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Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: checking that each clause is true.

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning

1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]
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Program Verification

Rule–based Programming Theorema → B.Buchberger, A.Cr ăciun,
N.Popov, T.Jebelean

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: checking that each clause is true.

Imperative Programming Theorema→ L.Kov ács, T.Jebelean

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning

1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]
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The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)
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Imperative Program Verification in Theorema

Specification Program

Polynomial Invariant Generation

Verification Conditions

Proving
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Imperative Program Verification in Theorema

Specification Program

Polynomial Invariant Generation

Verification Conditions

Proving

Polynomial Invariant Generation

Gosper Alg.

Geom. series

Generating Fct.

C-finite

Alg.Dep. of Exp.

Gröbner basis
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Overview of our Method - using Algebraic
Techniques

• Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(→ compute algebraic dependencies of exponential sequences);

2. Polynomial Eq. Generation: variable elimination by Gröbner basis
generators of the ideal of valid polynomials relations among loop
variables → all poly invariants;

• Loops with assignments and with/without conditionals.
Assignments are:

• Non–mutual recurrences:
� Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1)
is a hypergeometric term;
� geometric series: x(k + 1) = c ∗ x(k);
� C-finite:
x(k +d) = cd−1 ∗x(k +d−1)+ . . .+c1 ∗x(k +1)+c0 ∗x(k)+ f (k);

• Mutual recurrences: generating functions;

• Implementation successfully applied to many programs working
on numbers.
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Algebraic Dependencies among Exponential
Sequences

Let θ1, . . . , θs ∈ K̄, and their exponential sequences θn
1 , . . . , θn

s ∈ K̄.

An algebraic dependency of these sequences is a polynomial p :

p(θn
1 , . . . , θn

s ) = 0, (∀n ≥ 1).

Example

• The algebraic dependency among the exponential sequences of
θ1 = 2 and θ2 = 4 is:

θ2n
1 − θn

2 = 0

• There is no algebraic dependency among the exponential
sequences of θ1 = 2 and θ2 = 3.
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P-solvable Imperative Loops

The recursively changed variables x1, . . . , xm have their closed forms
of the following nature:


x1(n) = p1,1(n)θn

1 + · · ·+ p1,s(n)θn
s

x2(n) = p2,1(n)θn
1 + · · ·+ p2,s(n)θn

s
...

xm(n) = pm,1(n)θn
1 + · · ·+ pm,s(n)θn

s

,

where:

1. n is the loop counter;

2. xi(n) (1 ≤ i ≤ m) represent the value of xi at iteration n;

3. p1,1, . . . , p1,s, . . . . . . , pm,1, . . . , pm,s ∈ K[n];

4. θ1, . . . , θs ∈ K̄;

5. there exist algebraic dependencies among θn
1 , . . . , θn

s .
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P-solvable Imperative Loops

The recursively changed variables x1, . . . , xm have their closed forms
of the following nature:


x1(n) = q1(n, θn

1 , . . . , θn
s )

x2(n) = q2(n, θn
1 , . . . , θn

s )
...

xm(n) = qm(n, θn
1 , . . . , θn

s )

,

where:

• there exist algebraic dependencies among θn
1 , . . . , θn

s .
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Invariant Generation for Loops with Conditionals
Example: Program for Computing Square Roots, by K. Zuse

Specification

Program

Specification[“SqrtZuse”, SqrtZuse[↓ a, ↓ err , ↑ q],

Pre → (a ≥ 1) ∧ (err > 0),

Post → (q2 ≤ a) ∧ (a < q2 + err))]
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Specification

Program

Specification[“SqrtZuse”, SqrtZuse[↓ a, ↓ err , ↑ q],

Pre → (a ≥ 1) ∧ (err > 0),
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r := a − 1; q := 1; p := 1/2;

While[(2 ∗ p ∗ r ≥ err),
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Then r := 2 ∗ r − 2 ∗ q − p; q := q + p; p := p/2,

Else r := 2 ∗ r ; p := p/2]]]]
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Invariant Generation - The Algorithm

Program Transformation

Setting up system of rec. eqs.

Recurrence Solving

Eliminate Loop Counter-bounds and Extra Vars
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Invariant Generation - The Algorithm

Program Transformation

Setting up system of rec. eqs.

Recurrence Solving

Eliminate Loop Counter-bounds and Extra Vars

Recurrence Solving

Eliminate Loop Counter-bounds and Extra Vars

Gröbner Basis

Gosper Geom.Series Gen. Funct.C-finite
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Program Transformation

{I}
While[b,

c1; If[b1 Then c2 Else c3]; c4]

{I ∧ ¬b}
−→

{I}
While[b,

While[b ∧ b1′, c1; c2; c4];

While[b ∧ ¬b1′, c1; c3; c4]]

{I ∧ ¬b}
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Program Transformation

Module[{r , p},
r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

If[2r − 2qp ≥ 0

Then r := 2r − 2q − p;

q := q + p; p := p/2

Else r := 2r ; p := p/2]]]

