

Research Institute for Symbolic Computation, Linz

e-Austria Institute, Timişoara

{kovacs, jebelean}@risc.uni-linz.ac.at

Joint work with: D. Kapur (Univ. of New Mexico)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions

Program Verification

The Theorema System

Imperative Program Verification in Theorema

P-solvable Imperative Loops Automatized Invariant Generation

Conclusions

Conclusions

Program Verification

The Theorema System

Imperative Program Verification in Theorema

P-solvable Imperative Loops Automatized Invariant Generation

Conclusions

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform framework (higher–order predicate logic)

(consequence) verification: checking that each clause is true.

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

Backward Reasoning

Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform framework (higher–order predicate logic)

• (consequence) verification: checking that each clause is true.

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

- Backward Reasoning
 - 1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform framework (higher–order predicate logic)

• (consequence) verification: checking that each clause is true.

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

- Backward Reasoning
 - 1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]

Program Verification

Rule-based Programming

 $\label{eq:constraint} \begin{array}{l} \mbox{Theorema} \rightarrow \mbox{B.Buchberger, A.Crăciun,} \\ \mbox{N.Popov, T.Jebelean} \end{array}$

Specifications, programs and verification can be viewed in a uniform framework (higher–order predicate logic)

• (consequence) verification: checking that each clause is true.

Imperative Programming Theorema – L.Kovács, T.Jebelean

Additional assertions are needed (invariants, termination terms)

- Backward Reasoning
 - 1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]

Program Verification

The Theorema System

mperative Program Verification in Theorema

Conclusions

Program Verification

The Theorema System

Imperative Program Verification in Theorema

P-solvable Imperative Loops Automatized Invariant Generation

Conclusions

Theorema : A computer aided mathematical assistant

- Proving
- Computing
 - Solving
 - using: specified "knowledge bases"
 - applying: provers, simplifiers and solvers from the Theoreme
 - Composing
- Structuring mathematical texts
 - Manipulating
- Advantages of Program Verification in Theorema :
 - 1. proofs in natural language and using natural style inference
 - 2. access to powerful computing and solving algorithms
 - (Mathematica)

Theorema : A computer aided mathematical assistant

- ProvingComputingSolving

Theorema : A computer aided mathematical assistant

- Proving Computing Solving

using: specified "knowledge bases"

Theorema : A computer aided mathematical assistant

- Proving Computing Solving

using: specified "knowledge bases"

Theorema : A computer aided mathematical assistant

- { Proving Computing Solving

using: specified "knowledge bases"

- { Composing Structuring mathematical texts Manipulating

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Theorema System

Theorema: A computer aided mathematical assistant

- { Proving Computing Solving

using: specified "knowledge bases"

- { Composing Structuring mathematical texts Manipulating
- Advantages of Program Verification in Theorema :

Theorema : A computer aided mathematical assistant

- { Proving Computing Solving

using: specified "knowledge bases"

- { Composing Structuring mathematical texts Manipulating
- Advantages of Program Verification in Theorema :
 - 1. proofs in natural language and using natural style inference

Theorema : A computer aided mathematical assistant

- { Proving Computing Solving

using: specified "knowledge bases"

- { Composing Structuring mathematical texts Manipulating
- Advantages of Program Verification in Theorema :
 - proofs in natural language and using natural style inference
 - access to powerful computing and solving algorithms (Mathematica)

Conclusions

Program Verification

The Theorema System

Imperative Program Verification in Theorema

P-solvable Imperative Loops Automatized Invariant Generation

Conclusions

- Based on the difference equations method [ElspasGreen72]:
 - Recurrence Solving: find closed forms of the loop variables (→ compute algebraic dependencies of exponential sequences)
 - 2. Polynomial Eq. Generation: variable elimination by Gröbner basis
- Loops with assignments and with/without conditionals. Assignments are:
 - Non-mutual recurrences:

 \diamond Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1) is a hypergeometric term;

- \diamond geometric series: x(k + 1) = c * x(k);
- ♦ C-finite:

- Mutual recurrences: generating functions;
- Implementation successfully applied to many programs working on numbers.

- Based on the difference equations method [ElspasGreen72]:
 - Recurrence Solving: find closed forms of the loop variables (→ compute algebraic dependencies of exponential sequences);
 - Polynomial Eq. Generation: variable elimination by Gröbner basis generators of the ideal of valid polynomials relations among loop variables — all poly invariants;
- Loops with assignments and with/without conditionals. Assignments are:
 - Non-mutual recurrences:

 \diamond Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1) is a hypergeometric term;

- \diamond geometric series: x(k + 1) = c * x(k);
- ♦ C-finite:

- Mutual recurrences: generating functions
- Implementation successfully applied to many programs working on numbers.

