INTAS Timisoara
10-11 December 2006

Insertion modeling and requirement
specifications for distributed concurrent
systems

A.Letichevsky

Requirement specifications

in design process

Requirement Model verification .Prod.uct
. . . verification and
verification (model checking) 3 e
validation
_| executable - duct
Formal model produc
requirement
L specifications A I
\ Model driven
VRS Test cases | engineering
Motorola
°]
(ISS, GSG Russia) .
automatic

December 10-11 2006

Timisoara meeting

Insertion Modeling:
Developing and investigating of the models of
distributed concurrent systems by means of
representing them as a composition of interacting
agents and environments

(A.Letichevsky, D.Gilbert, 1996)

Agents: attributed transition systems
Environments: attributed transition systems with
insertion function

Composition: continuous insertion function,

characterizing the behavior of environment with
inserted agents

December 10-11 2006 Timisoara meeting

Insertion function

Agents and environments are considered up to bisimilarity and can be 1dentified
with their behaviors. F(X) is a complete behavior algebra over action algebra X
(a kind of process algebra).

Ins: ExF(A)—> E,

EcCcF((C),AcC
Multilevel insertion:
. structure
Ins(e,u) = e[u] mobility

el 1ty ity] = (o (el Dty),
elelu l,elu,], ...e,lu,ll

(ele[u,],e,[u,],....e, [, DIV, Ve,]

December 10-11 2006 Timisoara meeting 4

Insertion equivalence

u~,u < VeeE)eu]l=eu'l)
lul: £ > E

u~, u <ul=[ul
e([u] *[v]) = elu,v]

Agents transform the behaviors of environment

December 10-11 2006 Timisoara meeting

Abstraction levels for insertion models

Abstract models
The states of agents and environments identified with their behaviors
Insertion functions — recursive definitions in behavior algebra,
rewriting logic
Can be used for encoding CCS, CSP, ACP,
n-calculus, mobile ambients etc.

Symbolic models
The states of environment with inserted agents are labeled by
logic formulas over attributes of agents and environments or
identified with such formulas

Concrete models
The states of agents identified with valuations or (partial)
mappings from attributes (or attribute expressions) to their
values (SDL,UML,...)

December 10-11 2006 Timisoara meeting 6

Abstract models

e—*>e . u—">u' h(a,b,c)

du]l——e'[u']

(e+eNul=eul+elul,elu+u'l=eul+elu']

One step insertion rules

(ae'+e")bu'+u"]=celu'l+ f,h(a,b,c)

December 10-11 2006

Timisoara meeting

Basic Protocols Specification Language
(Symbolic models)

BP specification:

Environment description (structural requirements)
Defines the signature and axioms of Basic Language
(first order logic language used for the labeling of environment states
possibly with some temporal modalities for the past)
The set of Basic Protocols (local requirements)
Define the transitions of environment with inserted agents
Global requirements
Define the properties of a system in terms of temporal logic

Basic protocols

: Combination of Hoare triples and
First order

quantifiers over insertion modeling
typed variables
\ﬁ
Vx(a(x) >< P(x) > f(x))

Z 7
L7
[Precondition Postconditionj

/

Finite process (behavior)
of attributed environment with
inserted agents

Properties of
environment

December 10-11 2006 Timisoara meeting 9

Two basic protocols for telecommunication example

Phone n

dialtone n P
47

< phone(n, dial) >
/1

call setup initial

Phone n Network Phone m Network
< phone(n,idle) > < phone(m,dial) >
offhook n dial(m,n)
> —)
ostcondition

RN

)

Preconditio

"

< phone(m, dial n)

>

call setup dialing 1

—

December 10-11 2006

Timisoara meeting

10

Two more protocols

Phone m Network Phone n Phone m Network Phone n

< phone(m, dial n) & valid n >
< phone(m, dial n) & ~(valid n)

ring

—

busy
ring <

< phone(m, ringing n) & phone(n,ringing) > < phone(m, busy) >

call setup dialing 2 call setup failure 2

December 10-11 2006 Timisoara meeting

| Phone m

| | Network

| | Phone n

< I

phone(m,idle)

