
Insertion modeling and requirement
specifications for distributed concurrent

systems

A.Letichevsky

INTAS Timisoara
10-11 December 2006

December 10-11 2006 Timisoara meeting 2

Requirement specifications
in design process

VRS
Motorola

(ISS, GSG Russia)

Requirement
specifications

product

Test cases

Formal
requirement
specifications

manualautomatic

executable
model

Requirement
verification

Model verification
(model checking)

Product
verification and

validation

Model driven
engineering

December 10-11 2006 Timisoara meeting 3

Insertion Modeling:
Developing and investigating of the models of
distributed concurrent systems by means of
representing them as a composition of interacting
agents and environments

(A.Letichevsky, D.Gilbert, 1996)

Agents: attributed transition systems
Environments: attributed transition systems with
insertion function
Composition: continuous insertion function,
characterizing the behavior of environment with
inserted agents

December 10-11 2006 Timisoara meeting 4

Insertion function
Agents and environments are considered up to bisimilarity and can be identified
with their behaviors. F(X) is a complete behavior algebra over action algebra X
(a kind of process algebra).

][),(Ins ueue =

CACFE
EAFE

⊆⊆
→×

),(
,)(:Ins

],...,,]])[[],...,[],[[(
]][],...,[],[[

])...)[])[(...((],...,,[

212211

2211

2121

nnn

nn

nn

vvvueueuee
ueueuee

uuueuuue =

Multilevel insertion:
structure
mobility

December 10-11 2006 Timisoara meeting 5

Insertion equivalence

])[][)((~ ueueEeuu E ′=∈∀⇔′

EEu →:][

][][~ uuuu E ′=⇔′

],[])[]([vuevue =∗

Agents transform the behaviors of environment

December 10-11 2006 Timisoara meeting 6

Abstraction levels for insertion models
Abstract models

The states of agents and environments identified with their behaviors
Insertion functions – recursive definitions in behavior algebra,

rewriting logic
Can be used for encoding CCS, CSP, ACP,

π-calculus, mobile ambients etc.

Symbolic models
The states of environment with inserted agents are labeled by
logic formulas over attributes of agents and environments or

identified with such formulas

Concrete models
The states of agents identified with valuations or (partial)
mappings from attributes (or attribute expressions) to their

values (SDL,UML,…)

December 10-11 2006 Timisoara meeting 7

Abstract models

One step insertion rules

][][][],[][])[(ueueuueueueuee ′+=′+′+=′+

),,(,][.].)[.(cbahfuecuubeea +′′=′′+′′′+′

][][
),,(,,

ueue
cbahuuee

c

ba

′′⎯→⎯
′⎯→⎯′⎯→⎯

December 10-11 2006 Timisoara meeting 8

Basic Protocols Specification Language
(Symbolic models)

BP specification:

Environment description (structural requirements)
Defines the signature and axioms of Basic Language

(first order logic language used for the labeling of environment states
possibly with some temporal modalities for the past)

The set of Basic Protocols (local requirements)
Define the transitions of environment with inserted agents

Global requirements
Define the properties of a system in terms of temporal logic

December 10-11 2006 Timisoara meeting 9

))()()((xxPxx βα >→<∀

Precondition

Properties of
environment

Basic protocols
First order

quantifiers over
typed variables

Postcondition

Finite process (behavior)
of attributed environment with

inserted agents

Properties of
environment

Combination of Hoare triples and
insertion modeling

December 10-11 2006 Timisoara meeting 10

Two basic protocols for telecommunication example

Phone n Network

phone(n,idle)

phone(n, dial)

offhook n

dialtone n

Phone m Phone nNetwork

phone(m,dial)

dial(m,n)

phone(m, dial n)

call setup initial call setup dialing 1

Precondition

Postcondition

December 10-11 2006 Timisoara meeting 11

Two more protocols

phone(m, dial n) & valid n

phone(m, ringing n) & phone(n,ringing)

ring

ring

call setup dialing 2 call setup failure 2

Phone m Network Phone n Phone m Network Phone n

phone(m, dial n) & ~(valid n)

phone(m, busy)

busy

December 10-11 2006 Timisoara meeting 12

Composition of BP
(Annotated scenario)

