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The Uni-Kiev team plans to continue its investigations, which was carried out 

under the direction of the RISC in the framework of the Intas 96-0760 

"Rewriting techniques and efficient theorem proving". It will continue its 

research focused on proof-theoretic foundations and on the implementation of 

tools for finding practically acceptable solutions for the following:  

 

• The theoretical and practical development of the existent SAD system in the 

direction of the further construction of intelligent working environment for 

the automated verification of formal (mathematical and non-mathematical) 

texts of different kind, mainly, for the verification of a wide variety of 

properties of software, hardware, and protocols by means of their proving 

with the help of combining deduction with symbolic computation and model 

checking.  

 

• The development the theory of synthesis and verification of reactive systems 

(algorithms) with the purpose of the construction various toolkits for 

designing systems for synthesis of software and hardware, which is based on 

their declarative specifications and (different) theorem-proving technique.  

 

 

In this project, these problems are presupposed to make more coherent than in 

the previous Intas. It is based on the fact that even in the case of designing of a 

family of very simple program systems/devices, the verification of some of their 

properties can often be made only with the help of a general-purpose (universal) 

automated reasoning system since nobody may forecast what property will be 

needed to prove (of course, probably except such properties as “safety” and 

“liveness”).      
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Introduction. Formal methods are widely used in the computer science 
community. Formal verification and certification is an important component of 

any formal approach. Such a work can not be done by hand, hence the software 

that can do a part of it is rather required. The verification methods are often 

based on a deductive system and “verify” means “prove”. Corresponding 

software is called deductive (proof) assistant. 

 

1. Three Dimensions in Deductive Assistance 
 

To describe the modern approaches, it is convenient to discuss existing 

mathematical assistants from the point of view of the style of formalization they 

support, the style of proof they require, and the granularity of proof they accept. 

  

Formalization style. It is determined by the form of definitions (whether they are 

computable), by the way of reasoning (whether it is constructive, or strictly 

typed, or calculation-based), by the choice of preliminaries, and so on. 

Obviously, the style, above all, depends on the choice of base logic and of 

fundamental theories used for formalization. 

 

At present, there exist two main trends in formalization: applying higher-order 

logic (type theory) and first-order logic (set theory). Types are used in the 

majority of the well-known assistant-systems such as Isabelle/HOL, Coq, 

Omega, PVS, HOL, Automath, Theorema, Lambda-Clam, and others. 

  

Note that the type-theoretic approach favors inductively defined domains and 

recursive definitions and is well suited to the formalization of concepts of 

programming or engineering. It may not, however, be the ideal framework for 

the formalization of traditional mathematics, although most of the systems 

include a collection of purely mathematical theories. 

 

On the opposite side, the system Mizar uses classical first-order logic and 

Tarski-Grothendieck set theory. This approach corresponds well to the 

traditional style of mathematical presentation and the collection of JFM articles 
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that were verified in Mizar base,constitutes the largest library of mathematical 

computer knowledge at present. 

 

The SAD system does not adopt any kind of set theory (or any other 

fundamental theory) as the common base for all formalizations. It prefers to 

define a particular set of preliminaries for a problem under consideration, 

choosing base concepts on the appropriate level of abstraction in first-order 

classical logic. 

 

Proof style. Another important property of a proof assistant is what kind of 

input it takes. Interactive systems are most often tactic-driven, meaning that a 

given statement is being proved by a sequence of instructions given to a system. 

These instructions, tactics, can be primitive, like applying an inference rule, or 

rather complex, like generating a proof plan for current subgoal or running an 

external prover. Systems of that type are Isabelle, PVS, Omega, Coq, HOL and 

others. Working with such a system is easy if it provides a terse set of powerful 

tactics, which are generally sufficient to capture the desired inferences. 

 

Systems of the second type accept propositions and proofs written in a formal 

logical language. Of course, this language must be extended with facilities that 

structure the logical formulas into a proof. The verification system must be 

capable of checking each successive proof step. Typical representatives of 

systems of that kind are Mizar and SAD; Isabelle, with introduction of Isar 

(containing a structured language imitating a language of mathematical proofs) 

can be considered as a proof-driven system, too. 

 

Proof detailing. The reasoning power of mathematical assistance can be weaker 

or stronger in accordance with user requirements for proof details. Therefore, 

systems can range between proof checkers and "proof finders". The former 

accepts only proof steps having the form of inference rule applications, and, 

hence, proofs supplied by them have to be fully detailed. Mizar is a system of 

that kind, though the set of inference rules of Mizar is quite large. 