=

Guarded
conditions

alt

dialtone

dial(m,n)

>

1L

Initial state]

Composition of BP
(Annotated scenario)

when valid n

ring

-

when ~(valid n)

busy

anno phone(m, busy) >

rAnnotationsj

\

December 10-11

2006

Timisoara meeting

12

The use of basic protocols

[J [J [J VRS
Form allZlng reqUIrements Verification of Requirement
Experience in Telecommunications, Specifications
Telematics and other application domains ! “""ff,'fﬁ'f,’t‘?,‘ij'ﬂ";y 155

Static requirements checking

Dynamic requirements checking
(projects for Motorola)
Proving correctness of parallel programs
based on MPI and OpenMP
(new projects for Intel)

Generating tests from requirement specifications

December 10-11 2006 Timisoara meeting 13

Static requirements checking

E)isjunction of preconditions 1s ValiD

* Proving consistency and completeness
* Proving safety

 Computing invariants

Preconditions for BPs (with the
same external actions) must not

\ Intersect -

December 10-11 2006 Timisoara meeting 14

Dynamic requirements checking

* Symbolic model checking with deduction for
abstract models

* Checking safety and reachability

* Generating traces and checking properties for
concrete models

December 10-11 2006 Timisoara meeting 15

Inconsistent protocols
(inconsistency of features 3way Calling and Call Waiting)

Phone m|| Network || Phone k Phone n Phone m Network Phone k Phone n
phone(k,connected m)& > < >
< phone(n.cw wait k) phone(k,3way connect(mé&n))
onhook onhook
’ dialtone

bus <
y > dialtone .

flash -

—

phone(k, idle)

<Ehone(m, idle)>< phone(k,connected n)&>

phone k.cw:=0
phone(m,dial) & phone(n,dial)

I R S 4

Protocol cw teardown 1 Protocol 3way teardown 2

December 10-11 2006 Timisoara meeting 16

connect

<3way teardown 2>

phone(k,dial)

December 10-11 2006

Inconsistent state

‘ onhook z ???

n cw_wait k

Timisoara meeting

<cw teardown 1>

phone(k,connected n)

17

| Phong m | | Phone z | | Network | | Phone k | | Phone n

offhook -

< dialtone < © fhook -
dialtone Scenario
dial > adjusting
BURNRLLLL Inconsistency
< ring
< dial '
ring
Ehone(z,connected m) . >
ring

% —>

flash < offhook

>
dialtone \
dial k >
| ring . phone(k,connected n)
phone(z,dial) = flash
pone(m, 3way wait z)
flash \f
—> phone(k,connected z)
< anno phone(z,3way connect(m&k)) > Phone(n, cw wait k)
< anno phone(k,connected z)&phone(n,cw wait k) >

December 10-11 2006

Timisoara meeting

18

Basic Language

Signature

Data structures: types, functions.

Attributes: distinguished functional symbols (simple and parameterized attributes)
Agent attributes: m.g(x,),...)

Predicates: interpreted (for example, numeric) and noninterpreted

Special types: More details and
agent types, agent names (ids), age| .oncrete syntax

arithmetic), enumerated, ... depend on subiect domain
(state assertions like state (Phone 1, P § L

real

Axioms and algorithms for validity of formulae (calculus).

The language of preconditions: first order formulae of BL.
The language of postconditions: the same as preconditions + assignments and
other imperative expressions).

(v =y) ~ (=)

December 10-11 2006 Timisoara meeting 19

Validity relation

S |=a,a € BL

For states labeled by formulas

sFa= (=))A(yFa)

December 10-11 2006 Timisoara meeting

Process language

User languages: MSC, annotated MSC, SDL, UML, ...
Semantics: attributed transition systems and their behaviors

4 Behaviors of attributed transition
@ ’@ systems are attributed behaviors

@ Q a:(a(f:y:b)y+a(f:AN))

(a:a) N BD ~ (y:b)

; :(aﬁ),-r)) (@:a)(B:0)(y:b)+(a:a).(B:7)

December 10-11 2006 Timisoara meeting 21

Concrete implementation of systems of BPs

Concrete attributed transition system S implements the set of BPs
if for each BP

Vx(a(x) =>< P(x) > f(x))

s |= a(x) = beh(s) = (P(x);(y : A)* O+ R,y |= f(x)

* 1s a partially sequential composition to be defined later
QO and R are also to be defined

December 10-11 2006 Timisoara meeting 22

Questions

BPS define abstractions for their concrete implementations.
Studying of BPS we study also their concrete implementations

 What is abstraction?
* What is abstract implementation?
 What is concrete implementation?