Phone m Network Phone n

phone(m,idle)

offhook

dialtone

dial(m,n)

when valid n

anno phone(m, ringing n)

when ~(valid n)

anno phone(m, busy)

alt

ring
ring

busy

ПостусловиеAnnotations

Guarded
conditions

Initial state

December 10-11 2006 Timisoara meeting 13

The use of basic protocols

VRS
Verification of Requirement

Specifications
a tool developed by ISS

for Motorola

Formalizing requirements
Experience in Telecommunications,
Telematics and other application domains

Static requirements checking
Dynamic requirements checking

(projects for Motorola)
Proving correctness of parallel programs
based on MPI and OpenMP

(new projects for Intel)

Generating tests from requirement specifications

December 10-11 2006 Timisoara meeting 14

Static requirements checking

• Proving consistency and completeness
• Proving safety
• Computing invariants

Preconditions for BPs (with the
same external actions) must not

intersect

Disjunction of preconditions is valid

December 10-11 2006 Timisoara meeting 15

Dynamic requirements checking

• Symbolic model checking with deduction for
abstract models

• Checking safety and reachability
• Generating traces and checking properties for

concrete models

December 10-11 2006 Timisoara meeting 16

Inconsistent protocols
(inconsistency of features 3way Calling and Call Waiting)

Protocol 3way teardown 2

Phone nPhone kNetworkPhone m

phone(m, dial) phone(n, dial)

phone(k, idle)

phone(k,3way connect(m&n))

dialtone
onhook

dialtone

Protocol cw teardown 1

Phone kPhone m Phone nNetwork

phone(m, idle) phone(k,connected n)&
phone k.cw:=0

phone(k,connected m)&
phone(n,cw_wait k)

flash

busy

onhook

phone(m,dial) & phone(n,dial)

December 10-11 2006 Timisoara meeting 17

Inconsistent state

km n

z

k 3 way
connect

m&k

n cw_wait k

onhook z ???

<3way teardown 2>
phone(k,dial)

<cw teardown 1>
phone(k,connected n)

December 10-11 2006 Timisoara meeting 18

Phone m Phone nPhone kNetworkPhone z

Phone m

dial

dialtone
offhook

ring
ring

offhook

dialtone

dial

ring

ring

offhook

flash
offhook

dialtone
dial k

ring
ring

flash

flash

anno phone(z,3way connect(m&k))

anno phone(k,connected z)&phone(n,cw wait k)

Scenario
adjusting

inconsistency

phone(z,connected m)

phone(k,connected n)

phone(z,dial)
pone(m, 3way wait z)

phone(k,connected z)
Phone(n, cw wait k)

December 10-11 2006 Timisoara meeting 19

Basic Language
Signature
Data structures: types, functions.
Attributes: distinguished functional symbols (simple and parameterized attributes)
Agent attributes: m.g(x,y,…)
Predicates: interpreted (for example, numeric) and noninterpreted

Special types:
agent types, agent names (ids), agent states, numeric (linear integer and real
arithmetic), enumerated, …
(state assertions like state (Phone n)=idle)

Axioms and algorithms for validity of formulae (calculus).

The language of preconditions: first order formulae of BL.
The language of postconditions: the same as preconditions + assignments and
other imperative expressions).

(x:=y) ~ (x′=y)

More details and
concrete syntax
depend on subject domain

December 10-11 2006 Timisoara meeting 20

Validity relation

BL∈= αα ,|s

)|()):((| αγγα =∧=⇔= tss

For states labeled by formulas

December 10-11 2006 Timisoara meeting 21

Process language

User languages: MSC, annotated MSC, SDL, UML, …
Semantics: attributed transition systems and their behaviors

α

α βa (α:a)Behaviors of attributed transition
systems are attributed behaviors

)):.()::.((: Δ+ βγβα aba

α βa γ b

β
a

(β:τ)

(α :a)

(α :a) (γ :b)

(β:τ)
):).(:():).(:).(:(τβαγτβα aba +

December 10-11 2006 Timisoara meeting 22

Concrete implementation of systems of BPs

)(|,)):();(()()(| xRQxPsxs βγγα =+∗Δ=→= beh

))()()((xxPxx βα >→<∀

Concrete attributed transition system S implements the set of BPs
if for each BP

* is a partially sequential composition to be defined later
Q and R are also to be defined

December 10-11 2006 Timisoara meeting 23

Questions

• What is abstraction?
• What is abstract implementation?
• What is concrete implementation?
• What are the relations between abstract and

concrete implementations?