  

Systems, which we call "proof finders", use proof search methods or proof 

planning technique and try to close the "gaps" in proofs. The systems SAD,  

Theorema, Nqthm, and ACL2 are systems of that kind. 

 

Tactic-driven systems usually have enhanceable sets of tactics, so that their 

"reasoning power" is not peculiar. Almost any tactic-driven system can be 

classified as a proof finder. However, some experiments with Isabelle and Coq 

show that whenever one tries to prove a complex theorem ``at once'', without 

splitting it to a number of ad-hoc lemmas, without using special tactics and 

existing libraries, the ``proof construction dialog'' quickly becomes complex, 

wide-branched, and hardly traceable. 
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2. The SAD System: What can it do? 

 

                                                               
                        

The SAD Architecture 
 

 

Having the SAD system located in the "three-dimensional space", we 

provide a short description of its current state. The SAD can: 

• perform a sequent inference search in classical first-order logic;  

• prove theorems in the environment of self-contained mathematical 

texts written in a formal language called ForTheL. This language 

is a formal proof-writing language, but it is very close to usual 

mathematical language;  

• Verify self-contained mathematical ForThel-texts containing 

propositions and their proofs. 
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Generally speaking, SAD verifies/proves the validity of a given input 

ForTheL text/theorem in an environment which, like any usual 

mathematical text, consists of definitions, assumptions, affirmations, 

theorems, proofs, etc.  

 

What does ``correctness'' of such an object mean? We distinguish 

three types of correctness of a ForTheL text: syntactical, ontological 

and logical. 

 

Syntactical correctness (well-formalness) is checked by the parser 

and is a necessary condition for any further actions. 

 

Ontological correctness means that the text in question contains no 

occurrence of a symbol (constant, function, notion or relation) that 

comes from nowhere. Every such symbol must be either a signature 

symbol or introduced by a correct instance of a definition. 

 

Logical correctness is imposed on particular affirmations in the text: 

theorems, lemmas, and intermediate statements in proofs. Any such 

affirmation must be deducible from its logical predecessors. 

 

Ontological and logical correctness are, to some extent, independent. 

It is quite obvious that an ontologically correct text may contain false 

affirmations. Also, an ontologically incorrect text may appear to be 

logically correct: e.g., we may not know anything about the relation P 

and the constant c, yet prove (P(c) --> P(c)).  

 

Nevertheless, it is preferable to require an input text to be 

ontologically correct for the following reasons. First, ontological 

verification helps to indicate flaws in your formalization (similarly to 

type checking in programming languages). Second, during 

ontological verification the system obtains some important 

knowledge about the text, which will be used later in logical 

verification. 
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3. The SAD system: How can it do that? 
 

Look at the given Figure. All the principal components of the SAD 

system are shown there. 

 

PARSER accepts a ForTheL text, checks its syntactical correctness 

and converts the text into a normalized form that will be convenient 

for further processing.  

 

Verification manager makes her round through the normalized text 

sentence by sentence. Every sentence is first sent to the ``evidence 

collector'' which accumulates so-called term properties for the term 

occurrences in the sentence. 

 

Term properties are literals that tell us something important about a 

given term occurrence. A literal (i.e. an atomic formula or its 

negation) L is considered to be a property of a term t in a context ΓΓΓΓ 

(usually, a set of logical predecessors of a given occurrence of t in the 

text), whenever t is a subterm of L and L is deducible in ΓΓΓΓ. 

 

The most important purpose of term properties is to hold 

information about term ``types'', which is usually expressed by an 

atomic statement of the form ``$t is a <notion>''. 

 

Fortified with the found properties, the sentence is passed through 

the ontological checker. Then, if the sentence is an affirmation to be 

proved, the manager forms a kind of sequent (we call it proof task) 

and sends it to the reasoner. Note that the ontological checker may 

also resort to the reasoner in order to find whether the guards of a 

given definition or signature extension are satisfied. 

 

REASONER can be viewed as a kind of automated heuristic based 

prover, supplied with a collection of proof task transformation rules. 