* What are the relations between abstract and
concrete implementations?

December 10-11 2006 Timisoara meeting

23

Main result

Systems S, and S” are attributed systems
with states labeled by the statements of BL.
They define semantics of BPS
K(P) Is a class of concrete implementations of P.

Theorem

System S,(S?) is a direct (inverse) abstraction
of any concrete implementation of a system
P of basic protocols from the class K(P)

December 10-11 2006 Timisoara meeting 24

Abstraction relation on states

The same attribute
labeling and validity

Abs c S xS’
(s,s')e Abs © V(a e BL)(s|=a) = (s'|F a))

more abstract: § < s’

December 10-11 2006 Timisoara meeting

25

Abstraction relation on systems

S <« S': H(DEAbS_I <]dir9<]inv

Preserve 1nitial states

g'—4d l.d /[direct j gl 4 .t’
col 9 col 9

a v . % -

P . 7 [inverse g .

V(iseS,s'eS)(s",s)epns'——t' = AteS)(s——tA(t,t) € p))
V(iseS,s'eS)N(s',s)epns >t =AteS) (s >tn(tt) e p))

V(iseS,s'eS)s<s'As—>t=3(t e S)(s'——t' At <th))
ViseS,s'eS)s<s'As>t=3t €S)(s' >t At<th))

December 10-11 2006 Timisoara meeting 26

Direct and inverse abstractions

If some property is reachable in a system then it is reachable
in a direct abstraction of the system.

Therefore: use direct abstraction for verification (safety
condition for example)

If some property is reachable in an inverse abstraction of a
system then it is reachable in the system itself.

Therefore: use inverse abstraction for test generation
(reachability of error condition)

December 10-11 2006 Timisoara meeting 27

Abstract implementations of systems of basic
protocols

* Basic protocols: attributed systems labeled by pre- and
postconditions;

e States identified with their state labels (formulas);
 Predicate transformer defines transitions;
* Partially sequential composition of behaviors defined by

— Permutability relations on the set of actions.

* Direct and inverse implementations of BPs by systems S,
and S”.

December 10-11 2006 Timisoara meeting 28

Predicate transformers

pt(7/9 /B) — 7/', 7/’_)'8%1@%% BP

a—><P>pf
yo>a,y H><P>y.v'=2v"—>p,
y' =pt(y,B)

Monotonicity:

(y =>7)—>pt(y,B)—>pt(y,p))

December 10-11 2006 Timisoara meeting

29

To compute pt(y, p) =y’
1. Reduce A to minisphere form and then

to dnf

Yy =Y,V V¥V,V .. Example of

o=y A A predicate transformer
i il i2

2. Delete all .. such that

Attr (y ;) N Attr (B) # O

V' =yIAR

December 10-11 2006 Timisoara meeting 30

Permutability relation

Defined on the set of labeled actions
Transferred to pairs behavior-action

—((a: L) > b), —=((a:0) <> b)
—(u <> (a:7))

(a: AN)eoobs(a:t)ob
Uu+rtvebsosueobaveb

au<>bsaobruob
Monotonicity:

(y >y IA(y:uea)—> (' uea)

December 10-11 2006 Timisoara meeting

31

Partially sequential composition

U= Z au,+¢&,v= Zb ;v; +¢&, Canonical form of behaviors
iel jeJ

u *V:Zal..(ul. *V) + ij.(u *V,)+(€,5¢,)

iel ueb;,jet

(A;e)=¢, (L;e)=L, (0,6)=0

(a:e)e)=a:(g¢)