- Based on the difference equations method [ElspasGreen72]:
 - Recurrence Solving: find closed forms of the loop variables (→ compute algebraic dependencies of exponential sequences);
 - Polynomial Eq. Generation: variable elimination by Gröbner basis generators of the ideal of valid polynomials relations among loop variables → all poly invariants;
- Loops with assignments and with/without conditionals. Assignments are:
 - Non-mutual recurrences:

♦ Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1) is a hypergeometric term;

- \diamond geometric series: x(k + 1) = c * x(k);
- ♦ C-finite:

- Mutual recurrences: generating functions;
- Implementation successfully applied to many programs working on numbers.

- Based on the difference equations method [ElspasGreen72]:
 - Recurrence Solving: find closed forms of the loop variables (→ compute algebraic dependencies of exponential sequences);
 - Polynomial Eq. Generation: variable elimination by Gröbner basis generators of the ideal of valid polynomials relations among loop variables → all poly invariants;
- Loops with assignments and with/without conditionals. Assignments are:
 - Non-mutual recurrences:

♦ Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1) is a hypergeometric term;

 \diamond geometric series: x(k + 1) = c * x(k);

♦ C-finite:

- Mutual recurrences: generating functions;
- Implementation successfully applied to many programs working on numbers.

- Based on the difference equations method [ElspasGreen72]:
 - Recurrence Solving: find closed forms of the loop variables (→ compute algebraic dependencies of exponential sequences);
 - Polynomial Eq. Generation: variable elimination by Gröbner basis generators of the ideal of valid polynomials relations among loop variables → all poly invariants;
- Loops with assignments and with/without conditionals. Assignments are:
 - Non–mutual recurrences:

 $oldsymbol{o}$ o Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1) is a hypergeometric term;

 \diamond geometric series: x(k + 1) = c * x(k); \diamond C-finite:

- Mutual recurrences: generating functions;
- Implementation successfully applied to many programs working on numbers.

- Based on the difference equations method [ElspasGreen72]:
 - Recurrence Solving: find closed forms of the loop variables $(\rightarrow \text{ compute algebraic dependencies of exponential sequences});$
 - 2. Polynomial Eq. Generation: variable elimination by Gröbner basis generators of the ideal of valid polynomials relations among loop variables \rightarrow all poly invariants;
- Loops with assignments and with/without conditionals. Assignments are:
 - Non-mutual recurrences:

♦ Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1)is a hypergeometric term;

♦ geometric series: x(k + 1) = c * x(k);

- Mutual recurrences: generating functions;
- Implementation successfully applied to many programs working on numbers.

Algebraic Dependencies among Exponential Sequences

Let $\theta_1, \ldots, \theta_s \in \overline{\mathbb{K}}$, and their exponential sequences $\theta_1^n, \ldots, \theta_s^n \in \overline{\mathbb{K}}$.

An algebraic dependency of these sequences is a polynomial *p* :

$$p(\theta_1^n,\ldots,\theta_s^n)=0, \quad (\forall n\geq 1).$$

Example

• The algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = 4$ is:

$$\theta_1^{2n} - \theta_2^n = \mathbf{0}$$

• There is no algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = 3$.

▲□▶ ▲@▶ ▲ 图▶ ▲ 图▶ — 图

Algebraic Dependencies among Exponential Sequences

Let $\theta_1, \ldots, \theta_s \in \overline{\mathbb{K}}$, and their exponential sequences $\theta_1^n, \ldots, \theta_s^n \in \overline{\mathbb{K}}$.

An algebraic dependency of these sequences is a polynomial *p* :

$$p(\theta_1^n,\ldots,\theta_s^n)=0, \quad (\forall n\geq 1).$$

Example

• The algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = 4$ is:

$$\theta_1^{2n} - \theta_2^n = 0$$

• There is no algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = 3$.

