Article Submitted to Journal of Symbolic Computation

An Automated Prover for Zermelo-Fraenkel
Set Theory in Theorema*

WOLFGANG WINDSTEIGER

RISC Institute
A-4232 Hagenberg, Austria
E-mail: Wolfgang.Windsteiger@RISC.Uni-Linz.ac.at

Abstract
This paper presents some fundamental aspects of the design and the im-
plementation of an automated prover for Zermelo-Fraenkel set theory
within the Theorema system. The method applies the “Prove-Compute-
Solve”-paradigm as its major strategy for generating proofs in a natural
style for statements involving constructs from set theory.

1. Introduction

The set theory prover in Theorema adapts the “Prove-Compute-Solve” (short:
PCS) proving strategy for proofs containing language constructs from set theory.
The PCS paradigm was introduced originally in (Buchberger 2000) and it has
already been applied successfully for proofs in elementary analysis in (Vasaruj
Duprd 2000). The main strategy in a PCS-oriented prover is to structure the
proof generation into phases of

e proving (P), i.e. using inference rules for propositional connectives, the stan-
dard quantifiers from predicate logic, and for theory-specific language con-
structs,

e computing (C), i.e. rewriting w.r.t. formulae in the knowledge base,

e solving (S), i.e. finding appropriate instances of existential variables occur-
ring in the proof goal.

In general, of course, unification serves as the key method for solving formulae in
arbitrary theories. For special theories, however, specialized solving techniques
may be required and special techniques for solving from computer algebra may

*This work has been supported by the “SFB Numerical and Symbolic Scientific Computing”
(F013) at the University of Linz and the European Union “CALCULEMUS Project” (HPRN-
CT-2000-00102).

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 2

be applied. In particular, for solving formulae involving polynomial expressions
there are powerful computer algebra methods such as the Grobner bases method
for systems of algebraic equations, see (Buchberger [[985), or Collins’ cylindri-
cal algebraic decomposition method for systems of polynomial inequalities over
the real closed fields, see (Collins 1975). Having the computer algebra system
Mathematica in the background of Theorema, we aim at applying these methods
during the S-phase of our provers. In the context of set theory, solving can also
lead to “solving for sets”, i.e. finding sets that fulfill certain properties, but the
set theory prover in its current state does not yet fully cover this aspect.

Many mathematicians are used to building up their theories in the frame of set
theory, hence, computer support for doing proofs involving language constructs
from set theory is a basic ingredient for computer-supported mathematics. The
Theorema set theory prover aims to be primarily an educational tool that can
support proving at an (under-)graduate university level in arbitrary theories
that are built-up in the frame of set theory. For this type of application it is
important to incorporate also other proving techniques apart from sole set the-
ory, notably arithmetic simplification in basic number domains or computational
simplification involving finite sets. Moreover, since the Theorema syntax offers
commonly used language constructs from set theory and the computational as-
pect of (finite) sets has always been supported in the Theorema computation
environment, the set theory prover significantly enlarges the domain of applica-
tions for the Theorema system, because with this prover the Theorema system
now offers integrated support for both proving and computing using set theory.
It is important to mention that this prover is not intended as an automated
prover for proving set theory itself based on only the axioms. Rather, it should
be a tool that supports automated generation of “elegant proofs” in arbitrary
mathematical theories that involve set theory.

Following the philosophy of most of the Theorema provers, the set theory
prover aims at generating automated proofs in human-like natural style. In our
experience, for mathematicians the acceptance of machine-generated proofs de-
pends heavily on the readability of the proof for a human. In the automated
theorem proving community, however, this aspect has not played a major role
for a long time. Of course, as long as one does not display the proof, one can
expand set-theoretic language constructs into first-order predicate logic and then
apply powerful first-order theorem provers, like Otter, Vampire, or SPASS. The
Theorema set theory prover, on the other hand, implements proof strategies ap-
plied by humans in an attempt to generate machine-proofs in a style acceptable
by a human. Apart from others, this will have considerable impact on computer-
aided math education, which we currently see as one of the application areas
for the Theorema system. It is attractive for the teacher to compose material
in a mathematical language that is at the same time suitable for rigorous for-
mal proofs and for execution of mathematical algorithms. It is attractive for the
students to be able to perform computations immediately without translating
mathematics into a programming language in order to execute the algorithms

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 3

and to have certain proofs generated automatically in their lecture notes being
able to do their own experiments. Of course, both the didactical potential and
the dangers of such systems at certain levels of maths education need to be
studied separately.

The current design of provers in the Theorema system requires a so-called “user
prover” to be composed from “special provers”, see (Tomuta 1998). A special
prover consists of a collection of inference rules, whereas the user prover guides
the strategy, through which the proof search procedure applies the inference rules.
The P-C-S structure of the set theory prover is reflected in the composition of
the set theory user prover from several special provers implementing the ‘P’
‘C’, and ‘S’ phase, respectively. It consists of a set theory proving unit handling
set-theory-related connectives and quantifiers in the goal or in the knowledge
base, a set theory computing unit responsible for rewriting and simplification,
and a set theory solving unit capable of instantiating existential goals resulting
from unfolding definitions for set operations. In addition to these set theory
specific components, the set theory prover re-uses several special provers already
available in the Theorema system.

The description is structured as follows: Section B describes the theoretical
basis upon which the set theory prover is built, Section B explains the interplay
between user prover and special provers and gives an overview on the theorem
proving procedure used in the Theorema system, Section [introduces the set
theory proving units STP and STKBR, Section [describes the set theory computing
unit STC, Section [presents the set theory solving unit STS, and finally we
conclude with some examples of proofs generated by the set theory prover in
Section B.

2. The Theoretical Basis of the Set Theory Prover
2.1. Set Theory in the Theorema System

The use of “set theory” in the Theorema system is not tied to one particular
axiomatization of set theory. Instead, a syntax for “sets” is introduced on the
level of the “Theorema expression language”, we refer to (Windsteiger 2001d)
for a detailed description of the language layers in the Theorema system. The
language supports sets by providing the braces ‘{’ and ‘}’ as a flexible arity
matchfix function symbol used for constructing finite sets, the set quantifier
as a means for describing sets by a characteristic property, and several other
language constructs commonly used in mathematics, such as e.g. ‘C’, ‘U, ‘N,
or ‘\’, see (Kriftney 1998) for an overview on supported set syntax. By this,
expressions such as {a,b,c}, {z | P.}, {T. | P.}, AC B, AUB, ANB, or A\ B
x x

are syntactically valid expressions in the Theorema language. In other words,
the syntax of Theorema allows so-called “naive set theory”, see (Halmog [1960).
However, the Theorema language does not fix a semantics for all set expressions
supported in its syntax.

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 4

Semantics is attached to expressions in Theorema on the “inference rule level”.
The meaning of expressions is defined by inference rules that describe, how cer-
tain operations on expressions can be performed. As an example, an inference
rule for set expressions tells that in order to prove x € AN B we need to prove
both x € A and = € B. These inference rules are the elementary building blocks
for provers within the Theorema system, see Section B for the details. The in-
tended semantics of Theorema expressions is again that of naive set theory, i.e.
{1,4,7} is the proposed syntax for “the set containing exactly the elements 1,
4, and 77, {z | < 10} is meant to denote “the set of all satisfying x < 107,

xT

{z? | < 10} is intended to mean “the set of all 2%, when z satisfies x < 10”7,
x

AN B should stand for “the intersection of A and B” and the like.
The Theorema language construct that deserves closer inspection in this con-
text is the so-called set quantifier, which can appear in two variants {z | P,} and

more generally {7, | P,}. In its first form, the set quantifier allows to define a

set from a “characteristic property” P,. In the literature, this is often addressed
as set comprehension or as the abstraction of a set from a property and it goes
back to G. Cantor, the founder of modern set theory. Naive set theory allows un-

restricted abstraction, i.e. for every formula P, the expression {z | P,} denotes
x

the set of all z satisfying P,, in combination with an intuitive notion of mem-
bership, namely x € {z | P,} <= P,. Although intuitively “reasonable”, this is
x

the main drawback of naive set theory, since this is the main source for contra-

dictions derivable in naive set theory such as the well-known Russell paradox:

We define R := {x | € z} and by straight-forward reasoning on “membership”
x

in the above mentioned intuitive sense we can quickly derive the contradiction
ReR& R¢ER.

Since naive set theory is inconsistent, it is not suitable as a theoretical basis
for the inference rules used in our set theory prover. Hence, some aziomatic
set theory must serve as the underlying theory for our prover. In axiomatic
set theory the existence of certain sets and appropriate membership rules are
introduced via axioms. There are different axiomatizations of set theory that
provide fundamentally different solutions how to avoid Russell’s paradox (and
others):

e Zermelo-Fraenkel set theory (ZF) restricts abstraction to what is called sep-
aration. Roughly, it requires the structure x € SAQ for P, in an abstraction
{z | P.}, which disallows constructions like R. We refer to (Ebbinghaus

1979, Shoenfield 1967) for detailed treatments of ZF.

e Von-Neumann-Godel-Bernays’ axiomatization (NGB) of set theory, see e.g.
(Bernays & Fraenkel 1968, Quine [1963), distinguishes between sets and

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 5

classes and allows the membership predicate only for sets. Russell’s paradox
is avoided by showing that R is not a set an therefore R € R is not a well-
formed assertion.

e Russell himself introduced type theory, where membership is only allowed
for sets of different type, see (Russell & Whitehead 1910). R € R is not
allowed on the grounds that R and R are not of different type.

