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Insertion Modeling:
Developing and investigating of the models of 
distributed concurrent systems by means of 
representing them as a composition of interacting 
agents and environments

(A.Letichevsky, D.Gilbert, 1996)

Agents: attributed transition systems 
Environments: attributed transition systems with 
insertion function
Composition: continuous insertion function, 
characterizing the behavior of environment with 
inserted agents
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Insertion function
Agents and environments are considered up to bisimilarity and can be identified 
with their behaviors. F(X) is a complete behavior algebra over action algebra X
(a kind of process algebra). 
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Insertion equivalence
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Agents transform the behaviors of environment
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Abstraction levels for insertion models
Abstract models

The states of agents and environments identified with their behaviors
Insertion functions – recursive definitions in behavior algebra, 

rewriting logic 
Can be used for encoding CCS, CSP, ACP, 

π-calculus, mobile ambients etc.

Symbolic models
The states of environment with inserted agents are labeled by
logic formulas over attributes of agents and environments or 

identified with such formulas

Concrete models 
The states of agents identified with valuations or (partial) 
mappings from attributes (or attribute expressions) to their 

values (SDL,UML,…)
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Abstract models

One step insertion rules
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Basic Protocols Specification Language
(Symbolic models)

BP specification:

Environment description (structural requirements)
Defines the signature and axioms of  Basic Language 

(first order logic language used for the labeling of environment states
possibly with some temporal modalities for the past )

The set of Basic Protocols (local requirements)
Define the transitions of environment with inserted agents 

Global requirements
Define the properties of a system in terms of temporal logic
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))()()(( xxPxx βα >→<∀

Precondition 

Properties of 
environment 

Basic protocols 
First order 

quantifiers over 
typed variables

Postcondition

Finite process (behavior) 
of attributed environment with 

inserted agents 

Properties of 
environment 

Combination of Hoare triples and 
insertion modeling
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Two basic protocols for telecommunication example

Phone n Network

phone(n,idle)

phone(n, dial)

offhook n

dialtone n

Phone m Phone nNetwork

phone(m,dial)

dial(m,n)

phone(m, dial n)

call setup initial                                              call setup dialing 1       

Precondition

Postcondition
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Two more protocols

phone(m, dial n) & valid n

phone(m, ringing n) & phone(n,ringing)

ring

ring 

call setup dialing 2                                                       call setup failure 2

Phone m Network Phone n Phone m Network Phone n

phone(m, dial n) & ~(valid n)

phone(m, busy)

busy 
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Composition of BP 
(Annotated scenario)

Phone m Network Phone n

phone(m,idle)

offhook

dialtone

dial(m,n)

when valid n

anno phone(m, ringing n)

when ~(valid n)

anno phone(m, busy)

alt

ring
ring

busy

ПостусловиеAnnotations

Guarded 
conditions

Initial state
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The use of basic protocols

VRS 
Verification of Requirement  

Specifications
a tool developed by ISS 

for Motorola

Formalizing requirements
Experience in Telecommunications, 
Telematics and other application domains

Static requirements checking
Dynamic requirements checking

(projects for Motorola)
Proving correctness of parallel programs 
based on MPI and OpenMP

(new projects for Intel)

Generating tests from requirement specifications
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Static requirements checking

• Proving consistency and completeness
• Proving safety
• Computing invariants

Preconditions for BPs (with the 
same external actions) must not 

intersect

Disjunction of preconditions is valid
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Dynamic requirements checking

• Symbolic model checking with deduction for 
abstract models

• Checking safety and  reachability
• Generating traces and checking properties for 

concrete models
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Inconsistent protocols
(inconsistency of features 3way Calling and Call Waiting)

Protocol 3way teardown 2

Phone nPhone kNetworkPhone m

phone(m, dial) phone(n, dial)

phone(k, idle)

phone(k,3way connect(m&n) )

dialtone
onhook

dialtone

Protocol cw teardown 1

Phone kPhone m Phone nNetwork

phone(m, idle) phone(k,connected n)&
phone k.cw:=0

phone(k,connected m)&
phone(n,cw_wait k)

flash 

busy 

onhook

phone(m,dial)    &     phone(n,dial)         
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Inconsistent state

km n

z

k 3 way
connect

m&k

n cw_wait k

onhook z ???

<3way teardown 2>
phone(k,dial)

<cw teardown 1>
phone(k,connected n)
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Phone m Phone nPhone kNetworkPhone z

Phone m

dial

dialtone
offhook

ring
ring

offhook

dialtone

dial

ring

ring

offhook

flash
offhook

dialtone
dial k

ring
ring

flash

flash

anno phone(z,3way connect(m&k))

anno phone(k,connected z)&phone(n,cw wait k) 

Scenario
adjusting 

inconsistency

phone(z,connected m)

phone(k,connected n)

phone(z,dial)
pone(m, 3way wait z)

phone(k,connected z)
Phone(n, cw wait k) 
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Basic Language
Signature
Data structures: types, functions.
Attributes: distinguished functional symbols (simple and parameterized attributes)
Agent attributes: m.g(x,y,…)  
Predicates: interpreted (for example, numeric) and noninterpreted

Special types: 
agent types, agent names (ids), agent states, numeric (linear integer and real 
arithmetic), enumerated, …
(state assertions like state (Phone n)=idle) 

Axioms and algorithms for validity of formulae (calculus). 