P-solvable Imperative Loops

The recursively changed variables x_1, \ldots, x_m have their closed forms of the following nature:

$$\begin{cases} x_{1}(n) = p_{1,1}(n)\theta_{1}^{n} + \dots + p_{1,s}(n)\theta_{s}^{n} \\ x_{2}(n) = p_{2,1}(n)\theta_{1}^{n} + \dots + p_{2,s}(n)\theta_{s}^{n} \\ \vdots \\ x_{m}(n) = p_{m,1}(n)\theta_{1}^{n} + \dots + p_{m,s}(n)\theta_{s}^{n} \end{cases},$$

where:

- 1. *n* is the loop counter;
- **2.** $x_i(n)$ (1 $\leq i \leq m$) represent the value of x_i at iteration n;
- **3.** $p_{1,1}, \ldots, p_{1,s}, \ldots, p_{m,1}, \ldots, p_{m,s} \in \mathbb{K}[n];$
- **4.** $\theta_1, \ldots, \theta_s \in \overline{\mathbb{K}};$
- **5.** there exist algebraic dependencies among $\theta_1^n, \ldots, \theta_s^n$.

P-solvable Imperative Loops

The recursively changed variables x_1, \ldots, x_m have their closed forms of the following nature:

$$\begin{cases} x_1(n) &= q_1(n,\theta_1^n,\ldots,\theta_s^n) \\ x_2(n) &= q_2(n,\theta_1^n,\ldots,\theta_s^n) \\ \vdots & & \\ x_m(n) &= q_m(n,\theta_1^n,\ldots,\theta_s^n) \end{cases},$$

where:

• there exist algebraic dependencies among $\theta_1^n, \ldots, \theta_s^n$.

Example: Program for Computing Square Roots, by K. Zuse

SpecificationSpecification["SqrtZuse", SqrtZuse[$\downarrow a, \downarrow err, \uparrow q$],Pre $\rightarrow (a \ge 1) \land (err > 0),$ Post $\rightarrow (q^2 \le a) \land (a < q^2 + err))$]

Program

Example: Program for Computing Square Roots, by K. Zuse

 $\begin{array}{ll} \textbf{Specification} & \textbf{Specification}[``SqrtZuse", SqrtZuse[\downarrow a, \downarrow err, \uparrow q], \\ & \textbf{Pre} \rightarrow (a \geq 1) \land (err > 0), \\ & \textbf{Post} \rightarrow (q^2 \leq a) \land (a < q^2 + err))] \end{array}$

Program

Example: Program for Computing Square Roots, by K. Zuse

 $\begin{array}{ll} \textbf{Specification} & \textbf{Specification}[``SqrtZuse", SqrtZuse[\downarrow a, \downarrow err, \uparrow q], \\ & \textbf{Pre} \rightarrow (a \geq 1) \land (err > 0), \\ & \textbf{Post} \rightarrow (q^2 \leq a) \land (a < q^2 + err))] \end{array}$

Program

(日)

Invariant Generation for Loops with Conditionals

Example: Program for Computing Square Roots, by K. Zuse

 $\begin{array}{ll} \textbf{Specification} & \textbf{Specification}[``SqrtZuse", SqrtZuse[\downarrow a, \downarrow err, \uparrow q], \\ & \textbf{Pre} \rightarrow (a \geq 1) \land (err > 0), \\ & \textbf{Post} \rightarrow (q^2 \leq a) \land (a < q^2 + err))] \end{array}$

 $\begin{array}{ll} \textit{Program} & \textit{Program["SqrtZuse", SqrtZuse[} \downarrow a, \downarrow err, \uparrow q], \\ & \textit{Module[}\{r, p\}, \\ & r := a - 1; \ q := 1; \ p := 1/2; \\ & \textit{While[}(2 * p * r \geq err), \\ & \textit{If}[2 * r - 2 * q * p \geq 0 \\ & \textit{Then } r := 2 * r - 2 * q - p; \ q := q + p; \ p := p/2, \\ & \textit{Else } r := 2 * r; \ p := p/2]]] \end{array}$

Invariant Generation for Loops with Conditionals

Example: Program for Computing Square Roots, by K. Zuse

 $\begin{array}{ll} \textbf{Specification} & \textbf{Specification}[``SqrtZuse", SqrtZuse[\downarrow a, \downarrow err, \uparrow q], \\ & \textbf{Pre} \rightarrow (a \geq 1) \land (err > 0), \\ & \textbf{Post} \rightarrow (q^2 \leq a) \land (a < q^2 + err))] \end{array}$

Invariant Generation - The Algorithm

Invariant Generation - The Algorithm

Program Transformation

{*I*} While[*b*, *c*1; If[*b*1 Then *c*2 Else *c*3]; *c*4] \longrightarrow {*I* $\land \neg b$ } {*I*} While[*b*, While[$b \land b1', c1; c2; c4$]; While[$b \land \neg b1', c1; c3; c4$]] {*I* $\land \neg b$ }