2.2. Possible Approaches for Set Theory Proving in the Frame of Theorema

Due to the inconsistency of naive set theory there cannot be a prover that sup-
ports the entire language for set theory offered in the Theorema syntax and, at
the same time, follows the intended semantics of expressions in the Theorema
language as described above. Similar to the different approaches to axiomatiza-
tion, there are different choices for how to integrate set theory proving into the
Theorema system:

e We restrict the language, for which the prover is applicable instead of trying
to support the entire language available for set theory in Theorema.

e We adapt the semantics of membership and deviate slightly from the intu-
itive semantics of well-known language constructs.

e We introduce a typing concept into the Theorema system and obey the
types in all set theoretic language constructs either immediately on the
syntax-level or on the inference-rule level. This would, however, require a
fundamental re-design of the entire system and we decided not to follow
this path for the moment.

It seemed most attractive to go for the first variant, thus we decided to choose ZF
as the theoretical frame for the Theorema set theory prover. In particular, this
choice was also motivated by the fact that evidently ZF is very popular among
mathematicians and the principal target users of our prover are mathematicians
who want to formulate some mathematical theory using the language of set
theory. In other words, the Theorema set theory prover does not support all of
what the Theorema language syntax offers for set theory; it supports just that
fragment of the Theorema language, which can safely be used according to the
axioms of ZF as described in Section PZ3.

2.3. Zermelo-Fraenkel Set Theory as Used in the Set Theory Prover

ZF is an axiom system that guarantees the existence of certain sets. Based on
these axioms, several new functions and predicates useful for set theory can then
be introduced by explicit definitions. In the sequel, we will list those axioms and
definitions from ZF, on which the inference rules of the set theory prover rely. At
the same time, this section will describe exactly the fragment of the Theorema
language that is actually supported by the set theory prover. Furthermore, we
introduce some convenient abbreviations for commonly used formulations in set

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 6

theory that are compatible with our prover. The Theorema set theory prover
should, thus, be a useful tool for mathematicians embedding their work in some
variant of ZF set theory that is consistent with these axioms, definitions, and
abbreviations.

As already indicated above, the main challenge in an axiomatization of set
theory is the definition of membership in a set described by the set quantifier.
We now give the axioms of ZF forming the basis for those inference rules in the
set theory prover that are applied for membership in expressions involving the
set quantifier.

AXIOMS 2.1 (SEPARATION AXIOMS): For every formuldl] P, and every S, s.t.
x 1s not contained in S and S is not contained in P,, we have an axiom

dVerez<—xeSAP,.

In the literature, the separation axioms are sometimes referred to as “subset
axioms”. They allow—for any formula P, and any term S (fulfilling the side-
conditions given in Axiom P.I)—to define “the set containing all = of S such
that P,”, see (Shoenfield 1967, pp. 239). In the Theorema syntax this set can be
denoted as {z]S P,}or {z € S| P,}. From Axiom @ we get

S

Vize{r | P.}<=ze€SAP). (1)

x z€S

AXI0MS 2.2 (REPLACEMENT AXIOMS): For every formula Q). and every S, s.t.
S is not contained in Q),, we have an axiom

VIV ere Q)= 3V (I C:=ye€2)

In common mathematical practice, some special instances of the replacement
axioms play a crucial role, namely for), and S s.t. S is not contained in @),
and (), has the form P, Ay = T, for some formula P, and some term 7T,. For
these special cases the respective replacement axioms justify the definition of
“the set of all T, when =z € § satistying P,”. The Theorema syntax for this
set is {T, | P.} and, as shown in detail in (Shoenfield 1967, pp. 240), from

€S

Axiom 2.2 we get

Yy 2ES zesS

S

At first sight, the construct {x | P,} appears to be just a special case of
€S

1P, indicates that the variable = occurs free in P,. The expression P, may contain other
free variables than x as well.

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 7

{T, | P.}, just take T, = x. However, both the separation axioms and the
z€eS

replacement axioms are needed for the existence proof of {T, | P,}, see (Shoen-
z€S

field 1967), thus, the separation axioms cannot be omitted.

The formulae () and (B) now define membership for special variants—note
the required property x € S—of the Theorema set quantifier as it can safely be
used in ZF. The inference rules for membership as used in our set theory prover
are, thus, based on ([[) and (). Once having the set quantifier, elementary set
theory can be built up by just explicit definitions. For “sets” using variants of the
set quantifier different from those shown in ([l) and (B) ZF provides additional
axioms guaranteeing their existence, see e.g. (Shoenfield [1967).

From now on, if not stated otherwise, we want to use P, @, R, and C' as typed
variables on the meta-level to denote formulae, all other letters shall denote
terms. Free variables in formulae or terms will be indicated by subscripts. As
long as the existence of the sets {x | P,} and {7, | P,} is guaranteed by some

axiom, we generalize ([J) and (B) as follows:

V(e {x 3\6 P} <= P,) (3)

Vel | By =3 ny=T,). (4)

Note that by this generalization we are now back at the naive set theory notion
of membership for sets whose existence is guaranteed by ZF. Membership as in
(A) is supported even in the more general case of a multiple range that binds
more than one variable simultaneously. The multiple range in the set quantifier
translates literally to the respective multiple range in the existential quantifier,
ie.

Y (y S {Tcz:l,...,:t:n ‘ PCE17--~,:En} < 3 le,...,azn ANy = Txlv-'»xn)'
Y X1,y.0yTnm Tlyey T

It is convenient to allow also an additional condition in the set quantifier. We
follow the convention to use for arbitrary range x

{...)|(P} (5)

C

as an abbreviation for

{...|onpy (6)

Not, however, that we do not generalize the inference rules in the set theory
prover to cover set quantifiers with conditions, we rather convert any expression
of the form (f) in the goal or in the knowledge base into the corresponding form
(B), before formulae are actually passed to the prover.

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema

DEFINITION 2.1 (SUBSET, SET EQUALITY):

SHC S ie=V(zesSV=zes?)
S =382 . =V(zecsYeozecs?)
DEFINITION 2.2 (EMPTY SET, SET DIFFERENCE):
0:={x|z#az}
SWN\ S = fr|zecSWUAxrgSs®

DEFINITION 2.3 (FINITE SET CONSTRUCTION): For any n > 1:

{(SW ..., 8 ={z|z=8Vv. va=5"}
DEFINITION 2.4 (UNION, INTERSECTION, PRODUCT): For any n > 2:
SOy, .. uSW.={z|zeSVv.. vzesm

SN . .NnSW.={z|zeSVA.. . AzesM

S xS =Lz, x,) | 1 €SYA. Az, e SM}

(11)

(12)

(13)

(14)

The notion (.. .) is used for finite tuples provided as basic data type in Theorema.
We do not model tuples within set theory but we use built-in knowledge about

tuples provided by the semantics of the Theorema language.

DEFINITION 2.5 (UNION, INTERSECTION, POWER SET):

USZ:{Z‘|8§SJZ€S}

ﬂS:: {Jclsgsts}

P[S| = {xlaz C S}

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 9

Frequently used combinations of |J and () with the set quantifier can conve-
niently be abbreviated when introducing | J and () as quantifiers.

U S, abbreviates U{Sx | C.} (18)

zel xzel
Cy

() S: abbreviates ﬂ{Sx | C.} (19)
zel zel
Cq

When using the Theorema set theory prover one accepts the above definitions
and assumes an underlying axiomatic system such as ZF that guarantees the
existence of all these sets. We do not invent a new set theory that promises
to be better suited for automated theorem proving, an approach that is taken
elsewhere, e.g. in (Formisand 2000).

3. How Provers are Organized in Theorema
3.1. Preliminaries on Terminology

We will use the following terminology: a proof situation K F G is made up from
a knowledge base of assumptions K and a goal GG, and it should be understood
as an abbreviation for the phrase: “We have to prove G from K”. Typically, the
goal will be a single formula of the Theorema language, whereas the knowledge
base consists of a collection of formulae, called the assumptions.

The task of the special provers is essentially the execution of individual proof
steps that reduce the proof situation towards terminal proof situations, from
which proof success or failure can easily read off. Terminal proof situations will
be denoted by just their “value”, e.g. ‘proved’ or ‘failed’. The rules applied by
the special provers guiding the reduction of proof situations are called inference
rules. Thus, an inference rule turns a proof situation K G into a proof situation
K'F G with a new goal G’ and a new knowledge base K’. In the description of
inference rules, we will denote an inference rule named ‘I’ transforming K - G
into K’ - G’ by

I K + &
K F G
(read as: “The rule ‘I’ justifies a proof step to reduce the proof of G from K
to a proof of G’ from K'”). This notation is similar to notations used in logic
for describing inference rules in formal proof calculi (e.g. the natural deduction
calculus or the Gentzen calculus). Certain similarities to these formalisms are
desired, but we use it purely as a symbolic description for proof steps, and we
do not refer to any meaning of the symbols in any known logic system.