The language of preconditions: first order formulae of BL.
The language of postconditions: the same as preconditions + assignments and 
other imperative expressions).

(x:=y) ~ (x′=y)

More details and 
concrete syntax 
depend on subject domain
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Validity relation

BL∈= αα ,|s

)|()):((| αγγα =∧=⇔= tss

For states labeled by formulas
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Process language

User languages: MSC, annotated MSC, SDL, UML, …
Semantics: attributed transition systems and their behaviors

α

α βa (α:a)Behaviors of attributed transition 
systems are attributed behaviors

)):.()::.((: Δ+ βγβα aba

α βa γ b

β
a

(β:τ)

(α :a)

(α :a) (γ :b)

(β:τ)
):).(:():).(:).(:( τβαγτβα aba +
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Concrete implementation of systems of BPs

)(|,)):();(()()(| xRQxPsxs βγγα =+∗Δ=→= beh

))()()(( xxPxx βα >→<∀

Concrete attributed transition system S implements the set of BPs
if for each BP

* is a partially sequential composition to be defined later 
Q and R are also to be defined 



December 10-11 2006 Timisoara meeting 23

Questions

• What is abstraction?
• What is abstract implementation? 
• What is concrete implementation?
• What are the relations between abstract and 

concrete implementations?

BPS define abstractions for their concrete implementations.
Studying of BPS we study also their concrete implementations 



December 10-11 2006 Timisoara meeting 24

Main result

Theorem
System SP(SP) is a direct (inverse) abstraction
of any concrete implementation of a system 
P of basic protocols from the class K(P)

Systems SP and SP are attributed systems 
with states labeled by the statements of BL. 

They define semantics of BPS 
K(P) is a class of concrete implementations of P. 
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Abstraction relation on states

more abstract:

The same attribute 
labeling and validity 

 BLAbs
 Abs

))|()|)(((),( ααα =′⇒=∈∀⇔∈′
′×⊆

ssss
SS

ss ′<
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Abstraction relation on systems
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Direct and inverse abstractions

If some property is reachable in a system then it is reachable 
in a direct abstraction of the system.
Therefore: use direct abstraction for verification (safety 
condition for example)

If some property is reachable in an inverse abstraction of a 
system then it is reachable in the system itself.
Therefore: use inverse abstraction for test generation 
(reachability of error condition) 
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Abstract implementations of systems of basic 
protocols

• Basic protocols: attributed systems labeled by pre- and 
postconditions;

• States identified with their state labels (formulas);
• Predicate transformer defines transitions;
• Partially sequential composition of behaviors defined by 

– Permutability relations on the set of actions.

• Direct and inverse implementations of BPs by systems SP 
and SP.
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Predicate transformers

Monotonicity:

)),(),(()( βγβγγγ ′→→′→ ptpt

βγγβγ →′′= ,),(pt

),(
,?,,,

βγγ
βγγγγαγ

βα

pt=′
→′=′′>→<→

>→<
P

P

Instanciated BP
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To compute pt(γ, β) = γ′
1. Reduce A to minisphere form and then 
to dnf

...
...

21

21

∧∧=
∨∨=

iii γγγ
γγγ

∅≠∩ )()( βγ AttrAttr ij

ijγ2. Delete all such that

Example of 
predicate transformer

βγγ ∧′′=′
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Permutability relation
Defined on the set of labeled actions
Transferred to pairs behavior-action

))0:((  ),):(( bb ↔¬↔⊥¬ αα

)):(( τα↔¬ u

bb ↔⇔↔Δ ):():( ταα
bvbubvu ↔∧↔⇔↔+

bubabua ↔∧↔⇔↔.

):():()( auau ↔′→↔∧′→ γγγγ
Monotonicity:
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Partially sequential composition
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Abstract implementation
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Composition of two BPs (simple scenario)

Instantiated BPs
Terminal protocols

10
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Concrete implementations

• Environment state
• Insertion function (transitions)
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The structure of a concrete implementation K
BL is interpreted on a concrete multisorted algebraic system. 
The signature of K is extended by hidden attributes and symbols. 
The states of environment: 

s is the mapping from attribute expressions to their values.
q1,…,qm partially sequential composition of BPs.
u1,…,un the states of named passive agents (they do not participate in protocols).
Special attributes: ActiveBP (the list of active protocols), b.active (the list of active 
agents).
Environment actions: start, start b, terminate b

],...,][...[ 11 nm uuqqs ∗∗

aaba ↔Δ⇔↔⇔↔ ):():():( γγγ  terminatestart
)):(()),:(( buu   terminatestart γγ ↔¬↔¬
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Initial states of environment:

]:,...,:][:[ 11 kk umums startγ
is the conjunction of equalities for s.γ

]][:[ Δstartγs
The state of successful termination:

Transitions:
•The change of a state of a protocol;
•The termination of a protocol;
•The launching of a new protocol;
•The termination of a system.

],...,][...[ 11 nm uuqqs ∗∗
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Insertion function
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start terminate

 terminate
  terminate

  terminate

γγ
γ

γ
γ

τγ

τγ

′⎯⎯→⎯
′⎯⎯⎯ →⎯=

′⎯⎯→⎯∗
′⎯⎯⎯ →⎯=

Transition of BP 

Termination of BP
Participate in q, but 

not in q′

Participated in b
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Termination of a system

Launching BP
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