This collection is not intended to form a complete logic calculus. The 

purpose of the reasoner is not to find the entire proof on its own, but 

rather to simplify inference search for the background prover. The 

latter is a combinatorial automated prover in classical first-order 

logic, whose duty is to complete the proofs started by the reasoner. If 

the background prover fails to find the inference at some instant, the 

reasoner may continue the proof task transformation or try an 

alternative way, or just reject the text. 
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MOSES is a background prover. It bases on the original sequent 

formalism  satisfying the following requirements:  

• the syntactical form of an initial problem should be preserved;  

• inference search should be goal-oriented;  

• deduction must efficiently be made in the signature of an initial 

theory;  

• equality handling should be separated from the deduction process.  

 

These features of the sequent formalism become very important 

when some interaction between a user and the reasoner and/or the 

prover is presupposed, as well as when the help of external services 

really is needed for tasks that require the "sophisticated" technique 

of their solving.  Besides, it permits to incorporate natural reasoning 

methods. Additionally, it gives a possibility for constructing efficient 

computer-oriented methods of logical inference search in 

intuitionistic logic.  

 

Note that an external theorem proving system like Otter, SPASS, or 

Vampire may be used. This capability of SAD provides us with a (yet 

another) scale to compare automated theorem provers: trying them 

on relatively simple problems in complex and heavily redundant 

contexts rather than on hard problems with a pre-adjusted set of 

relevant premises (mostly the case for problems in the famous TPTP 

library). 
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4. Experiments 
 

In the course of development of SAD, we have conducted a number 

of essays on formalization and verification of non-trivial 

mathematical results: 

 

• Ramsey's Finite and Infinite theorems; 

• The stability of a refinement relation over a number of operations 

on program specifications; 

• Some properties of finite groups; 

• The Cauchy-Bouniakowsky-Schwarz inequality; 

• The square root of a prime number is irrational. 

• The Chinese remainder theorem and Bezout's identity in terms 

• of abstract rings; 

• Tarski's fixed point theorem (cited above). 

 

 

The texts listed above were written in ForTheL and automatically 

verified in SAD (using SPASS as the background prover). This work 

have taught us many important lessons. Let us mention some of 

them: 

 

• A formalization style is critical: the choice of symbols to introduce 

in definitions, the choice of preliminary facts, and even the way a 

proof is structured may decide whether the text will be verified or 

not. 

• It is highly desirable to comprehend the proofs before writing 

them in ForTheL. The SAD system may succeed to fulfil the gaps 

in a well thought-out reasoning, but it will not invent one for you. 

• In most cases, the background prover finds the proof in three 

seconds --- or does not find it at all. 
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5. Example of ForTheL-text 
 

 

Definition DefCLat. A complete lattice 

    is a set S such that every subset of S 

    has an infimum in S and a supremum in S. 

 

Definition DefIso. 

  f is isotone iff for all x,y << Dom f 

    x <= y  =>  f(x) <= f(y). 

 

Theorem Tarski. 

  Let U be a complete lattice. 

  Let f be an isotone function on U. 

  Let S be the set of fixed points of f. 

  S is a complete lattice. 

Proof. 

  Let T be a subset of S. 

 

  Let us show that T has a supremum in S. 

    Take Q = { x << U | f(x) <= x and 

      x is an upper bound of T in U }. 

 

    Take an infimum q of Q in U. 

    f(q) is a lower bound of Q in U. 

    f(q) is an upper bound of T in U. 

    q is a fixed point of f. 

    Thus q is a supremum of T in S. 

  end. 

 

  Let us show that T has a supremum in S. 

    ### SAD does not support proofs by analogy, 

    ### so we have to repeat here our reasoning. 

    ... 

  end. 

qed. 

 

 

Note that the corresponding ForTheL-text contains 11 statements in 

preliminaries (ordered sets), 7 definitions (upper and lower bounds, 

supremum, infimum, complete lattice, isotone function, fixed point), 

2 lemmas, 18 sentences in the proof of the theorem. 
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6. Some Remarks on SAD 
 

Certainly, we could not give here a detailed description of all nice 

features of SAD. SAD is a powerful system and its power lies in its 

reasoning facility. Experiments show that, for example, the specific 

strategy of definition processing contributes a lot to the success of the 

whole verification process. If we use definitions straightforwardly ---

convert them into formula images and add the corresponding 

premises to the sequent that goes into a prover --- we have no chance 

to verify the proof of Tarski fixed-point theorem as it is formulated 

above, even when the winner of CASC competitions is chosen as the 

background prover. 

 

SAD is not a perfect system (as any another!). One can easily see how 

it may be improved and developed.  