We give an example of a well-known inference rule from the natural deduction
calculus for predicate logic written in this style:

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 10

0 .

v (where zg is a new constant)
x

x

K F P,
ArbitraryButFixed : " [

The rule ‘ArbitraryButFixed’ tells that, in order to prove V P, (from K) it

suffices to prove P, .., (from K) for a new constant z,, where P,_.,, stands for
“P with each free occurrence of x substituted by x,”.

3.2. The Generation of Proofs in Theorema

The automated generation of proofs in the Theorema system is based on three
main components: the user prover, the special provers, and the global proof
search procedure.

3.2.1. User Provers
The Theorema user interface provides the command
Prove| G, using — K, by — M],

which initiates an attempt to prove the goal GG using the knowledge base K
by the method M. In the Theorema terminology, we call the available prove-
methods wuser provers. A user prover is a program that sets up a particular
2-row configuration grid (see Figure [[}) of special provers and then passes control
to Theorema’s global proof search procedure.

3.2.2. Special Provers

A special prover is a sequential collection of inference rules. In Figure [I] the
sequential structure of a special prover is visualized by a top-to-bottom line-up
of the inference rules in each of the special provers. The arrangement of the
special provers in the user prover’s configuration grid results essentially in a
hierarchical collection of inference rules structured by the placement within the
2-dimensional grid and, on a finer level, by the sequential arrangement within
each cell in the grid.

3.2.3. The Global Proof Search Procedure and the Proof Object

The proof search procedure uses inference rules as arranged in the user prover’s
configuration grid in order to manipulate the global proof object. The proof object
has a tree structure with each node containing one proof situation. The proof
search procedure maintains a current proof situation, which specifies the node
that is to be manipulated next. Initially, the proof object consists of only the
root node containing the initial proof situation K F G given by the user in the
Prove-command. Each proof tree manipulation is the augmentation of the proof
object at the current proof situation by one or more new nodes, whose contents
depend on the inference rules found by the proof search procedure in the special
provers. Figure [I] visualizes the main phases of one proof step:

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 11

Proof search procedure
l s
K, -G, .
gogienn b
@ H e
ELTTITTII S
potern mRtehing @
Proof ohject
R
Special Prover A Special Prover P | | @
g |
K, -0, R, -3, |
L 19 |
K, -G, K, -G, |
|
K 0, K. -G |
. 0 e it S
K. -G, K -G, |
|
Special Prover Special Prover Z |
, g I | g 3
. K, -G, ‘. K, -3, | current proof sitation
i i
KRG, K, -G, :
AR RLN]) |
-G, K.+, |
3 I |
K -G, K. -G, |
|
User Prover I

Figure 1: Proof search and prover composition

1. The proof search procedure extracts the current proof situation K. - G,
from the proof object.

2. Mathematica’s pattern matching mechanism is used to select appropriate
inference rules that allow to reduce the current proof situation. Inference
rules are implemented as Mathematica programs taking goal, knowledge
base, and “additional facts” of the current proof situation as input. We
refer to Section B for more details on the role of the “additional facts” in
a proof situation. As output, an inference rule returns a new node to be
inserted into the proof tree. In this phase, the configuration grid in the user
prover setup is crucial: The special provers in the first row are tried left
to right, in each prover the rules are tested top to bottom. The first rule
whose goal and assumptions match the current goal GG, and the current
knowledge base K. will be selected. If none of the special provers in the
first row applies, the special provers in the second row are tried again left
to right. In each special prover the rules are tried again top to bottom,
and from each applicable prover, the first rule matching the current proof
situation will also be selected. Note that the pattern language of Mathe-
matica contains conditionals. Thus, the selection of inference rules based

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 12

on Mathematica’s pattern matching is not restricted to purely syntactical
matches but it allows also the test of certain conditions.

3. All inference rules selected in the previous phase will be applied in this proof
step to the current proof situation resulting in new nodes to be inserted into
the proof object.

4. If there is more than one new node, each node is assigned a new branch in
the proof object. Branches reflect alternative proof attempts in a proof.

5. Finally, the current proof situation is stepped to the new node on the left-
most new branch.

6. These steps are iterated until a terminal proof situation 'proved’ or the
search depth limit is reached. If a proof fails on one branch by reaching
either a terminal proof situation ’failed’ or the maximal search depth then
the proof search continues on the next branch. Once all branches failed, the
entire proof failed.

For details on the organization of the proof search within Theorema we refer to
(Tomuta 1998).

The implementation of the user prover arranges the special provers in the grid
and the implementations of the special provers arrange the inference rules within
the special provers. Thus, the experience of the prover programmer is reflected
in a smart setup of the user prover and the special provers. The proof search as
described above is completely automated with no possibility for user-interaction.
As an alternative, the Theorema system offers also an interactive proof search
mechanism, see (Piroi 2004).

4. The Theorema Set Theory Prover

As discussed in Section B.Z the implementation of a prover for set theory must
consist of a user prover and several special provers. In the sequel, ‘set theory
prover’ will refer to the user prover for set theory, which combines newly devel-
oped special provers for set theory with previously developed general purpose
special provers available in the Theorema system, such as TerminalND for detect-
ing terminal proof situations, BasicND and PND for basic and general predicate
logic reasoning, QR for rewriting w.r.t. quantified equalities, equivalences, or im-
plications in the knowledge base, or CDP for treatment of case distinctions, see
(Buchberger & Vasaru 2000, Vasaru-Dupré 2000, Windsteiger 2001d). We will
describe the four new special provers that have been developed for set theory.

STP collects inference rules with some set-theoretic symbol as the outermost
symbol in the proof goal.

STKBR expands set-theoretic notions in the assumptions.

STC performs simplification by computation on finite sets.

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 13

STS applies special techniques for instantiation of existential formulae in the
proof goal, which are useful in the context of set theory.

The set theory prover arranges TerminalND, STKBR, STC, STP, and STS in this
order from left to right in the first row of the configuration grid and BasicND, QR,
CDP, and PND in the second row. Roughly, this results in a heuristic to generally
first expand set-theoretic language constructs in the knowledge base when they
appear as outermost symbols before working on the proof goal. When reducing
the proof goal, simplifications based on computational knowledge for finite sets is
applied before expanding set-theoretic language constructs by their definition. If
non-set-theory symbols appear as outermost symbols, proceed by usual predicate
logic reasoning and rewriting. The set theory prover can be used in interactive
proving like all other provers in the Theorema system. The emphasis of this work
is, however, to setup the prover for completely automated proof generation.

5. STP and STKBR: The Set Theory Proving Units

The PCS proof strategy imposes a structure on proofs as alternating phases of
proving, computing, and solving, as already described in Section [I. Inference
rules for set theory specific proving are provided in the two new special provers
STP and STKBR. During the Prove-phase, we alternate steps of reducing the goal
with steps of expanding the knowledge base. While STP reduces set theory specific
language constructs in the proof goal, STKBR expands them in the knowledge
base. The set theory prover arranges both special provers in the first row of the
configuration grid.

5.1. Set Theory Specific Goal Reduction

Set theory specific goal reduction is implemented as a special prover named STP
(for Set Theory Proving). The inference rules within STP differ mainly in the
syntactic patterns for the proof situation. A few inference rules are influenced in
addition by global variables, by which, for instance, certain inference rules can
be deactivated. Some strategies depend on the proof progress stored in STP’s
local proof context, which is part of the “additional facts”-parameter in the im-
plementation of inference rules, see Section B.

The inference rules are grouped into rules for membership, rules for inclusion,
and rules for set equality. The rules for membership cover proof situations, where
the outermost symbol in the proof goal is ‘€’. There is at least one inference
rule for each “kind of set” introduced in Section [, in some cases we provide
specialized rules in order to offer special treatment for special cases. We show
some of the membership rules as they are used in STP.

K F teSANP,_,
MembershipSeparation: [| ¢ ¢ {z | P}
zeS

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 14

The inference rule ‘MembershipSeparation’ is just a reformulation of variant
(M) of the separation axioms P.1. Hence, its correctness is an immediate conse-
quence of ([l) and we do not give a separate correctness proof for this rule. In
fact, most of the rules in STP are just direct translations of one of the axioms
or one of the definitions listed in Section B. For these cases we do not give the
correctness proofs of the inference rules used in our prover. Some of the inference
rules, however, condense several inference steps into one compact rule to be ap-
plied. In these cases, we provide hand-proofs for the correctness of the respective
rules. An example of such a rule is the elimination of the union-quantifier in the
goal. Simply using abbreviation ([[§) would lead to an inference rule

K FteU{s: | G}

TrES
Membership-U : [| ¢ ¢ U Se
TreSs
Cy

The STP prover, however, implements the rule

K + é(teSgCACm)
MembershipUnionOf : K + te |J S,

TEs
Cq

‘MembershipUnionOf’ reduces the proof of t € | J S, to prove é (t € Sy NCy).
zE€s rEs
Cy

Proof: Assume él (t € Sp NCy), thus t € S, A Cy, for some constant zy € s.
xres
With z :=S,, we can infer from this ¢t € 2 A Cy, A 2 = S,,, hence

(I tezANCoANz=15,). (20)

z xES

Separating the quantifiers in (@) gives 3 (t € z A él (Cy A z=1S,)), which, by
(H), is equivalent to 3 (t€ zAz € {S, | C.}). By () this is equivalent to

TES
te U{S: | C.},thuste | S; by () O
xrES xrESs
Cy

As special rules for membership in finite sets and finite unions, respectively, we
provide for n > 2

t#85? . t#£SMW K F t=80

MembershipFinite : K F tc {5(1)7 S 75’(71)}

tg S . tgSW K - tesSW
K F teJ{sW,s® ... sy

MembershipUnion :

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 15

Again, we omit the easy proofs of correctness. Note, that both membership
in finite sets and finite unions would reduce by definition to a disjunction of
formulae. The majority of human mathematicians would proceed by a smart
choice of one of the alternatives and then just prove the chosen alternative. The
inference rules given above, however, reduce the proof of a disjunction further
to the proof of always the first alternative while assuming the negations of the
remaining alternatives. This has the advantage that the rule keeps the proof
search space small because it does not introduce additional branches into the
proof object. On the other hand, the resulting proofs appear “unnatural” for
human mathematicians at the point where these rules are applied. Thus, these
rules might be adapted in future versions of the prover.