A B > A B > A B >

э

◆□→ ◆□→ ◆注→ ◆注→ □注

Program Transformation

Module[
$$\{r, p\}$$
,
 $r := a - 1; q := 1; p := 1/2;$
While[$(2pr \ge err)$,
If[$2r - 2qp \ge 0$
Then $r := 2r - 2q - p;$
 $q := q + p; p := p/2$
Else $r := 2r; p := p/2$]]

Program Transformation

Module[
$$\{r, p\}$$
,
 $r := a - 1; q := 1; p := 1/2;$
While[$(2pr \ge err)$,
If[$2r - 2qp \ge 0$
Then $r := 2r - 2q - p;$
 $q := q + p; p := p/2$
Else $r := 2r; p := p/2$]]

Module[$\{r, p\}$, r := a - 1; q := 1; p := 1/2;While[$(2pr \ge err)$, While[$(2pr \ge err) \land (2r - 2qp \ge 0),$ r := 2r - 2q - p; q := q + p; p := p/2];While[$(2pr \ge err) \land \neg (2r - 2qp \ge 0),$ r := 2r; p := p/2]]]

人口 医水黄 医水黄 医水黄素 化甘油

Extracting system of recurrences

$$\begin{aligned} r &:= a - 1; \ q := 1; \ p := 1/2; \\ \text{While}[(2pr \ge err), \\ \text{While}[(2pr \ge err) \land (2r - 2qp \ge 0), \\ r &:= 2r - 2q - p; \\ q &:= q + p; \ p := p/2]; \end{aligned} \qquad \begin{cases} p(i+1) = p(i)/2 \\ q(i+1) = q(i) + p(i) \\ r(i+1) = 2r(i) - 2q(i) - p(i) \\ r(i+1) = 2r(i) \\ r(i+1) = 2r(i) \end{aligned}$$

Extracting system of recurrences

$$\begin{array}{ll} r := a - 1; \ q := 1; \ p := 1/2; \\ \text{While}[(2pr \ge err), \\ \text{While}[(2pr \ge err) \land (2r - 2qp \ge 0), \\ r := 2r - 2q - p; \\ q := q + p; \ p := p/2]; \\ \end{array}$$

$$\begin{array}{ll} i = \overline{0,1} \\ p(i+1) &= p(i)/2 \\ q(i+1) &= q(i) + p(i) \\ r(i+1) &= 2r(i) - 2q(i) - p(i) \\ r(i+1) &= 2r(i) - 2q(i) \\ r(i+1) &= 2r(i) \\ r(i+1) &= 2r(i) - 2q(i) \\ r(i+1) &= 2r(i) \\ r(i+1) &=$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖▶ 圖

Extracting system of recurrences

$$\begin{array}{ll} r := a - 1; \ q := 1; \ p := 1/2; \\ \text{While}[(2pr \ge err), \\ \text{While}[(2pr \ge err) \land (2r - 2qp \ge 0), \\ r := 2r - 2q - p; \\ q := q + p; \ p := p/2]; \\ \end{array} \qquad \begin{array}{ll} i = \overline{0,1} \\ p(i+1) &= p(i)/2 \\ q(i+1) &= q(i) + p(i) \\ r(i+1) &= 2r(i) - 2q(i) - p(i) \\ r(j+1) &= 2r(j) - 2q(i) - p(j) \\ \end{array} \\ \begin{array}{ll} p(i+1) &= p(i)/2 \\ q(i+1) &= 2r(i) - 2q(i) - p(i) \\ r(j+1) &= 2r(j) - 2q(j) \\ q(j'+1) &= q(j') \\ r(j'+1) &= 2r(j') \end{array} \\ \end{array}$$

Solving system of recurrences

$\begin{array}{l} r:=a-1; \; q:=1; \; p:=1/2;\\ \text{While}[\ldots,\\ \text{While}[\ldots,\\ r:=2r-2q-p;\\ q:=q+p; \; p:=p/2]; \end{array}$	$i = \overline{0, 1}$ $\begin{cases} p(i) & \text{geom_series} \\ g(i) & \text{Gosper} \\ zb \\ r(i) & c-finite \\ SumCracker \end{cases}$ $i = \overline{0, J}, \ i' = j + 1$	$ \frac{\frac{1}{2^{i}}p(0)}{q(0) + 2p(0) - \frac{1}{2^{i-1}}p(0)} \\ 2^{i}(r(0) - 2q(0) - 2p(0)) - \frac{1}{2^{i-1}}p(0) + 2q(0) + 4p(0) $
While[, $r := 2r; \ p := p/2]]$	$\left\{ egin{array}{c} p(j') \ q(j') \ r(j') \end{array} ight.$	$\begin{array}{rcl} {}_{geom_series} & \frac{1}{2^{j}}\rho(\mathbf{I}) \\ &= & q(\mathbf{I}) \\ {}_{geom_series} & 2^{j}r(\mathbf{I}) \end{array}$

