
One variant of assertional programming

Rukhaia Khimuri

Institute of Applied Mathematics,
Tbilisi State University

Georgia
rukhaia@viam.hepi.edu.ge

Draft

1 Introduction

In 1879 Gottlob Frege created predicate calculus, he considered predicate calcu-
lus as a universal language. For development of predicate calculus was necessary
to be created an algorithms which describes deduction processes, These processes
has to be mathematically precise.

In 1930 Herbrand, Goedel and Skolem independently showed that Frege’s
calculus works well with true sentences, moreover Herbrand gave proof search
procedure. In 1936 Church and Turing showed, that predicate calculus is unde-
cidable.

Beth and Gilmore implemented Herbrand’s algorithm, they showed that Her-
brand’s algorithm was not effective enough. After Robinson developed resolution
calculus and using this calculus Herbrand’s algorithm become more effective.

In 1971 Alain Colmerauer studied all results mentioned above and developed
system Prolog. In 1975 Robinson implemented LogLisp, which is a Prolog imple-
mentation in Lisp and allows Prolog programs to call Lisp and vice versa. The
main goal of this system was to put together logical and functional program-
ming concepts. Researchers considered LogLisp as a good example of assertional
programming.

assertional programming is a programming type, where we declare some sen-
tences as true and then prove some goals as logical consequence of these sen-
tences.

2 ”my family” program

Definition 1. level of symbols

1. 0-level symbol of τSR-logic is a fundamental symbol of τSR-logic
2. n-level (n ∈ 1, ..., n) symbol of τSR-logic is constructed by set of symbols,

where each symbols level is less then n and contain at least one symbol that
has level n− 1.

Definition 2. we say the form is n-level form of τSR-logic, if it contains at
least one n-level symbol and any other symbols has level less or equal to n.



Let consider program ”My family”. This program contains following facts:

mother(lali, ).
parent(mamuka, maka).
parent(mamuka, eka).
parent(mamuka, irakli).
parent(lali, maka).
parent(lali, irakli).
parent(nino, nana).
female(maka).
female(eka).
man(mamuka).
man(irakli).
distinct(eka, mamuka).

And following rules:

(1) child(X, Y) : −parent(Y, X).
(2) mother(X, Y) : −parent(X, Y) ∧ female(X).
(3) father(X,Y) : −parent(X,Y) ∧man(X).
(4) sister(X, Y) : −parent(Z, X) ∧ parent(Z,Y) ∧ female(X) ∧ distinct(X,Y).
(5) brother(X,Y) : −parent(Z, X) ∧ parent(Z, Y) ∧man(X) ∧ difference(X,Y).
(6) aunt(X, Y) : −father(Z,Y) ∧ sister(X, Z).
(7) cousin(X,Y) : −child(X,Z) ∧ aunt(Z, Y).

If we ask following question to our program

?-female(lali).

Our goal will not successes and we will get answer ”No”.

Let extend our program by following rule:

(8) female(X) : −mother(X, ).

and ask again same question to our extended program

?-female(lali).

Now our program can give us positive answer.

To observe our program we can discover in the rules (2) and (8) predicate
mother is defined by predicate female and vice versa, so it gives higher risk of
non termination computation.

3 Alternative of ”my family” program

Let now consider the alternative program of the ”my family” program.



This alternative program like ”my family” program contain following facts:

mother(lali, ).
parent(mamuka, maka).
parent(mamuka, eka).
parent(mamuka, irakli).
parent(lali, maka).
parent(lali, irakli).
parent(nino, nana).
female(maka).
female(eka).
man(mamuka).
man(irakli).
distinct(eka, mamuka).

Rules in our alternative program are defined following way:

A ↔ B1 ∧ ... ∧Bn

where B1 ∧ ... ∧ Bn contains only fundamental or predefined predicates and
A is defined by this definition. A has an one level higher then highest levels
predicates in B1 ∧ ... ∧Bn.

under σ[m,n][σ1, ..., σk] we mean an expression, where σ1, ..., σk are all pair-
wise distinct operators from B1, ..., Bn and m, n shows type and level of this
expression respectively.