As we will see in Section B, these rules will not be applied in the standard
setup of the set theory prover, because as soon as the set theory computation
unit is present, membership in finite sets and finite unions will be decided based
on computational semantics available in the Theorema language. The two rules
are contained in STP only because, in the spirit of modular system design, we
do not presuppose that all future Theorema user provers combine the available
special provers for set theory in exactly the way how they are combined in our
set theory prover now.

Furthermore, we provide one general inference rule for set inclusion and set
equality, respectively, which reduce inclusion and equality to membership ac-
cording to Definition .. Additionally, we provide special rules for special cases
in order to reduce the search depth in the proof search procedure, like e.g.

proved
ConjunctionSubset : [{x]...Az€SA..}CS

Px_mo,l‘o eX. K F e Y A Qy—»wo

SubsetSeparation : KF {z] PYCly | Q)
zeX T yey

(where z is some new constant).
For the empty set, the expansion of Definition 2.2 would result in “unnatural”
proof steps, hence, we provide special rules for the empty set, like e.g.

~ proved
EmptySetSubset : KFEOCS S
K F =P,

EqualsEmptySet : | F {T,| P} =0

(where xg is some new constant). The proofs for these rules are again straight-
forward. For more details and a complete listing of all inference rules used in
STP we refer to (Windsteiger 2001d).

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 16

5.2. Set Theory Specific Knowledge Expansion
5.2.1. Knowledge Fxpansion by Lazy Level Saturation

The special prover STKBR (for Set Theory Knowledge Base Rewriting) uses “lazy
saturation” in order to infer new knowledge from formulae already contained
in the knowledge base using knowledge about set theory specific language con-
structs. In contrast to classical level saturation methods, which try to obtain
all formulae that can be inferred from the knowledge base in one saturation
run, “lazy saturation” is somewhat more moderate in that it only finds formulae
that can be inferred from the original knowledge base at the beginning of the
saturation run. This has the advantage that usually less “potentially unimpor-
tant” formulae are generated before the prover continues with some other steps.
However, if no other proof steps can be performed, the proof search procedure
will continue with subsequent lazy saturation steps. This type of “iterated lazy
saturation” can ultimately lead to a completely saturated knowledge base, but
unlike classical saturation techniques it not necessarily does.

The STKBR prover is implemented as just one inference rule implementing the
mechanism of lazy saturation based on knowledge from set theory combined
with simplification of assumptions based on computational semantics from the
Theorema language. STKBR is considered to be applicable to the current proof
situation as soon as new formulae occur in the knowledge base compared to its
previous application. This check is done with the help of an entry in the local
proof context passed among the “additional facts” of the current proof situation,
see Section B. Similar to STP, most of the set theory specific knowledge expansion
rules used in this phase are just re-formulations of the axioms and the definitions
in Section B. Again they are grouped into rules for membership, inclusion, and
set equality. For each “kind of set” we provide a membership rule for a proof
situation, where ‘€’ appears as outermost symbol in one of the assumptions.
Moreover, the prover contains rules for unfolding membership inside universally
quantified formulae and, like STP, some special rules based on elementary set
theory knowledge. We refer to the examples in Section B-2.2 for more details on
these special rules.

Knowledge expansion in STKBR happens in two phases:

1. New formulae are simplified using built-in semantic knowledge available in
the Theorema language semantics.

2. New knowledge is inferred from the simplified knowledge base by lazy sat-
uration as described above. The expansion rules used in lazy saturation are
grouped into two groups:

e Group I containing rules for inferring new knowledge from one known
formula and

e Group II containing rules for inferring new knowledge from two known
formulae.

Matching rules from Group I are applied to the simplified new formulae,

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 17

Knowledge Base

WNew Fonnulae l\re Saturated knowledg\ e level

| Simplifiedhissumptions | Phase 1

| NewPairs | Phase 2

| NesknowledgeFronTwo |

Pre-Saturated Knowledge Level

Figure 2: Schematic flow of lazy level saturation as used in STKBR

matching rules from Group II are applied to all new pairs of formulae
containing at least one new formula.

All formulae generated during these two phases are added to the knowledge base
and, finally, the formula labels of formulae contained in the expanded knowledge
base are stored in the local proof context in order to be accessible in the next
saturation run. We call this stage a pre-saturated knowledge level. Complete level
saturation would iterate this process until no more new formulae can be inferred.
Lazy saturation, instead, passes control back to the proof search procedure after
one iteration.

The schematized flow of STKBR’s level saturation mechanism is shown in Fig-
ure . Phase 1 is accomplished by applying the function ‘Simplified Assumptions’
to two arguments: the entire knowledge base and a list of labels ‘sat’ describing
the pre-saturated knowledge level from a previous saturation run. Each new for-
mula from the knowledge base is sent through a simplification function, which
computes a simplified version of the formula w.r.t. semantic knowledge from
the Theorema language. In fact, the same simplification function is used that
is applied also in the STC module for goal simplification by computation and in
the top-level Theorema-user command Compute, see Section . This guarantees
utmost coherence between all computations happening in different components

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 18

of the Theorema system, be it on the user level by calling Compute, be it on the
prover level by doing simplifications on the goal or on the knowledge base. For-
mulae that cannot be simplified as well as formulae from the previous saturation
level leave phase 1 unchanged. Actually, STKBR contributes to both the P- and
the C-phase, hence, it is not a pure proving unit! We allowed this mixture of
P- and C-phase in one special prover in the current implementation merely for
reasons of efficiency.

Phase 2 is covered in the implementation by the function ‘AugmentedKnowl-
edgeBase’, which receives the simplified knowledge base resulting from phase 1
and again the list ‘sat’. ‘NewKnowledgeFromOne’ applies Group I of expan-
sion rules to each (simplified) new assumption, ‘NewKnowledgeFromTwo’ ap-
plies Group II of expansion rules to all new pairs that can be formed using at
least one new assumption. The new formulae obtained in phase 2 joined with
the simplified knowledge base resulting from phase 1 give the new pre-saturated
knowledge level.

5.2.2. Rule Locking

Rule locking is a mechanism that helps to prevent cycles in the proof search
during level saturation. As an example, consider the two inference rules

.., xeAzreB,... - G D ..., reANB,... - G

L—canB,. .. r ¢ V' 2cA zeB.. . FC

occurring in STKBR. We call two rules inverse to each other if one rule neutralizes
the effect of the other. I and I’ are an example of rules being inverse to each
other. Our prover contains some pairs of inverse rules although, generally, we
try to avoid to provide inverse rules wherever possible. Inverse rules need special
attention because their unrestricted use immediately results in a cycle in the
proof search. Rule locking allows to dynamically disable certain inference rules
for certain values of the input parameters. In the above example, the applica-
tion of rule I’ resulting in a new formula F' will automatically prevent rule I
from being applied to F' in the remainder of this proof branch. Similarly, the
application of rule I producing new formulae F} and F, will block rule I’ on I}
and Fy in the remainder of this proof branch. Note, however, that affected rules
are only locked for particular values of the input parameters whereas they stay
applicable in all other situations.

In general, for each pair of inverse rules I and I’ we implement both I and
I’ such that they lock their inverse for certain inputs. There is no general law,
however, for which inputs a rule must be locked. As a special case, inference
rules may even lock themselves in order to avoid “uninteresting” expansions in
the proof search. Consider again the example from above: Applying rule I’ once
would add the new assumption z € AN B. During the next saturation run, I’
would add the new assumptions © € AN(ANB) and x € BN (AN B) and
so forth. Thus, rule I’ is implemented such that it locks both itself and also its

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 19

inverse rule I on the new formulae generated by I’. Rule locking utilizes STKBR’s
local proof context to store this type of information on the proof progress.

6. STC: The Set Theory Computing Unit

The Theorema language contains semantics essentially for finite sets, namely

e sets that are constructed using the set braces ‘{" and ‘}’ as set constructor
applied to finitely many arguments, and

e sets that are constructed using algorithmic versions of the set quantifiers
introduced in Section B, see also (Buchberger 1996), i.e. set quantifiers with
finite and computable range specifications, see (Windsteiger 2001d). In par-
ticular, integer ranges and set ranges with finite sets are algorithmic ranges,
which lead to finite sets when used in combination with the set quantifiers.