BPS define abstractions for their concrete implementations.
Studying of BPS we study also their concrete implementations

December 10-11 2006 Timisoara meeting 24

Main result

Theorem
System SP(SP) is a direct (inverse) abstraction
of any concrete implementation of a system
P of basic protocols from the class K(P)

Systems SP and SP are attributed systems
with states labeled by the statements of BL.

They define semantics of BPS
K(P) is a class of concrete implementations of P.

December 10-11 2006 Timisoara meeting 25

Abstraction relation on states

more abstract:

The same attribute
labeling and validity

 BLAbs
 Abs

))|()|)(((),(ααα =′⇒=∈∀⇔∈′
′×⊆

ssss
SS

ss ′<

December 10-11 2006 Timisoara meeting 26

Abstraction relation on systems

s' t'

s t

a

a
ϕ ϕ

as' t'

s t
a

ϕ ϕ
inverse

direct

))),()((),)((,(
))),()((),)((,(

ϕϕ
ϕϕ

∈′∧→∈∃⇒′→′∧∈′′∈′∈∀
∈′∧⎯→⎯∈∃⇒′⎯→⎯′∧∈′′∈′∈∀

tttsSttsssSsSs
tttsSttsssSsSs aa

)))(()(,(
)))(()(,(

tttsSttsssSsSs
tttsSttsssSsSs aa

′∧′→′∈′∃⇒→∧′′∈′∈∀

′∧′⎯→⎯′∈′∃⇒⎯→⎯∧′′∈′∈∀
<<

<<

:SS ′< 1−⊆∃ Absϕ invdir << ,
Preserve initial states

December 10-11 2006 Timisoara meeting 27

Direct and inverse abstractions

If some property is reachable in a system then it is reachable
in a direct abstraction of the system.
Therefore: use direct abstraction for verification (safety
condition for example)

If some property is reachable in an inverse abstraction of a
system then it is reachable in the system itself.
Therefore: use inverse abstraction for test generation
(reachability of error condition)

December 10-11 2006 Timisoara meeting 28

Abstract implementations of systems of basic
protocols

• Basic protocols: attributed systems labeled by pre- and
postconditions;

• States identified with their state labels (formulas);
• Predicate transformer defines transitions;
• Partially sequential composition of behaviors defined by

– Permutability relations on the set of actions.

• Direct and inverse implementations of BPs by systems SP
and SP.

December 10-11 2006 Timisoara meeting 29

Predicate transformers

Monotonicity:

)),(),(()(βγβγγγ ′→→′→ ptpt

βγγβγ →′′= ,),(pt

),(
,?,,,

βγγ
βγγγγαγ

βα

pt=′
→′=′′>→<→

>→<
P

P

Instanciated BP

December 10-11 2006 Timisoara meeting 30

To compute pt(γ, β) = γ′
1. Reduce A to minisphere form and then
to dnf

...
...

21

21

∧∧=
∨∨=

iii γγγ
γγγ

∅≠∩)()(βγ AttrAttr ij

ijγ2. Delete all such that

Example of
predicate transformer

βγγ ∧′′=′

December 10-11 2006 Timisoara meeting 31

Permutability relation
Defined on the set of labeled actions
Transferred to pairs behavior-action

))0:((),):((bb ↔¬↔⊥¬ αα

)):((τα↔¬ u

bb ↔⇔↔Δ):():(ταα
bvbubvu ↔∧↔⇔↔+

bubabua ↔∧↔⇔↔.

):():()(auau ↔′→↔∧′→ γγγγ
Monotonicity:

December 10-11 2006 Timisoara meeting 32

Partially sequential composition

);().().(
,

vu
Jjbu

jj
Ii

ii
j

vubvuavu εε+∗+∗=∗ ∑∑
∈↔∈

0);0(,);(,);(==⊥⊥=Δ εεεε
);(:));:((εεαεεα ′=′

v
Jj

jju
Ii

ii vbvuau εε +=+= ∑∑
∈∈

. ,. Canonical form of behaviors

December 10-11 2006 Timisoara meeting 33

Abstract implementation

)):),(()(
)(

),(∑
∈

∞∞ ∗Δ∗=
α

αα α
Pp

ppp TSTprocS

)},(|{)(pPpP inst pre→∈= αα))(,(),(pp postptT αα =

)():),(()():),(()(
)(

),(
)(

),(
01
∑∑
∈∈

Δ+∗Δ∗+∗Δ∗=
α

α
α

αα αα
Pp

p
Pp

p pppp TT STprocSTprocS

):)),,((()():),(()(Δ∗∗Δ∗ qpqpp αα TTprocTproc

Composition of two BPs (simple scenario)