December 10-11 2006 Timisoara meeting 32

Abstract implementation

P(a)=1p € B,, |a - pre(p)j, T(a, p) = pt(a, post(p))
P(a)=1p € B, | == —(a rpre(p));

Terminal protocols
? Instantiated BPs ’

S = Y proc(p) * (T(a. p): A)¥S5,)

peP(a)

P, =P UP,

S, = 2 proc(p)*(T(a, p): &) *Sy, ,, + D proe(p)*(T(a, p): A) (S, +4)

peP(a) peP’(a)

Composition of two BPs (simple scenario)

proc(p) *(T(a, p) : A) *proc(q) * (T(T(a, p).q) : A)

December 10-11 2006 Timisoara meeting 33

Concrete implementations

 Environment state
* Insertion function (transitions)

December 10-11 2006 Timisoara meeting

34

The structure of a concrete implementation K

BL is interpreted on a concrete multisorted algebraic system.
The signature of K 1s extended by hidden attributes and symbols.
The states of environment:

slg, *...*q, |[u,,....u,]

S 1s the mapping from attribute expressions to their values.

0y5--+»0, partially sequential composition of BPs.

U,,...,U, the states of named passive agents (they do not participate in protocols).
Special attributes: ActiveBP (the list of active protocols), b.active (the list of active
agents).

Environment actions: start, start b, terminate b

(y :start) <> a < (y :terminate b)) <> a < (y:A) < a
—(u <> (y : start)), —(u <> (y : terminate b))

December 10-11 2006 Timisoara meeting 35

Initial states of environment:

sly :start|[m, 1u ,...m, ‘u, |

Y is the conjunction of equalities for s.

The state of successful termination:

s[y :start][A]

slq, *...*q,, u,,....,u,]

Transitions:
*The change of a state of a protocol;
*The termination of a protocol;
*The launching of a new protocol;
*The termination of a system.

December 10-11 2006 Timisoara meeting

36

Insertion function

Transition of BP

(Ba) o (La) 41 o |—
S ~>s'.q ~>q.,s|=p
(Ba) o' ! . .
slq] >s'|q' |[m, :u,,....m, u,]
Participate in g, but
Termination of BP notin g’
g |: 7/ g terminate b \S’

s[(y : terminate b) * | —22> s'[q][m, 1 u,,....,m, u,]

terminate b '

S|=v,s >

s[y : terminate b)] —X2 > [y : start][m, :u,,....m, 1u,]

‘ Participate%

December 10-11 2006 Timisoara meeting 37

Launching BP

yl=pre(d) A B,proc(b)=(L:a)p+p.qg < (B:a),s —2L 55 LD 5"

slg*t][m, :uy,om, cu, | —L2L 55" [g*t* p*t']

7 |=pre(b) A5, proc(b’) = p+(J5: A), s —22 5’

s[q * t]%s”[g *t*t']

t = (y :start),(y : terminate b), ' = (pt(y,post(b’)) : terminate ")

Termination of a system

terminate b '

S|=y,s >

s[(y : terminate b)]—Z2— 5[y : start]

December 10-11 2006 Timisoara meeting 38

	Insertion modeling and requirement specifications for distributed concurrent systems��A.Letichevsky
	Requirement specifications�in design process
	Insertion function
	Insertion equivalence
	Abstraction levels for insertion models
	Abstract models
	Basic Protocols Specification Language�(Symbolic models)
	Basic protocols
	Two basic protocols for telecommunication example
	Two more protocols
	Composition of BP (Annotated scenario)
	The use of basic protocols
	Static requirements checking
	Dynamic requirements checking
	Inconsistent protocols�(inconsistency of features 3way Calling and Call Waiting)
	Inconsistent state
	Scenario�adjusting �inconsistency
	Basic Language
	Validity relation
	Process language
	Concrete implementation of systems of BPs
	Questions
	Main result
	Abstraction relation on states
	Abstraction relation on systems
	Direct and inverse abstractions
	Abstract implementations of systems of basic protocols
	Predicate transformers
	Permutability relation
	Partially sequential composition
	Abstract implementation
	Concrete implementations
	The structure of a concrete implementation K
	Insertion function