The Theorema language semantics allows the explicit construction of finite sets
as an enumeration of the (finitely many) elements contained in the set, i.e. the
language contains some data-structure representing a finite set. Set operations
(such as union, intersection, power set, etc.) on finite sets are implemented as
operations on the data-structure for finite sets in a constructive fashion, i.e.
every operation on finite sets results again in a finite set. Tests for membership,
inclusion, or set equality for finite sets, thus, reduces to testing finitely many
cases, which is implemented in the frame of the Theorema language semantics
as well.

Computation using built-in semantics knowledge is available in the Theorema
system through the top-level user command Compute. A typical computation
involving finite sets and numbers is

Compute[{3x | is-prime|x]}, built-in—(Built-in[“Sets”], Built-in[“Numbers”])]
2€{1,2,3,4}

resulting in the finite set {6,9} and, of course,

Compute[6 € {3z | is-prime[z]}, built-in—(Built-in[“Sets”], Built-in[“Numbers”])]
ve{1,2,3,4}

results in True. Internally, Compute sends the expression to be computed to a
simplification function, which simplifies the expression with respect to both user-
defined knowledge given in the “using”-option and built-in knowledge from the
Theorema language semantics given in the “built-in”-option to Compute. In the
examples above, no user-defined knowledge is provided and built-in knowledge
about “Sets” (for the set quantifier and the finite set in the range of the quan-
tifier) and “Numbers” (for ‘is-prime’ and for the multiplication used in ‘3z’ is
applied. Tt is the intention of the STC (for Set Theory Computing) special prover
to integrate the computational power available for finite sets seamlessly into the
Theorema proving machinery. Otherwise, all algorithmic knowledge about finite
sets needs to be re-implemented inside the set theory prover, which would make

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 20

it very difficult to guarantee consistent behavior in proving and computing. In
order to avoid this duplication of code and knowledge and in order to achieve
coherent simplifications on the top-level using Compute and on the proving-level
in simplifications of both the proof goal and the knowledge base, the STC prover
simplifies the goal by sending the goal formula to the same simplification function
that is also used in Compute and in STKBR.

Basically, when the STC prover applies to a proof situation, one proof step
consists of calling the simplification function on the proof goal and, in case the
result differs from the original form, of adding a new node to the proof object,
from which the effect and a complete trace of the computation can be displayed.
In fact, the interface to the underlying simplification function is implemented in
a more flexible fashion. Namely, it allows arbitrary built-in knowledge available
in the Theorema language in addition to built-in knowledge about finite sets to
be used during simplification. Similar to the Compute-examples above, the user
may specify built-in knowledge in the call of any prover using the option “built-
in”. The set theory prover sets up the environment such that simplification uses
set theory semantics by default and user-specified built-in semantics in addition.

Given a proof goal such as 6 € {3z | is-prime[x]} the set theory prover
2€{1,2,3,4}

will produce different proof variants depending on the additional semantical
knowledge provided by the user:

e Using no semantic knowledge at all by completely deactivating STC, the
proof goal will be reduced by an inference rule from STP to prove
3 is-prime[z] A 6 = 3z,
ze{12,3,4}
and, by predicate logic reasoning using matching against formulae in the
knowledge base, this goal might eventually be proven since x = 2 is an
appropriate choice for the existential variable. Note, however, that formulae
such as ‘is-prime[2]” and ‘6 = 3 % 2’ must be provided explicitly in the
knowledge base. Moreover, for the proof of subgoal 2 € {1,2,3,4}, STP
will apply the inference rule MembershipFinite described in Section B.1]

resulting in a very fine-grained proof showing all details down to the axioms
of set theory.

e Using the standard setting with only built-in sets, the resulting proof is
essentially the same, just that the subgoal 2 € {1,2, 3,4} can be simplified
to True by STC in one stroke. However, the set quantifier does not simplify
to a finite set, since ‘is-prime’ is unknown and, thus, the expression stays
unevaluated.

e Using built-in semantics of “Sets” and semantics of ‘is-prime’, the proof
goal will be simplified by STC to prove

6 € {3%2,3x3},

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 21

and again STP’s MembershipFinite will come into play. Still, 6 = 3 % 2
must be available in the knowledge base in order to finish the proof.

e Using built-in semantics of “Sets” and “Numbers”, the proof goal will be
simplified by STC in one step to True and the proof succeeds without any
additional explicit knowledge.

Of course, each of these variants has its pros and cons and the Theorema user can
decide which path to follow. We consider it of utmost importance for practical
applications and acceptance of the system to offer this choice to the user. More
details on combining computation with proving can be found in (Windsteiger
2001d). Furthermore, we refer to Section B.2 for more examples of interaction of
proving and simplification by computing.

7. STS: The Set Theory Solving Unit

The special prover STS (for Set Theory Solving) collects inference rules for elimi-
nating existential quantifiers in the proof goal. Its name suggests that this prover
deals with set theory specific aspects of solving, but, since general predicate logic
solving components in the Theorema system are not yet far-advanced, the STS
prover in its current state collects inference rules for existential goals as they
result typically from proof goals containing language constructs from set theory.
Set theory specific solving in the sense of “solving for sets” meaning “finding sets
that fulfill certain properties” is not yet dealt with in this version of the prover.
Rather, we concentrate on using the special structure of the existential formula
in order to devise efficient instantiation methods for certain types of existential
goals.

The inference rules in STS mainly cover proof situations of the form K + ;I P,,

i.e. we have to find some term t such that K = P,_;. In many cases the choice of ¢
can be made essentially on the basis of K. In these situations, the methods used
for instantiating the existential goal are matching parts of P, against ground
formulae in K and unification of parts of P, with formulae in K.

The more difficult cases, however, are those, where the choice of ¢ depends
strongly on the inner structure of P,. In these situations, the instantiation of the
existential goal requires, roughly speaking, some further processing of P, before
an appropriate choice of t is possible. Hence, we introduce a solve-constant in
place of the existential variable. A solve-constant differs from a Skolem-constant
in that it is a placeholder for the term ¢, whose exact “form” is not yet known
at the time when the solve-constant is introduced, whereas a Skolem-constant
is a new constant about which we do not know anything. For the proof to suc-
ceed, all solve-constants that have been introduced must be expressed through
appropriate ground terms in such a manner that the resulting formula can be
proven. The introduction of solve-constants, thus, allows to delay the instanti-
ation of existential goal formulae to a later phase of the proof in order to be
able to proceed with standard reasoning techniques before actually instantiating

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 22

the existential variable. What we call solve-constant is often addressed as meta
variable by other authors. The technique of meta variables is well known and
used also in other systems.

Essentially, solve-constants imitate what a human often does when proving
%I P,, namely to “pretend to know x” and then reason on P, in order to derive

more knowledge on x until we can identify a ¢ that fulfills all the requirements col-
lected for z. Of course, the strategy after introducing solve-constants must always
be to isolate the solve-constants, and then to apply special solving techniques
depending on the nature of the remaining formulae. Hence, this strategy reduces
proving to solving over various domains. Ideally, the formulae to be solved are
algebraic equalities or inequalities such that known solution techniques available
from computer algebra can be applied for finding an appropriate ¢. For this rea-
son some of the inference rules in STS employ the Mathematica Solve-function in
situations where an existentially quantified variable or a solve-constant appears
inside an equality. For requirements formed by arbitrary set-theoretic formulae
we plan to develop an appropriate solving calculus as future work.
We present only one typical inference rule from STS.

K F Qyoy A 2 (P Ny* =T,) N Ry
IntroSolveConstant : K F §| Q,Nye{T, | P.} ARy

pASES

where (), and R, are possibly empty conjunctions of formulae and y* is a solve-
constant. The inference rule described above might appear random. It is part
of STS since it applies exactly to proof situations left after expanding member-

ship in special unions, namely goals of the form m € |J{T, | P.}. It can be
xESs

observed in many examples involving proof goals of this form (see in particu-
lar the example in Section B.2.4) that this strategy leads to a well-structured
proof. The rule eliminates the outermost existential quantifier by introducing a
solve-constant and it introduces another existential quantifier by immediately
expanding membership. STS contains further rules, which allow the elimination
of the remaining existential quantifier in this particular case and even in other
more general situations, see (Windsteiger] 2001d). Note, that the solve-constant
already appears in isolated position, so that it can immediately be expressed by
the ground term 7}, as soon as P, has been solved for z. In addition to rules intro-
ducing solve-constants, the STS prover, of course, also contains several rules for
instantiating solve-constants as soon as they appear in an isolated position. We
refer also to the discussion in Section B:2.4, where, in particular, the important
role of solving as a sub-problem proving is discussed in a concrete example.