ヘロト 人間 とくほ とくほとう

æ

Solving system of recurrences

$$\begin{aligned} r &:= a - 1; \ q := 1; \ p := 1/2; \\ \text{While}[\dots, \\ \text{While}[\dots, \\ r &:= 2r - 2q - p; \\ q &:= q + p; \ p := p/2]; \end{aligned} \qquad \begin{aligned} i &= \overline{0,1}, \ x(i) = 2^{i}, y(i) = 2^{-i} \\ p(i) &= p(0)y(i) \\ q(i) &= q(0) + 2p(0) - 2p(0)y(i) \\ r(i) &= x(i)(r(0) - 2q(0) - 2p(0)) - 2p(0)y(i) \\ p(j) &= x(i)(r(0) - 2q(0) - 2p(0)) - 2p(0)y(i) \\ p(j) &= x(i)(r(0) - 2q(0) - 2p(0)) - 2p(0)y(i) \\ p(j) &= x(i)(r(0) - 2q(0) - 2p(0)y(i) \\ r(i) &= x(i)(r(0) - 2q(0) - 2p(0)y(i) \\ p(j) &= x(i)(r(0) - 2q(0) - 2p(0)y(i) \\ p_{olocidencies} & x(i)y(i) - 1 \end{aligned}$$

Variable Elimination

$$\begin{cases} p &= \frac{1}{2} * y * v \\ q &= 2 - y \\ r &= ((a - 4) * x - y + 4) * u \\ x * y - 1 &= 0 \\ u * v - 1 &= 0 \end{cases}$$

Variable Elimination

$$\begin{cases} p &= \frac{1}{2} * y * v \\ q &= 2 - y \\ r &= ((a - 4) * x - y + 4) * u \\ x * y - 1 &= 0 \\ u * v - 1 &= 0 \end{cases}$$

Eliminate loop counter-bounds (I,J) and extra vars (u,v,x,y)

$$a-2*p*r = q^2$$

$$\begin{array}{l} r:=a-1; \; q:=1; \; p:=1/2;\\ \text{While}[(2pr\geq err),\\ \text{If}[2r-2qp\geq 0\\ \text{Then } r:=2r-2q-p;\\ \; q:=q+p; \; p:=p+2\\ \text{Else } r:=2r; \; p:=p/2]]] \end{array}$$

 $egin{array}{rcl} {a-2*p*r}&=&q^2\ \wedge \end{array}$ $(err\geq 0)\wedge (p\geq 0)\wedge (r\geq 0)$

More Examples

Implementation on a Pentium 4, 1.6GHz processor with 512 Mb RAM.

Example	Comb. Methods	Nr.Poly.	(sec)	
P-solvable loops with assignments only				
Division	Gosper	1	0.08	
Integer square root	Gosper	2	0.09	
Integer cubic root	Gosper	2	0.15	
Fibonacci	Generating Functions, Alg.Dependencies	1	0.73	
P-solvable loops with conditionals and assignments				
Wensley's Algorithm	Gosper, geom.series, Alg.Dependcies	2	0.48	
LCM-GCD computation	Gosper	1	0.33	
Extended GCD	Gosper	3	0.65	
Fermat's factorization	Gosper	1	0.32	
Square root	C-finite, Gosper, geom.series, Alg.Dependencies	1	1.28	
Binary Division	C-finite, Gosper, geom.series, Alg.Dependencies	1	0.72	
Floor of square root	Gosper, C-finite, geom.series, Alg.Dependencies	1	1.06	
Factoring Large Numbers	C-finite, Gosper	1	1.9	
Hardware Integer Division			0.62	
1st Loop	geom.series, Alg.Dependencies	3		
2nd Loop	Gosper, geom. series, Alg.Dependencies	2		

・ロト・日本・モト・モト モ

Conclusions

Program Verification

The Theorema System

Imperative Program Verification in Theorema

P-solvable Imperative Loops Automatized Invariant Generation

Conclusions

Generation of Invariant (Inequalities)

Generation of Invariant (Inequalities)

イロト 不良 とくほ とくほう 二日