
Automated Generation of Polynomial
Invariants for Imperative Program

Verification in Theorema

Laura Kovács, Tudor Jebelean

Research Institute for Symbolic Computation, Linz

e-Austria Institute, Timişoara

{kovacs,jebelean }@risc.uni-linz.ac.at

Joint work with:
D. Kapur (Univ. of New Mexico)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Outline

Program Verification

The Theorema System

Imperative Program Verification in Theorema
P-solvable Imperative Loops
Automatized Invariant Generation

Conclusions

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Outline

Program Verification

The Theorema System

Imperative Program Verification in Theorema
P-solvable Imperative Loops
Automatized Invariant Generation

Conclusions

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: checking that each clause is true.

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning

1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: checking that each clause is true.

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning

1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: checking that each clause is true.

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning

1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Program Verification

Rule–based Programming Theorema → B.Buchberger, A.Cr ăciun,
N.Popov, T.Jebelean

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: checking that each clause is true.

Imperative Programming Theorema→ L.Kov ács, T.Jebelean

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning

1. Predicate Transformer (weakest precondition) [Dijkstra76, Gries81]

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Outline

Program Verification

The Theorema System

Imperative Program Verification in Theorema
P-solvable Imperative Loops
Automatized Invariant Generation

Conclusions

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Outline

Program Verification

The Theorema System

Imperative Program Verification in Theorema
P-solvable Imperative Loops
Automatized Invariant Generation

Conclusions

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Imperative Program Verification in Theorema

Specification Program

Polynomial Invariant Generation

Verification Conditions

Proving

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Imperative Program Verification in Theorema

Specification Program

Polynomial Invariant Generation

Verification Conditions

Proving

Polynomial Invariant Generation

Gosper Alg.

Geom. series

Generating Fct.

C-finite

Alg.Dep. of Exp.

Gröbner basis

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Overview of our Method - using Algebraic
Techniques

• Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(→ compute algebraic dependencies of exponential sequences);

2. Polynomial Eq. Generation: variable elimination by Gröbner basis
generators of the ideal of valid polynomials relations among loop
variables → all poly invariants;

• Loops with assignments and with/without conditionals.
Assignments are:

• Non–mutual recurrences:
� Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1)
is a hypergeometric term;
� geometric series: x(k + 1) = c ∗ x(k);
� C-finite:
x(k +d) = cd−1 ∗x(k +d−1)+ . . .+c1 ∗x(k +1)+c0 ∗x(k)+ f (k);

• Mutual recurrences: generating functions;

• Implementation successfully applied to many programs working
on numbers.

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Overview of our Method - using Algebraic
Techniques

• Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(→ compute algebraic dependencies of exponential sequences);

2. Polynomial Eq. Generation: variable elimination by Gröbner basis
generators of the ideal of valid polynomials relations among loop
variables → all poly invariants;

• Loops with assignments and with/without conditionals.
Assignments are:

• Non–mutual recurrences:
� Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1)
is a hypergeometric term;
� geometric series: x(k + 1) = c ∗ x(k);
� C-finite:
x(k +d) = cd−1 ∗x(k +d−1)+ . . .+c1 ∗x(k +1)+c0 ∗x(k)+ f (k);

• Mutual recurrences: generating functions;

• Implementation successfully applied to many programs working
on numbers.

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Overview of our Method - using Algebraic
Techniques

• Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(→ compute algebraic dependencies of exponential sequences);

2. Polynomial Eq. Generation: variable elimination by Gröbner basis
generators of the ideal of valid polynomials relations among loop
variables → all poly invariants;

• Loops with assignments and with/without conditionals.
Assignments are:

• Non–mutual recurrences:
� Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1)
is a hypergeometric term;
� geometric series: x(k + 1) = c ∗ x(k);
� C-finite:
x(k +d) = cd−1 ∗x(k +d−1)+ . . .+c1 ∗x(k +1)+c0 ∗x(k)+ f (k);

• Mutual recurrences: generating functions;

• Implementation successfully applied to many programs working
on numbers.