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 23

8. Comparison and Examples
8.1. Comparison to State-of-the-Art Theorem Provers

In this section, we test the Theorema set theory prover on some examples from
the SET section of TPTP, see (TPTP: Thousands of Problems for Theoremi
Provers n.dl)). Timings refer to CPU seconds consumed on a 1500 MHz Intel P4
running Mathematica 4.2 and include the time needed for generating the proof,
simplifying the successful proof, and displaying the formatted proof as shown
in Section B.2. Table [shows a comparison of the computing times to state-of-
the-art theorem provers as they performed in CASC-18f, see ((CADE-18 ATH
System Competition (CASC-18) n.d)), which refer to CPU time on a 993 MHz
Intel P4. The timings of the “Saturate”-prover were taken from (Ganzinger &
Stuber 2003) and were measured on a 2000 MHz CPU (timings are only available
for examples from the FOF division (first-order form) of CASC-18).

Table 1: Comparison to systems on examples from CASC-18

Example | Theorema | E-SETHEO | Vampire | DCTP | Bliksem | Saturate
SET010 3.0 15.8 23.9 1.2 >300 ?
SET014 3.2 >300 >300 | 281.0 >300 1.8
SET096 2.0 9.6 17.0 113.7 7.1 8.1
SET171 4.0 >300 >300 >300 >300 2.9
SET580 8.7 0.4 0.1 1.5 >300 1.7
SET612 2.1 >300 >300 >300 >300 9.9
SET624 43.7 0.7 0.8 1.7 >300 10.2
SET630 24 0.4 62.3 1.5 >300 116.8
SETT716 6.8 >300 >300 >300 >300 8.8

Former winner of the FOF division of previous CASCs, SPASS, did not partic-
ipate in CASC-18. Table P compares timings of the Theorema set theory prover
on some of the SET examples contained in TPTP to the performance of a revised
version of SPASS as reported in (Afshordel et al] 001)). SPASS’s timings have
been recorded on a 333 MHz Intel P2, Theorema timings refer to experiments
on a 400 MHz Intel P2.

We want to emphasize, however, that the absolute computation times are
not our main focus in the current stage of development, mainly because the
Theorema system is currently implemented in the programming language of
Mathematica, which does not offer possibilities for compiling programs. Hence,
comparing the run-time of interpreted Mathematica code to computing times of
optimized compiled machine code does not tell much. The timings in Tables [l and
B are meant to demonstrate that our set theory prover generates proofs “within

a few seconds” even for examples where other provers fail completely or need
considerably more time, see e.g. (SET014), (SET171), (SET612), or (SET716).

2Software versions used: E-SETHEO csp02, Vampire 5.0, DCTP 10.1p, Bliksem 1.12a

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema

Table 2: Theorema vs. SPASS
Example | Theorema | SPASS 2.0
SET010 6.1 1
SET612 7.5 1
SET624 155.4 101
SET694 5.5 1
SET698 22.7 71
SET722 6.6 18
SET751 5.04 3

24

The Saturate prover performs very well on the previously mentioned examples,
but interestingly it is slower by a factor of almost 50 in (SET630). Note, on the
other hand, that the Theorema set theory prover is considerably slower than the
CASC provers in (SET624), which will be discussed in detail in Section B.2.5.
Table B shows that the Theorema set theory prover and SPASS show “similar”
behavior.

Of course, proof generation should be fast, but we are currently much more
interested in having automatically generated “nice proofs” that are easily under-
standable for a human reader. We therefore aim at designing provers that apply
inference rules in a smart and “natural human-like way” without too many failing
branches during the proof search. Once this is achieved, the absolute computa-
tion times depend only on the efficiency of executing the programs on particular
hardware. We can speed-up the entire system (i.e. all provers available in the
Theorema system!) by improving the runtime environment, on which the Theo-
rema system is based. One possibility, which we are currently investigating for a
re-design of Theorema, is to develop an efficient execution engine (based on e.g.
Java) for a certain fragment of the Mathematica programming language that
would allow the compilation of our provers. From first experiments an envisaged
speed-up by a factor between 50 and 100 seems realistic. One can observe in
practical examples as shown in the subsequent sections that the proofs gener-
ated by our set theory prover contain only few failing branches, and each branch
contains only few useless formulae.

8.2. Proofs Generated by the Theorema Set Theory Prover

In this section, we collect some representative proofs that were generated com-
pletely automatically by the Theorema set theory prover. In order to justify our
claim from Section B.I] that “the set theory prover generates proofs that are
easily understandable for a human reader”, the examples in the subsequent sec-
tions will not only describe the methods and heuristics used in our set theory
prover, but they will also include the generated proofs. The proofs are displayed
in simplified form, i.e. they do not contain anymore failing proof branches and
they do not show any formulae that did not contribute to the final proof success.
The fully automated simplification of the “raw proof object” as it is produced

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 25

by the set theory prover is a standard post-processing feature available in the
Theorema system and the timings given in Section B include also the time
needed for proof simplification.

The optical appearance of the proofs in the Theorema system corresponds
exactly to how they are typeset in this paper! Within Theorema, the standard
presentation of proofs is generated in a Mathematica notebook document, a
document format provided by Mathematica that allows typeset mathematical
text being intermixed with Mathematica input and output expressions as well
as graphics. The proofs have been translated from Mathematica notebook for-
mat into IXTEX as accurately as possible without manual beautification. Some
of the features of the Theorema standard proof presentation utilize, however,
special capabilities of the Mathematica notebook format and can therefore not
be rendered in this paper:

e Formulae in the knowledge base and goal formulae are displayed in different
color.

e Formula labels in running text are “click-able” and show the entire refer-
enced formula in a popup-window when clicked.

e Proof branches are organized in a hierarchy of nested cells that reflects the
structure of the proof. Collapsing entire proof-branches by mouse-click al-
lows to quickly browse through the structure of a proof and easily “zoom
into” the interesting proof parts or skip uninteresting proof parts, respec-
tively.

8.2.1. Properties of Functions Built Into the Set Theory Prover

The Theorema mathematical language supports the notion f :: A — B denoting
the predicate “f is a function from A to B (in intensional form)”. In intensional
form, a function from A to B is something that can be applied to some term in A
resulting in a term in B. Alternatively, Theorema offers the concept of a function
from A to B in extensional form (written f : A — B) from set theory, where a
function is a certain subset of Ax B. As an example, we take (SET722), where the
set theory prover succeeds for both intensional and extensional representation
for functions. The computing times do not essentially differ between the two
variants. We present the proof of (SET722) based on the intensional function
concept, in order to demonstrate that the use of the set theory prover does not
require the user to force all of mathematics into set representation.

The Theorema set theory prover does not require the definition of surjectivity
in its knowledge base. Rather, it recognizes surjectivity on the inference rule
level, i.e. the prover contains inference rules for proving surjectivity and for
expanding surjectivity in the knowledge base, respectively, regardless of whether
the intensional or the extensional function concept is used.

Proof: (SETT22) ABV f5:A—>B/\gofiiASw'C'ég::Bsw' ,

,B,C,f,9

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 26

under the assumption:

(Definition (Composition)) fV (go f)x] :== g[f[z]] .

95
We assume

(1) o Ao— BoAgoo foi: Ay ™ Co.

and show

(2) g0 By " ¢y .

In order to show surjectivity of gy in (2) we assume
(3) zlo€ Cy,

and show

(4) BEll Bl € Bo/\g(][BJ] =xly .

From (1.1) we can infer

(6) vV Al €A0:>f0[141] € By .

Al

From (1.2) we know by definition of “surjectivity”

(7) AVQ A2 € Ay = (900 fo)[A2] € Cy ,

(8) ;V; 22 € Cy = 1;'2 A2 € AO VAN (gg Of())[A,?] =22 .

By (8), we can take an appropriate Skolem function such that

(9) V2 eCy= Ago[l’Q] € AO A (g() o fo)[A,?Q[l‘QH =222 .

@2
Formula (3), by (9), implies:
A2¢lz10] € Ag A (go o fo)[A20[z10]] = x10 ,
which, by (6), implies:
JolA2¢[x10]] € By A (go © fo)[A20[x10]] = x10 ,
which, by (Definition (Composition)), implies:
(10) folA2o[z10]] € Bo A golfolA20[z10]]] = x10 .
Formula (4) is proven because, with BI := fy[A2¢[210]], (10) is an instance. O

The use of the special inference rules for function properties like e.g. surjectivity
can be suppressed by an option in the Prove-call. The knowledge base would then
need to contain the definition of surjectivity explicitly. The proof of (SET722),
however, succeeds even in this setting. It differs only in that the special inference
rule combines several proof steps into one compact step. Special inference rules
are available also for injectivity, which are used in (SET716), where the proof

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 27

takes just 6.8 seconds, which is about the same time that the “Saturate”-prover
needs. Note, however, that all the CASC provers fail in (SET716).

8.2.2. Set Theory Specific Knowledge Built into the Prover

The examples in this section shall demonstrate, how set theory specific knowledge
is built into the prover. As already mentioned in the description of the individual
special provers, most of the inference rules used in the set theory prover are in
essence only re-formulations of the azioms and definitions of ZF. Some rules it
uses, however, are based on certain theorems that are valid in ZF. Clearly, these
theorems are themselves only consequences of the axioms, therefore all inference
rules in the set theory prover are based on the axioms of ZF. What we want to
say is that there are certain rules that correspond to direct application of an
axiom and there are other rules that hide a chain of logical arguments based
on the axioms. The examples in this section try to show that this is reasonable
because the Theorema set theory prover is intended for mathematicians who
want to have support in their every-day work using sets. It is not intended to be
a prover that reduces every mathematical proof to the axioms of ZF.