−→
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Program Transformation

Module[{r , p},
r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

If[2r − 2qp ≥ 0

Then r := 2r − 2q − p;

q := q + p; p := p/2

Else r := 2r ; p := p/2]]]

−→

Module[{r , p},
r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

While[(2pr ≥ err) ∧ (2r − 2qp ≥ 0),

r := 2r − 2q − p;

q := q + p; p := p/2];

While[(2pr ≥ err) ∧ ¬(2r − 2qp ≥ 0),

r := 2r ; p := p/2]]]



Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Extracting system of recurrences

r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

While[(2pr ≥ err) ∧ (2r − 2qp ≥ 0),

r := 2r − 2q − p;

q := q + p; p := p/2];

While[(2pr ≥ err) ∧ ¬(2r − 2qp ≥ 0),

r := 2r ; p := p/2]]

i = 0, I p(i + 1) = p(i)/2
q(i + 1) = q(i) + p(i)
r(i + 1) = 2r(i)− 2q(i)− p(i)

j = 0, J, j ′ = j + I p(j ′ + 1) = p(j ′)/2
q(j ′ + 1) = q(j ′)
r(j ′ + 1) = 2r(j ′)
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Solving system of recurrences

r := a− 1; q := 1; p := 1/2;

While[. . . ,

While[. . . ,

r := 2r − 2q − p;

q := q + p; p := p/2];

While[. . . ,

r := 2r ; p := p/2]]

i = 0, I
p(i) =

geom.series 1
2i p(0)

q(i) =
Gosper

zb
q(0) + 2p(0)− 1

2i−1 p(0)

r(i) =
C−finite

SumCracker
2i(r(0)− 2q(0)− 2p(0))−

1
2i−1 p(0) + 2q(0) + 4p(0)

j = 0, J, j ′ = j + I
p(j ′) =

geom.series 1
2j p(I)

q(j ′) = q(I)
r(j ′) =

geom.series 2j r(I)
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Solving system of recurrences

r := a− 1; q := 1; p := 1/2;

While[. . . ,

While[. . . ,

r := 2r − 2q − p;

q := q + p; p := p/2];

While[. . . ,

r := 2r ; p := p/2]]

i = 0, I, x(i) = 2i , y(i) = 2−i

p(i) = p(0)y(i)
q(i) = q(0) + 2p(0)− 2p(0)y(i)
r(i) = x(i)(r(0)− 2q(0)− 2p(0))−

2p(0)y(i) + 2q(0) + 4p(0)
0 =

Dependencies
x(i)y(i)− 1

j = 0, J, j ′ = j + I, u(j ′) = 2j , v(j ′) = 2−j
p(j ′) = p(I)v(j ′)
q(j ′) = q(I)
r(j ′) = r(I)u(j ′)
0 =

Dependencies
u(j ′)v(j ′)− 1
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Variable Elimination


p = 1

2 ∗ y ∗ v
q = 2− y
r = ((a− 4) ∗ x − y + 4) ∗ u
x ∗ y − 1 = 0
u ∗ v − 1 = 0
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Variable Elimination


p = 1

2 ∗ y ∗ v
q = 2− y
r = ((a− 4) ∗ x − y + 4) ∗ u
x ∗ y − 1 = 0
u ∗ v − 1 = 0

Eliminate loop counter-bounds (I,J) and extra vars (u,v,x,y)

a− 2 ∗ p ∗ r = q2
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Invariant Generation for Loops with Conditionals

r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

If[2r − 2qp ≥ 0

Then r := 2r − 2q − p;

q := q + p; p := p + 2

Else r := 2r ; p := p/2]]]

a− 2 ∗ p ∗ r = q2

∧
(err ≥ 0) ∧ (p ≥ 0) ∧ (r ≥ 0)
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More Examples

Implementation on a Pentium 4, 1.6GHz processor with 512 Mb RAM.

Example Comb. Methods Nr.Poly. (sec)
P-solvable loops with assignments only

Division Gosper 1 0.08
Integer square root Gosper 2 0.09
Integer cubic root Gosper 2 0.15
Fibonacci Generating Functions, Alg.Dependencies 1 0.73

P-solvable loops with conditionals and assignments
Wensley’s Algorithm Gosper, geom.series, Alg.Dependcies 2 0.48
LCM-GCD computation Gosper 1 0.33
Extended GCD Gosper 3 0.65
Fermat’s factorization Gosper 1 0.32
Square root C-finite, Gosper, geom.series, Alg.Dependencies 1 1.28
Binary Division C-finite, Gosper, geom.series, Alg.Dependencies 1 0.72
Floor of square root Gosper, C-finite, geom.series, Alg.Dependencies 1 1.06
Factoring Large Numbers C-finite, Gosper 1 1.9
Hardware Integer Division 0.62
1st Loop geom.series, Alg.Dependencies 3
2nd Loop Gosper, geom. series, Alg.Dependencies 2
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Generation of Invariant (Inequalities)
Loop body

System of recurrence equations

System of closed forms

Invariant equalities
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Generation of Invariant (Inequalities)
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Invariant inequalities

CAD, spec
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