
Formal Verification and Static Analysis

Matching Expertise with Industrial Needs

Marius Minea

Institute e-Austria Timişoara

INTAS project meeting, 10-11 Dec. 2006



Verification: Expertise and Industrial Needs 2

Verification in Industry: Needs and Challenges

Two aspects:

– critical/result: find and correct a bug with significant impact

– day-to-day/process: improve quality/cost of software development

Challenges:

– need pushbutton tools usable within current development process

– need “intelligent” tools that hide formalism and make right choices

– in case studies, need human resources for system understanding

– a lot of overhead effort spent in non-verification tasks

– difficult to change development for existing projects

– difficult to argue cost-efficiency of new approach with hard data

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 3

Formal Methods in Software Development: Impact Points

Requirements analysis

– formally specified ⇒ identify omissions / inconsistencies

– min.: rigorous specs ⇒ avoid effort duplication in testing

Modeling / Design

– formal modeling and automated code generation

– min.: models in sync with code; matching model & code semantics

Development

– critical parts of code verified

– min.: static analysis for potential bugs; verified manual models

Testing

– model-based test generation

– min.: automated test generation / relevant coverage guarantees

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 4

Case Study 1: Telecom Verification (Alcatel)

Formal verification a communication block written in SDL;

evaluate usability of approach on larger scale

Case study features:

– code written in a specialized language (SDL)

– but with formal semantics, and translatable to verification tool

(IF verification toolkit from VERIMAG Grenoble)

– SDL used directly for generation of C code for actual system

Model characteristics:

– single process, 8 procedures

– two dozen messages

– 1500 lines of SDL code (excluding comments)

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 5

Issues in Verification

System specifics

– C functionality within special SDL comments

⇒ semi-automated translation

Abstraction

– many message fields; some large in width (e.g. addresses)

– eliminate irrelevant fields; abstract others (e.g. null/non-null)

– some may be done automatically (slicing), others by hand

Model Size

– 50 control states, 25 data bits ⇒ ca. 400 million potential states

Actual state space:

– 875 000 states, with inline procedure expansion

– 140 000 states, with modeling of procedure call/return

– 30 000 stable states, with collapsing of transient states

Performance: average 1 minute / 30MB / spec. ⇒ still scalable

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 6

Case Study 2a: static analysis for C

Need: custom analysis task

– verification of buffer copy routine with hundreds of structure fields

⇒ hard to do by manual code inspection

the location of a previously discovered / corrected error

Approach: CIL infrastructure for analysis of C code (UC Berkeley)

– wrote custom analysis that handled vast majority of cases

– 1% of fields remaining for manual inspection

Conclusion:

– specific nature of problem hardly justifies general tool

– but a higher-level property specification language could be useful

(problem could be phrased as an instance of use-def analysis)

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 7

Case Study 2b: verification for C

Verification of signaling & circuit management code for a phone switch

– code written in CHILL, automatic translation to C

– analysis with BLAST symbolic model checker (UC Berkeley)

– 5400 lines of C code relevant to suspected error scenario

(separated semi-automatically from body of system code)

– model involved double indirectation chain stored in arrays

(vulnerable to index overflows)

– BLAST found potential error scenario by overflow of 4-bit value

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 8

Case Study 3: error detection (embedded)

Project in execution

– elusive errror, hard to reproduce, hardware-in-the-loop needed

Mixed approach, using several techniques

– model checking with BLAST: no errors found

(insufficient alias analysis)

– static analysis with Splint: found buffer overflow

but likely not triggerable in practice

– dynamic analysis with Valgrind: pending

– schedulability analysis for RTOS tasks: another possibility

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 9

Technology Expertise / Needs: Static Analysis

– successful option for detecting a large class of bugs

buffer overflows (memory corruption), uninitialized values

also property checking (using automata – close to model checking)

– scalable to large amounts of code

Problems to address

– friendly user interface, allowing code comprehension

e.g. possible source of overflowed value

– easily specifiable custom analyses

– modular usage / tool combinations / user guidance

e.g. annotations for conditions known (not) to be true

– VC generation/discharging by specialized techniques

(polynomial invariants – Laura Kovács)

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 10

Technology Expertise / Needs: Compositional Reasoning

– reasoning about components

– deducing properties of system from properties of its components

without the need to construct the entire system model

M1 < S1

M2 < S2

M1 ‖M2 < S1 ‖ S2

Such compositional rules are valid for many formalisms, but

– usually models are not built to function in any environment

⇒ model M may not refine spec S when standalone

⇒ need assumptions about context for guarantees about behavior

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 11

Circular Assume-Guarantee Reasoning

Decompose proof that an implementation refines a specification

Chandi&Misra’81, Abadi &Lamport’93, Alur&Henzinger’95, McMillan’97

A1 ‖ B2 < A2 ‖ B2

A2 ‖ B1 < A2 ‖ B2

A1 ‖ B1 < A2 ‖ B2

Refinement often holds only under environment assumption

A1 < A2 and B1 < B2 may not hold:

A2: x = 0 A1: x’ = y (x0 = 0)
B2: y = 0 B1: y’ = x (y0 = 0)

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 12

Assume-Guarantee: components in a context

Refinement goal: context with two implementation components

Premises: individually replace components with specification

C[A1,B2] < C[A2,B2]
C

A1 B2 <
C

A2 B2

C[A2,B1] < C[A2,B2]
C

A2 B1 <
C

A2 B2

C[A1,B1] < C[A2,B2]
C

A1 B1 <
C

A2 B2

INTAS meeting, 10-11 dec. 2006 Marius Minea



Verification: Expertise and Industrial Needs 13

Potential work: Combining model checking and theorem proving

With assume-guarantee reasoning

– model-check individual refinements

– theorem proving (or at least proof assistants) for decomposition

For static analysis

– model checking finite program model

– discharging verification conditions by theorem proving

For specifications

– consistency checking (theorem proving, SAT checking)

– or custom (model checking) algorithms

(e.g. Message Sequence Charts)

INTAS meeting, 10-11 dec. 2006 Marius Minea