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Overview of our Method - using Algebraic
Techniques

• Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(→ compute algebraic dependencies of exponential sequences);

2. Polynomial Eq. Generation: variable elimination by Gröbner basis
generators of the ideal of valid polynomials relations among loop
variables → all poly invariants;

• Loops with assignments and with/without conditionals.
Assignments are:

• Non–mutual recurrences:
� Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1)
is a hypergeometric term;
� geometric series: x(k + 1) = c ∗ x(k);
� C-finite:
x(k +d) = cd−1 ∗x(k +d−1)+ . . .+c1 ∗x(k +1)+c0 ∗x(k)+ f (k);

• Mutual recurrences: generating functions;

• Implementation successfully applied to many programs working
on numbers.

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Overview of our Method - using Algebraic
Techniques

• Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(→ compute algebraic dependencies of exponential sequences);

2. Polynomial Eq. Generation: variable elimination by Gröbner basis
generators of the ideal of valid polynomials relations among loop
variables → all poly invariants;

• Loops with assignments and with/without conditionals.
Assignments are:

• Non–mutual recurrences:
� Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1)
is a hypergeometric term;
� geometric series: x(k + 1) = c ∗ x(k);
� C-finite:
x(k +d) = cd−1 ∗x(k +d−1)+ . . .+c1 ∗x(k +1)+c0 ∗x(k)+ f (k);

• Mutual recurrences: generating functions;

• Implementation successfully applied to many programs working
on numbers.

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Overview of our Method - using Algebraic
Techniques

• Based on the difference equations method [ElspasGreen72]:

1. Recurrence Solving: find closed forms of the loop variables
(→ compute algebraic dependencies of exponential sequences);

2. Polynomial Eq. Generation: variable elimination by Gröbner basis
generators of the ideal of valid polynomials relations among loop
variables → all poly invariants;

• Loops with assignments and with/without conditionals.
Assignments are:

• Non–mutual recurrences:
� Gosper–summable: x(k + 1) = x(k) + h(k + 1), where h(k + 1)
is a hypergeometric term;
� geometric series: x(k + 1) = c ∗ x(k);
� C-finite:
x(k +d) = cd−1 ∗x(k +d−1)+ . . .+c1 ∗x(k +1)+c0 ∗x(k)+ f (k);

• Mutual recurrences: generating functions;

• Implementation successfully applied to many programs working
on numbers.

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Algebraic Dependencies among Exponential
Sequences

Let θ1, . . . , θs ∈ K̄, and their exponential sequences θn
1 , . . . , θn

s ∈ K̄.

An algebraic dependency of these sequences is a polynomial p :

p(θn
1 , . . . , θn

s) = 0, (∀n ≥ 1).

Example

• The algebraic dependency among the exponential sequences of
θ1 = 2 and θ2 = 4 is:

θ2n
1 − θn

2 = 0

• There is no algebraic dependency among the exponential
sequences of θ1 = 2 and θ2 = 3.

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Algebraic Dependencies among Exponential
Sequences

Let θ1, . . . , θs ∈ K̄, and their exponential sequences θn
1 , . . . , θn

s ∈ K̄.

An algebraic dependency of these sequences is a polynomial p :

p(θn
1 , . . . , θn

s) = 0, (∀n ≥ 1).

Example

• The algebraic dependency among the exponential sequences of
θ1 = 2 and θ2 = 4 is:

θ2n
1 − θn

2 = 0

• There is no algebraic dependency among the exponential
sequences of θ1 = 2 and θ2 = 3.