 

Our nearest research and implementation plans are:  
 

• To extend ForTheL and SAD with some means to talk and 

reason about second-order objects (functions, vectors, 

sequences) and operations on them;  

• To provide users with a facility to implement custom strategies 

for the reasoner;  

• To improve the existent possibilities of the background prover 

in the direction of using efficient handling of equality and of 

applying different non-classical logics. 

• To develop and implement a mathematical library of SAD to 

accumulate verified portions of mathematical knowledge and 

to support further (deeper) advances in formalization. 
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7. Where Can the SAD System Be Useful?  
 

In any domain where precise deductive style formalism is 

appreciated as the means of problem description. (Note that the 

problem formalization is always the hardest part of the whole work. 

Right formalization is a 80% guarantee of a successful verification.) 

In particular, these domains are:  

• automated theorem proving,  

• the verification of mathematical papers,  

• online training in mathematics and logic,  

• construction of knowledge bases for formal theories,  

• integration of symbolic calculation with deduction.  

 

Also, it can be adapted  

• for solving logical problems of decision-making theory,  

• for verifying formal specifications of both software and hardware, 

and so on. 

 

In the long run, the ideas being used in the SAD system and its tools 

aim to construct and support a powerful computer- and knowledge-

based (Internet) infrastructure for mathematical research and 

education, as well as, for deductive processing of formalized text of 

appropriate kind. 
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II. SYNTHESIS AND VERIFICATION OF 

REACTIVE ALGORITHMS 
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We are going to focus our attention on the problems of the synthesis 

and verification of reactive systems (algorithms).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Reactive  System 

 

 
By reactive systems (algorithms) we mean systems (algorithms) that 

perform step-wise transformations of infinite input sequences into 

infinite output sequences. Algorithms of that sort describe the 

behavior of systems continuously interacting with their environment. 

Formal methods based on logical specification and automated 

theorem proving are very promising for the development of such 

systems. 

 

 

Environment 

Functional  

part 

Control  

part 
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1. Basic Approaches 
 

It is possible to select two basic approaches to the development of 

correct reactive algorithms: the formal verification of the informally 

obtained high-level implementation of an algorithm; and the 

provable synthesis of an algorithm (software/hardware system), 

which uses of a rigorous automated reasoning technique that convert 

a declarative specification of requirements to an algorithm into a 

high-level imperative representation of the algorithm. 

 

Formal verification proves that the (informally obtained) imperative 

representation of an algorithm has certain specified properties, but 

does not yet guarantees that the selected representation will exhibit 

the intended behavior. 

 

Synthesis uses rigorous methods to transform the declarative 

specification of requirements to an algorithm into its imperative 

representation and guarantees the precise correspondence between 

the specification and its imperative implementation. 

 

 

2. Provably correct design  
 

We address the provably-correct design of synchronous reactive 

algorithms from their declarative specification.  All design 

transformations are proved to be correct and they are performed 

automatically. Every change in the algorithm representation made by 

a designer during interactive design process is verified for 

correctness (with respect to the initial specification). 

 

REMARK. There are two main classes of these properties: safety 

properties and liveness properties. A verification-oriented language 

should have facilities for expressing both safety and liveness 

properties, while in a synthesis-oriented language we can make do 

with the facilities for expressing only safety properties. 

  

In this project, we will focus our attention on the provably correct 

design of software and hardware. For this purpose we will use a 

special initial specification language being a subset of the first-order 

language with monadic predicates interpreted over the set of integers 

which is regarded as a discrete time domain. 
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Semantics of a reactive system specification, as it follows from the 

above-given figure, can be described in the form of two interacting 

non-deterministic automata. One of them specifies the behavior of 

the system under development and the other specifies the behavior of 

the system’s environment, or more precisely, available information 

about the behavior of this environment. 

 

 

3. New contributions to the project 
 

The previous Intas 96-0760 followed the above-mentioned approach 

and the new Intas project will make the same. 

 

 The new contributions may be classified as follows: 

 

• Construction of tools for checking specification for consistency. 

• Development of new methods for synthesis of reactive algorithms 

from logical specifications. 

• Inductive synthesis (according to the structure of the specification 

formula). 

• Synthesis from the formula represented by the set of clauses. 

• Synthesis by constraints propagation. 

• Verification of liveness properties of synthesized models. 

• Development of synthesis techniques for Buchi automata with 

minimal number of states 

• Simplification of Buchi automata (state minimization). 

• Development of reduction technique for the automaton modeling 

the system to be verified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