So, rules in our alternative program are:

D1[I, I] child(X,Y) ↔ parent(Y, X).
D2[I, I] mother(X, Y) ↔ parent(X,Y) ∧ female(X).
D3[I, I] father(X, Y) ↔ parent(X, Y) ∧man(X).
D4[II, I] sister(X, Y) ↔ parent(Z, X) ∧ parent(Z, Y) ∧ female(X) ∧ distinct(X, Y).
D5[II, I] brother(X, Y) ↔ parent(Z,X) ∧ parent(Z,Y) ∧man(X) ∧ difference(X, Y).
D6[II, II] aunt(X, Y) ↔ father(Z, Y) ∧ sister(X, Z).
D7[II, III] cousin(X, Y) ↔ child(X, Z) ∧ aunt(Z,Y).

The predicates defined by D1−D5, D6 and D7 rules are one, two, three level
predicates respectively. We can rewrite rule D1 as.

child[I,I][parent]

so, predicate child is defined by predicate parent. We can similarly rewrite
D2 −D7 rules.

to satisfy our goal an effective way we modify our program as is shown in
table 1, table 2.



0-level predicates I-level predicates III-level predicates IV-level predicates
parent child[parent] aunt[father,sister] cousin(child,aunt)
female mother[parent,female]
distinct father[parent,man]
man sister[parent,female,distinct]

brother[parent,man,distinct]
table 1.

Fundamental facts Derivative facts
1-level 2-level 3-level 4-level
parent(mamuka,maka) child(maka,mamuka) aunt(nino,maka) cousin(nino,nana)
parent(mamuka,eka) sister(maka,eka)
parent(mamuka,irakli) mother(lali,eka)
parent(lali,maka) mother(lali,maka)
parent(lali,irakli) sister(nino,mamuka)
parent(nino,nana)
female(maka)
man(mamuka)
man(irakli)
female(eka)
distinct(eka,mamuka)
table 2.

Here we give computational procedure:
INPUT:
a program P and goal G.
OUTPUT
A substitution θ, such that the Gθ is deduced from P , or failure if failure has

occurred
Subst is an empty substitution ε and V ars is a set of variables of G. While

G is not empty do
1) Choose a subgoal S from G.
2)If S is of n-level, try to find a renamed copy R of an n-level clause in P

such that S and head of R unifies with an mgu θ.
3)If 2) succeeds remove S from the goal and add the body of R to G.
4) if 2) fails then try to find a renamed copy of a k-level clause (k¿n) R in P

whose body contains a subgoal that is unifiable with S by an mgu θ, remove S
from G, and add the head of R to G

5) if 4) fails, exit the while loop
6) G := Gθ,Subst := Substθ

7) if G is not empty, return the restriction of Subst to V ars, failure otherwise
using this procedure our program can answer now goal ”?-female(lali)” and

we get answer ”yes”.



4 Future work

We are going to develop and implement the method mentioned above.

5 references

1) Matthias Baaz, Andrei Voronkov: Logic for Programming, Artificial Intelli-
gence, and Reasoning, 9th International Conference, LPAR 2002, Tbilisi, Geor-
gia, October 14-18, 2002, Proceedings Springer 2002

2) BRATKO, Ivan. Prolog Programming for Artificial Intelligence; Third edi-
tion. Pearson Education, Addison-Wesley, 2001. Second edition, Addison-Wesley
1990. First edition, Addison-Wesley 1986.

3) Clocksin, W.F. and Mellish, C.S., 1987. Programming in Prolog. Third
Edition. Springer Verlag, Berlin.

4) Sh. Pkhakadze, Some problems of the notation theory(Tbilisi University
Press, Tbilisi, 1977).(in Russian)

5)On One Variant of τ Theory Extended With Reducing Symbols, Wis-
senschaftliche Beitrage der Friedrich Schiller University,Jena,1979,pp.365-381(In
Russian).

6) Rukhaia Kh, τSR Logic-Foundation of Assertional programming.
7)K Rukhaia, L Tibua, ONE VERSION OF PROGRAMMING ACCORD-

ING TO LOGIC τSR-language;Bulletin of TIGMI; vol. 4; 2000