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

P-solvable Imperative Loops

The recursively changed variables x1, . . . , xm have their closed forms
of the following nature:

x1(n) = p1,1(n)θn

1 + · · ·+ p1,s(n)θn
s

x2(n) = p2,1(n)θn
1 + · · ·+ p2,s(n)θn

s
...

xm(n) = pm,1(n)θn
1 + · · ·+ pm,s(n)θn

s

,

where:

1. n is the loop counter;

2. xi(n) (1 ≤ i ≤ m) represent the value of xi at iteration n;

3. p1,1, . . . , p1,s, , pm,1, . . . , pm,s ∈ K[n];

4. θ1, . . . , θs ∈ K̄;

5. there exist algebraic dependencies among θn
1 , . . . , θn

s .

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

P-solvable Imperative Loops

The recursively changed variables x1, . . . , xm have their closed forms
of the following nature:

x1(n) = q1(n, θn

1 , . . . , θn
s)

x2(n) = q2(n, θn
1 , . . . , θn

s)
...

xm(n) = qm(n, θn
1 , . . . , θn

s)

,

where:

• there exist algebraic dependencies among θn
1 , . . . , θn

s .

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Invariant Generation for Loops with Conditionals
Example: Program for Computing Square Roots, by K. Zuse

Specification

Program

Specification[“SqrtZuse”, SqrtZuse[↓ a, ↓ err , ↑ q],

Pre → (a ≥ 1) ∧ (err > 0),

Post → (q2 ≤ a) ∧ (a < q2 + err))]

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Invariant Generation for Loops with Conditionals
Example: Program for Computing Square Roots, by K. Zuse

Specification

Program

Specification[“SqrtZuse”, SqrtZuse[↓ a, ↓ err , ↑ q],

Pre → (a ≥ 1) ∧ (err > 0),

Post → (q2 ≤ a) ∧ (a < q2 + err))]

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Invariant Generation for Loops with Conditionals
Example: Program for Computing Square Roots, by K. Zuse

Specification

Program

Specification[“SqrtZuse”, SqrtZuse[↓ a, ↓ err , ↑ q],

Pre → (a ≥ 1) ∧ (err > 0),

Post → (q2 ≤ a) ∧ (a < q2 + err))]

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Invariant Generation for Loops with Conditionals
Example: Program for Computing Square Roots, by K. Zuse

Specification

Program

Specification[“SqrtZuse”, SqrtZuse[↓ a, ↓ err , ↑ q],

Pre → (a ≥ 1) ∧ (err > 0),

Post → (q2 ≤ a) ∧ (a < q2 + err))]

Program[“SqrtZuse”, SqrtZuse[↓ a, ↓ err , ↑ q],

Module[{r , p},
r := a − 1; q := 1; p := 1/2;

While[(2 ∗ p ∗ r ≥ err),

If[2 ∗ r − 2 ∗ q ∗ p ≥ 0

Then r := 2 ∗ r − 2 ∗ q − p; q := q + p; p := p/2,

Else r := 2 ∗ r ; p := p/2]]]]

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Invariant Generation for Loops with Conditionals
Example: Program for Computing Square Roots, by K. Zuse

Specification

Program

Specification[“SqrtZuse”, SqrtZuse[↓ a, ↓ err , ↑ q],

Pre → (a ≥ 1) ∧ (err > 0),

Post → (q2 ≤ a) ∧ (a < q2 + err))]

Program[“SqrtZuse”, SqrtZuse[↓ a, ↓ err , ↑ q],

Module[{r , p},
r := a − 1; q := 1; p := 1/2;

While[(2 ∗ p ∗ r ≥ err),

If[2 ∗ r − 2 ∗ q ∗ p ≥ 0

Then r := 2 ∗ r − 2 ∗ q − p; q := q + p; p := p/2,

Else r := 2 ∗ r ; p := p/2],

Invariant → I]]]

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Invariant Generation - The Algorithm

Program Transformation

Setting up system of rec. eqs.

Recurrence Solving

Eliminate Loop Counter-bounds and Extra Vars

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Invariant Generation - The Algorithm

Program Transformation

Setting up system of rec. eqs.