Proof: (Proposition (intersection powerset)) (P[A] = 0,

with no assumptions.
We have to prove (Proposition (intersection powerset)), hence, we have to show:

(1) A1, ¢ NPIA].
We prove (1) by contradiction.
We assume

(2) ALy e NPlA]

and show (a contradiction).
From (2) we can infer

(3) V A2 e P[A] = Aly€ A2.
A2

From (3) we can infer

(4) A1, €0,

(5) Aly € A.

Using available computation rules we can simplify the knowledge base:
Formula (4) simplifies to

(6) False.

Formula (a contradiction) is true because the assumption (6) is false. O

It can be proven in ZF that the power set P[A] always contains () and A itself,
and, of course, the Theorema set theory prover can do prove this. Thus, we

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 28

can instantiate a universally quantified variable running over the power set of A
with () and A. This theorem is coded into a special inference rule in STKBR, which
allows the instantiation of the universally quantified assumption (3) to infer (4)
and (5). The simplification of (4) to (6) is then accomplished in phase 1 of the
subsequent saturation run in STKBR by built-in semantic knowledge about finite
sets (in particular, the empty set) as described in Section p.2.

The second example is taken from the case study on the mutilated checker-
board, see (McCarthy 1964, 1995, Windsteiger 20014,ld). The theorem says that
an 8 x 8 checkerboard with two opposite corners missing can always be cov-
ered by dominos. A proof of this theorem can be given using a formulation
of the problem in set theory. A proof of the theorem has been generated us-
ing Theorema by building up the theory of dominos, checkerboards, coverings,
etc. and by completely exploring new notions as they are defined. “Completely
exploring”, in this context, means that sufficiently many properties of a new
notion are proven before the next notion will be introduced, see (Buchberger
1999). Although each of the proofs in this exploration is generated completely
automatically, the whole proof cannot be called “fully automated”, because the
exploration itself is the interaction of the user with the Theorema system. This
is a highly non-trivial, mathematically very interesting and challenging, and di-
dactically very instructive experience for the human user. Using systems such
as Theorema, the mathematician can then concentrate on this task of structur-
ing mathematical knowledge in big theories, while the actual proofs are then
assisted by the computer. For students this opens the possibility to experiment
on building up own theories and to, in the optimal case, understand why certain
known theories are built up in a certain way.

During one of these so-called exploration rounds, we arrived at the proposition
that whenever X is a domino on the board then the domino covers two distinct
fields that are adjacent to each other.

Proof: (Proposition (dominos adjacent))

X domino-on-board[X| = X C Board A 3 x € X Ay € X Az # y A adjacent[z, y],
I?y

under the assumption:

(Definition (Domino))

V (domino-on-board|z] :< x C Board A |z| = 2 A

T

v,el exna2 el # 22 = adjacent[z1, 22]).

We assume

(2) domino-on-board[Xy] ,

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 29

and show

(3) Xo CBoard A 3 z € XgAy € XoAx#yA adjacent|z, y] .
Ty

Proof of (3.1) Xy C Board: (SKIPPED)

Proof of (3.2):
Formula (2), by (Definition (Domino)), implies:

(5) |Xo| =2A Xo C Board A
1V2 rl € XogANz2 € Xo Azl # 22 = adjacent[z], 22].

From (5.1) we can infer

(6) Xio€ Xo,
(7) X1, € Xy,

(8) Xlo# X1 .
Now, let y := X1,. Thus, for proving (3.2) it is sufficient to prove:
(10) Jx € XogA X1y € Xg Az # X1y Aadjacent|z, X 1] .

Now, let x := X1;. Thus, for proving (10) it is sufficient to prove:
(15) X1, € Xo A X1y € XoA X1y # X1 Aadjacent[X1, X 1] .

Using available computation rules we evaluate (15) using (8) and (5.1) as addi-
tional assumption(s) for simplification:

(16) X1 e XgAN X1y e Xg A adjacent[Xll,Xlo] .

Proof of (16.1) X1, € Xo:

Formula (16.1) is true because it is identical to (7).
Proof of (16.2) X1, € Xj:

Formula (16.2) is true because it is identical to (6).
Proof of (16.3) adjacent[X1, X1]:

Formula (16.3), using (5.3), is implied by:

(17) X1p€ Xo N X1 € XoNX11# X1y .

Using available computation rules we evaluate (17) using (8) and (5.1) as addi-
tional assumption(s) for simplification:

(18) X1, € XoA X1, € X, .

Proof of (18.1) X1, € Xj:

Formula (18.1) is true because it is identical to (6).

Proof of (18.2) X1, € Xj:

Formula (18.2) is true because it is identical to (7). O

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 30

In this proof, special knowledge about cardinality goes into the proof. STKBR uses
an inference rule that allows to choose distinct elements from a finite set, i.e. if
we know |A| = n for some natural number n then we can choose new constants
x1,...,%, such that z; € A (for each 1 < i < n) and “all z; distinct”. This
rule allows to infer (6), (7), and (8) from (5.1) in the proof above, the remaining
proof is straight-forward.

8.2.3. The Interplay between Theorema and Mathematica

The two proofs in this section will show, how Theorema interacts with the under-
lying Mathematica system. We want to emphasize the strict separation between
Theorema and Mathematica in the sense that no Mathematica algorithm from
the rich computer algebra library available through Mathematica is applied “qui-
etly” during a proof in the Theorema system unless the user explicitly allows
the Theorema set theory prover to do so. The first example uses Mathematica’s
Solve function for instantiating existential variables in the proof goal.

Proof: (SETT751)

AByxngA/\YgA/\XgY/\f::A—)B:>image[f,X] gjmage[ij]’

under the assumption:

(Definition (Image)) f?}’(image[f, X] := {f[z] :La: € X}.

We assume

(1) XoCAAYyC AgANXgC YA fo:: Ag — By,
and show

(2) image[fo, Xo] C image[fo, Yo| -

For proving (2) we choose

(3) f1, € image(fo, Xo]

and show:

(4) f1, € image(fo, Yo] .

From (1.3) we can infer

(8) ¥ X2€Xy=X2€Y,.

Formula (3), by (Definition (Image)), implies:
(11) f1, € {folz] | x € Xo} .

From (11) we know by definition of {Txi P} that we can choose an appropriate

value such that

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 31
(12) xlg € Xo ,

Formula (4), using (13), is implied by:

folz1o] € image[fo, Yol ,
which, using (Definition (Image)), is implied by:

(19) folz1o] € { fo[z] l T €Yo} .

In order to prove (19) we have to show

(20) JreYon folzlo] = folz] .

Since x := z1, solves the equational part of (20) it suffices to show
(21) z1p €Yy .

Formula (21), using (8), is implied by:

(22) 210 € X .

Formula (22) is true because it is identical to (12). O

Since a sub-formula of the existential goal (20) is an equality containing the
existential variable, we instantiate the existential variable x in the proof goal with
the help of Mathematica. In this example, a candidate for x was found by solving
the equation fy[zlo] = fo[z] for , which is done by a call to the Mathematica
function Solve for solving (systems of) equations. Of course, unification or even
matching would have done this job as well, but, in the case of equational sub-
formulae, the STS-prover tries to apply the specific rule using Solve before it
tries general predicate logic solving using matching and unification.

The second example shows, how arithmetic knowledge on natural numbers
provided by Mathematica is accessible for the set theory prover. As already dis-
cussed in Section [on the set theory computation unit STC, semantic knowledge
about natural numbers from the Theorema language is not available in the set
theory prover by default, but it can be provided by the user on demand in the
call of the prover using the “built-in”-option.

Proof: (G) 36 JA{/® | j>iNnj<i+5}
ieN jeN
under the assumption

(A) Va>m=3Ji<nAi>mAieN.

In order to show (G) we have to show

(1) 3366{]'2 | jZi/\jSi—i—E)}/\iEN.
¢ jEN

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 32

In order to prove (1) we have to show

(2) %I%Ijzi/\jeN/\j§z’+5/\i€N/\36:j2.

Since j := 6 solves the equational part of (2) it suffices to show

(4) 3ieNA6>iA6ENAG<5+i.

Using available computation rules we evaluate (4):

(6) 3i<6Ai>1Ai€eN.

Formula (6), using (A), is implied by:

(7) 6>1.

Using available computation rules we evaluate (7):
(8) True.

Formula (8) is true because it is the constant True. O

The derivations of formulae (1) and (2) result from applying STP inference rules
for membership in a union and membership in a set abstraction, respectively.
Reduction of (2) to (3) is accomplished by instantiating j by a solution of a
quadratic equation done in STS. Similar to the previous example, since a sub-
formula of the existential goal (2) is an equality containing the quantified vari-
able, the Mathematica Solve function is used internally to solve the quadratic
equation 36 = j2 for j, which finds two solutions j = —6 and j = 6. Of course,
in this example matching and unification would not be an alternative, since
theory-specific arithmetic knowledge is necessary for solving this formula. The
first solution results in a failing proof attempt, since —6 € N simplifies to False
by built-in knowledge about N. The failing branch is eliminated when finally
simplifying the successful proof. Note, that the labels of the formulae indicate a
“missing branch”. Formulae (3) and (5) do not appear in the proof presentation
because they have been eliminated during proof simplification. Simplifications
from (4) to (6) and from (7) to (8) were made using available semantic knowl-
edge about natural numbers by STC (6 € N and 6 > 1, respectively) and, finally,
reduction from (6) to (7) and the detection of proof success were made by stan-
dard predicate logic inference rules. We have no specialized solving methods for
natural numbers available, therefore we needed assumption (A) in the knowl-
edge base. An appropriate solver for N would be able to verify (6) without any
additional knowledge. We will investigate necessary solving techniques in future
work.