Instantiated BPs
Terminal protocols

10
ααα PPP ∪=

))}((||{)(pPpP inst pre∧¬=¬∈= αα

December 10-11 2006 Timisoara meeting 34

Concrete implementations

• Environment state
• Insertion function (transitions)

December 10-11 2006 Timisoara meeting 35

The structure of a concrete implementation K
BL is interpreted on a concrete multisorted algebraic system.
The signature of K is extended by hidden attributes and symbols.
The states of environment:

s is the mapping from attribute expressions to their values.
q1,…,qm partially sequential composition of BPs.
u1,…,un the states of named passive agents (they do not participate in protocols).
Special attributes: ActiveBP (the list of active protocols), b.active (the list of active
agents).
Environment actions: start, start b, terminate b

],...,][...[11 nm uuqqs ∗∗

aaba ↔Δ⇔↔⇔↔):():():(γγγ terminatestart
)):(()),:((buu terminatestart γγ ↔¬↔¬

December 10-11 2006 Timisoara meeting 36

Initial states of environment:

]:,...,:][:[11 kk umums startγ
is the conjunction of equalities for s.γ

]][:[Δstartγs
The state of successful termination:

Transitions:
•The change of a state of a protocol;
•The termination of a protocol;
•The launching of a new protocol;
•The termination of a system.

],...,][...[11 nm uuqqs ∗∗

December 10-11 2006 Timisoara meeting 37

Insertion function

]:,...,:][[][
|,,

11
):(

):():(

kk
a

aa

umumqsqs
sqqss

′′⎯⎯ →⎯
=′⎯⎯ →⎯′⎯⎯ →⎯

β

ββ β

]:,...,:][:[]:[
,|

]:,...,:][[]):[(
,|

11
):(

11
):(

kk

b
kk

b

umumsbs
sss

umumqsqbs
sss

start terminate

 terminate
 terminate

 terminate

γγ
γ

γ
γ

τγ

τγ

′⎯⎯→⎯
′⎯⎯⎯ →⎯=

′⎯⎯→⎯∗
′⎯⎯⎯ →⎯=

Transition of BP

Termination of BP
Participate in q, but

not in q′

Participated in b

December 10-11 2006 Timisoara meeting 38

][][
),:()(,)(|

][]:,...,:][[
),:(,).:()(,)(|

):(

):(
11

):(

ttqstqs
sspbb

tptqsumumtqs
sssaqppabb

b

a
kk

ab

′∗∗′′⎯⎯→⎯∗
′⎯⎯ →⎯Δ+=′∧′=

′∗∗∗′′⎯⎯ →⎯∗
′′⎯⎯ →⎯′⎯⎯ →⎯↔′+=′∧′=

′

′

τδ

β

β

δδγ

βββγ

start

start

proc pre

proc pre

):))(,((),:(),:(bbtbt ′′=′= terminatepostpt terminatestart γγγ

]:[)]:[(
,|

):(start terminate

 terminate

γγ
γ

τγ sbs
sss b

′⎯⎯→⎯
′⎯⎯⎯ →⎯=

Termination of a system

Launching BP

	Insertion modeling and requirement specifications for distributed concurrent systems��A.Letichevsky
	Requirement specifications�in design process
	Insertion function
	Insertion equivalence
	Abstraction levels for insertion models
	Abstract models
	Basic Protocols Specification Language�(Symbolic models)
	Basic protocols
	Two basic protocols for telecommunication example
	Two more protocols
	Composition of BP (Annotated scenario)
	The use of basic protocols
	Static requirements checking
	Dynamic requirements checking
	Inconsistent protocols�(inconsistency of features 3way Calling and Call Waiting)
	Inconsistent state
	Scenario�adjusting �inconsistency
	Basic Language
	Validity relation
	Process language
	Concrete implementation of systems of BPs
	Questions
	Main result
	Abstraction relation on states
	Abstraction relation on systems
	Direct and inverse abstractions
	Abstract implementations of systems of basic protocols
	Predicate transformers
	Permutability relation
	Partially sequential composition
	Abstract implementation
	Concrete implementations
	The structure of a concrete implementation K
	Insertion function