Recurrence Solving

Eliminate Loop Counter-bounds and Extra Vars

Recurrence Solving

Eliminate Loop Counter-bounds and Extra Vars

Gröbner Basis

Gosper Geom.Series Gen. Funct.C-finite

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Program Transformation

{I}
While[b,

c1; If[b1 Then c2 Else c3]; c4]

{I ∧ ¬b}
−→

{I}
While[b,

While[b ∧ b1′, c1; c2; c4];

While[b ∧ ¬b1′, c1; c3; c4]]

{I ∧ ¬b}

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Program Transformation

Module[{r , p},
r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

If[2r − 2qp ≥ 0

Then r := 2r − 2q − p;

q := q + p; p := p/2

Else r := 2r ; p := p/2]]]

−→

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Program Transformation

Module[{r , p},
r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

If[2r − 2qp ≥ 0

Then r := 2r − 2q − p;

q := q + p; p := p/2

Else r := 2r ; p := p/2]]]

−→

Module[{r , p},
r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

While[(2pr ≥ err) ∧ (2r − 2qp ≥ 0),

r := 2r − 2q − p;

q := q + p; p := p/2];

While[(2pr ≥ err) ∧ ¬(2r − 2qp ≥ 0),

r := 2r ; p := p/2]]]

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Extracting system of recurrences

r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

While[(2pr ≥ err) ∧ (2r − 2qp ≥ 0),

r := 2r − 2q − p;

q := q + p; p := p/2];

While[(2pr ≥ err) ∧ ¬(2r − 2qp ≥ 0),

r := 2r ; p := p/2]]

i = 0, I p(i + 1) = p(i)/2
q(i + 1) = q(i) + p(i)
r(i + 1) = 2r(i)− 2q(i)− p(i)

j = 0, J, j ′ = j + I p(j ′ + 1) = p(j ′)/2
q(j ′ + 1) = q(j ′)
r(j ′ + 1) = 2r(j ′)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Extracting system of recurrences

r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

While[(2pr ≥ err) ∧ (2r − 2qp ≥ 0),

r := 2r − 2q − p;

q := q + p; p := p/2];

While[(2pr ≥ err) ∧ ¬(2r − 2qp ≥ 0),

r := 2r ; p := p/2]]

i = 0, I p(i + 1) = p(i)/2
q(i + 1) = q(i) + p(i)
r(i + 1) = 2r(i)− 2q(i)− p(i)

j = 0, J, j ′ = j + I p(j ′ + 1) = p(j ′)/2
q(j ′ + 1) = q(j ′)
r(j ′ + 1) = 2r(j ′)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Extracting system of recurrences

r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

While[(2pr ≥ err) ∧ (2r − 2qp ≥ 0),

r := 2r − 2q − p;

q := q + p; p := p/2];

While[(2pr ≥ err) ∧ ¬(2r − 2qp ≥ 0),

r := 2r ; p := p/2]]

i = 0, I p(i + 1) = p(i)/2
q(i + 1) = q(i) + p(i)
r(i + 1) = 2r(i)− 2q(i)− p(i)

j = 0, J, j ′ = j + I p(j ′ + 1) = p(j ′)/2
q(j ′ + 1) = q(j ′)
r(j ′ + 1) = 2r(j ′)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Solving system of recurrences

r := a− 1; q := 1; p := 1/2;

While[. . . ,

While[. . . ,

r := 2r − 2q − p;

q := q + p; p := p/2];

While[. . . ,

r := 2r ; p := p/2]]

i = 0, I
p(i) =

geom.series 1
2i p(0)

q(i) =
Gosper

zb
q(0) + 2p(0)− 1

2i−1 p(0)

r(i) =
C−finite

SumCracker
2i(r(0)− 2q(0)− 2p(0))−

1
2i−1 p(0) + 2q(0) + 4p(0)

j = 0, J, j ′ = j + I
p(j ′) =

geom.series 1
2j p(I)

q(j ′) = q(I)
r(j ′) =

geom.series 2j r(I)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Solving system of recurrences

r := a− 1; q := 1; p := 1/2;

While[. . . ,

While[. . . ,

r := 2r − 2q − p;

q := q + p; p := p/2];

While[. . . ,

r := 2r ; p := p/2]]

i = 0, I, x(i) = 2i , y(i) = 2−i

p(i) = p(0)y(i)
q(i) = q(0) + 2p(0)− 2p(0)y(i)
r(i) = x(i)(r(0)− 2q(0)− 2p(0))−

2p(0)y(i) + 2q(0) + 4p(0)
0 =

Dependencies
x(i)y(i)− 1

j = 0, J, j ′ = j + I, u(j ′) = 2j , v(j ′) = 2−j
p(j ′) = p(I)v(j ′)
q(j ′) = q(I)
r(j ′) = r(I)u(j ′)
0 =

Dependencies
u(j ′)v(j ′)− 1

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Variable Elimination

p = 1

2 ∗ y ∗ v
q = 2− y
r = ((a− 4) ∗ x − y + 4) ∗ u
x ∗ y − 1 = 0
u ∗ v − 1 = 0

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Variable Elimination

p = 1

2 ∗ y ∗ v
q = 2− y
r = ((a− 4) ∗ x − y + 4) ∗ u
x ∗ y − 1 = 0
u ∗ v − 1 = 0

Eliminate loop counter-bounds (I,J) and extra vars (u,v,x,y)

a− 2 ∗ p ∗ r = q2

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Invariant Generation for Loops with Conditionals

r := a− 1; q := 1; p := 1/2;

While[(2pr ≥ err),

If[2r − 2qp ≥ 0

Then r := 2r − 2q − p;

q := q + p; p := p + 2

Else r := 2r ; p := p/2]]]

a− 2 ∗ p ∗ r = q2

∧
(err ≥ 0) ∧ (p ≥ 0) ∧ (r ≥ 0)

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

More Examples

Implementation on a Pentium 4, 1.6GHz processor with 512 Mb RAM.

Example Comb. Methods Nr.Poly. (sec)
P-solvable loops with assignments only

Division Gosper 1 0.08
Integer square root Gosper 2 0.09
Integer cubic root Gosper 2 0.15
Fibonacci Generating Functions, Alg.Dependencies 1 0.73

P-solvable loops with conditionals and assignments
Wensley’s Algorithm Gosper, geom.series, Alg.Dependcies 2 0.48
LCM-GCD computation Gosper 1 0.33
Extended GCD Gosper 3 0.65
Fermat’s factorization Gosper 1 0.32
Square root C-finite, Gosper, geom.series, Alg.Dependencies 1 1.28
Binary Division C-finite, Gosper, geom.series, Alg.Dependencies 1 0.72
Floor of square root Gosper, C-finite, geom.series, Alg.Dependencies 1 1.06
Factoring Large Numbers C-finite, Gosper 1 1.9
Hardware Integer Division 0.62
1st Loop geom.series, Alg.Dependencies 3
2nd Loop Gosper, geom. series, Alg.Dependencies 2

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Outline

Program Verification

The Theorema System

Imperative Program Verification in Theorema
P-solvable Imperative Loops
Automatized Invariant Generation

Conclusions

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Generation of Invariant (Inequalities)
Loop body

System of recurrence equations

System of closed forms

Invariant equalities

C
om

b.

Va
r.e

lim
.,

G
B

Program Verification The Theorema System Imperative Program Verification in Theorema Conclusions

Generation of Invariant (Inequalities)
Loop body

System of recurrence equations

System of closed forms

Invariant equalities

C
om

b.

Va
r.e

lim
.,

G
B

Invariant inequalities

CAD, spec

	Main Part
	Program Verification
	The Theorema System
	Imperative Program Verification in Theorema
	P-solvable Imperative Loops
	Automatized Invariant Generation

	Conclusions