8.2.4. Theory Exploration versus Isolated Theorem Proving

We consider (SET770), an example from the TPTP library concerning equiv-
alence classes, namely the theorem that two equivalence classes are equal or

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 33

disjoint. Note again, that none of the provers in the CASC competition could
solve this problem. In (Windsteiger 20014), an entire exploration of the theory
of equivalence relations, equivalence classes, factor sets, partitions, induced re-
lations, etc. is given. Instead of proving (SET770) from first principles, i.e. from
the axioms, it is preferable to first prove some auxiliary lemmata, which later
facilitate the proof of the theorem. This is just what a human mathematician
would be doing. We present here the proof of (SET770) using the two auxiliary
propositions (equal classes) and (not in distinct class) in the knowledge base. The
computing time for the proof is 5.8 seconds on a 2000 MHz Intel P4, the proofs
of the auxiliary propositions take 8.5 and 8.6 seconds, respectively. Of course,
this example using the two additional propositions is not anymore (SET770) in
the sense of TPTP! It should be clear that the timings for the examples given
in Section B.]] refer to the problem formulation as specified in the TPTP library,
except that, of course, we may omit definitions in the knowledge base that re-
fer to set theory specific constructs, which are covered by inference rules in our
prover. We do not claim this example to be a “solution for (SET770) as given
in TPTP” and, therefore, we did also not include it in the tables of timings
in Section B.1. We rather show this example in order to advocate for “theory
exploration” being superior to “proving from first principles”, in particular if we
want mathematicians to appreciate our systems.

Proof: (SETT770) =Y is-symmetric[R] A is-transitive[R] =

Y

(class[z, R] = class|y, R]) V (class|x, R]) N class[y, R] = {}).

under the assumptions:
(Proposition (equal classes)) V is-transitive|R] A is-symmetric[R] A
7x7y

(x,y) € R = class[z, R] = classly, R,

(Proposition (not in distinct classes)) oY is-symmetric[R] A is-transitive[R] A
7x7y7z

x € class[y, R] A x € class[z, R] = (y,2) € R.

We assume

(1) is-symmetric[Ry] A is-transitive[Ry| ,

and show

(2) (class[zg, Ro] = class|yo, Ro|) V (class[zg, Ro]) N class[yo, Ro] = {}) -

We prove (2) by proving the first alternative negating the other(s).
We assume

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 34
(4) class[zg, Ro] N class|yo, Ro] # {} -

We now show

(3) class[zg, Ry| = class[yo, Ro]

From (4) we know that we can choose an appropriate value such that
(5) z3¢ € class[zg, Ro| N class[yo, Ro] -

From (5) we can infer

(7) x3¢ € class|xg, Ro] ,

(8) z3¢ € class[yo, Ro] -
Formula (3), using (Proposition (equal classes)), is implied by:
(11) is-symmetric[Ry] A is-transitive[Ry] A (2o, %0) € Ro -

Proof of (11.1) is-symmetric[Ry]:

Formula (11.1) is true because it is identical to (1.1).

Proof of (11.2) is-transitive[R):

Formula (11.2) is true because it is identical to (1.2).

Proof of (11.3) (zo,y0) € Ro:

Formula (11.3), using (Proposition (not in distinct classes)), is implied by:

(12) Jis-symmetric[Ry] A is-transitive[Ro] A x € class[zg, Ro| A x € class|yo, Ro).

Now, let x := z3y. Thus, for proving (12) it is sufficient to prove:
(13) is-symmetric[Ry|Ais-transitive[Ry|Ax3y € class|xg, Ro]Ax3y € class|yo, Ro].

Proof of (13.1) is—symmetric|[Ry):

Formula (13.1) is true because it is identical to (1.1).

Proof of (13.2) is—transitive|Ry:

Formula (13.2) is true because it is identical to (1.2).

Proof of (13.3) 23, € class|xg, Ry:

Formula (13.3) is true because it is identical to (7).

Proof of (13.4) 3 € class|yo, Ro):

Formula (13.4) is true because it is identical to (8). O

The same case study has been carried out for an intensional concept of relations.
Similar to the intensional concept of a function described in Section B.2.1], an
intensional relation is something that can be applied to terms yielding true or
false. An intensional relation is nothing else than a predicate in the sense of
logic. We show one of the proofs and explain its key steps, since this proof
shows the natural interplay between P-, C-, and S-phases as implemented in the
Theorema set theory prover very nicely. This example also demonstrates that the
PCS-strategy, which has already been used in a prover for elementary analysis
within the Theorema system, see (Buchberger 2001, Vasaru-Duprd 2000), yields

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 35

natural proofs very similar to the style how a human mathematician would give
the proof.
Proof:

(Lemma (union inverse factor set)) ¥ is-reflexive al~] = factor-set[A] = A,

under the assumptions:

(Definition (relation sets): class) v classg[z] :=={a|a€ ANa~ z},
(Definition (relat. sets): factor-set) ‘X’factor—setN[A] = {classa [z] | x € A},

(Definition (reflexivity)) Y is-reflexive A~ e V(e A= ~ua).

We assume

(1) is-reflexive,[~],

and show

(2) | factor-set[Ag] = Ap.

Formula (2), using (Definition (relation sets): factor-set), is implied by:

U{classa, ~[z] | x € Ao} = Ao,

which, using (Definition (relation sets): class), is implied by:
3) Uf{ala€e Agna~zx}|xe Ay} = A

Formula (1), by (Definition (reflexivity)), implies:
(4) Z’(xeA0:>x~:c).

We show (3) by mutual inclusion:
C: We assume

(5) xJOGU{{alaer/\awx}lxer}

and show:
(6) xlg € Ao.

From (5) we know by definition of the big | J-operator that we can choose an
appropriate value such that

(7) 220 €e{{a|acAgNa~zx}|xe€ A},

(8) zlg € 22.

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 36

From (7) we know by definition of {7, | P} that we can choose an appropriate

T

value such that

(9) alg € Ao,

(10) 220 ={a]a€ AgNan~ aly}.

Formula (8), by (10), implies:
(23) zlpe{a|lac AgNa~ aly}.

From (23) we can infer
(24) z1g € Ag N zlg~ aly.

Formula (6) is true because it is identical to (24.1).
D: Now we assume

(6) $10 € Ao.
and show:

(5) x]OGU{{alaEAO/\awx}lmer}

In order to show (5) we have to show

(29) $E|4x106x4/\x4G{{a\aer/\awx}\xer}.

In order to solve (29) we have to find z4* such that

(30) vl € 24" A3 (xeAgnzf*={ala€ Ay Nar~zx}).
Since (6) matches a part of (30) we try to instantiate, i.e. let now x := x1,.
Thus, by (30), we choose 24* :={a | a € Ay ANa~ x1p}.
Now, it suffices to show ’

(32) zlpe AgNzlge{ala€c Ay Na~ zlp}.

Proof of (32.1) 21, € Ayp:

Formula (32.1) is true because it is identical to (6).

Proof of (32.2) z1p € {a|a€ AgNa~ z1p}:

In order to prove (32.2) \jve have to show:

(33) zlg€ AgAzlg~ zly.

Formula (33), using (4), is implied by:

(34) 21, € Ay,

Formula (34) is true because it is identical to (6). O

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 37

We briefly comment on the essential steps in the proof:

The proof starts with a P-phase, in which the universally quantified impli-
cation in the proof goal is reduced by natural deduction inference rules for
predicate logic from the special prover BasicND, see (1) and (2).

In a C-phase, the special prover QR rewrites the goal and the knowledge
base using the definitions in the knowledge base, see (3) and (4).

The prover switches back again to a P-phase, but now the STP prover re-
duces set equality X =Y to the two subgoals X CY and X D Y. In fact,
the inference rule for set equality reduces the subgoals by Definition of ‘C’
immediately, see (5) and (6).

For proving the first subgoal (6), staying in a P-phase, STKBR expands
membership in a union and a set quantifier in the knowledge base in two
subsequent level saturation runs, see (7), (8), (9) and (10).

In a C-phase, QR uses the equality (10) for rewriting (8) into (23).
In the final P-phase, expanding membership proves the subgoal (6).

For proving the second subgoal (5), first STP reduces membership in a union
during a P-phase into the existential goal (29).

The set theory prover enters an S-phase. The goal (29) has the special
structure 3 xlp € 24 A 2d € {T, | P.}, which can be handled by rule ‘In-

troSolveConstant’ from Section []. Thus, the existential quantifier is elimi-

nated by introducing the solve constant x4*, and the expansion of the inner

membership z4* € {7}, | P,} introduces another existential quantifier (now
x

for x), see (30).

The existential sub-formula in (30) is solved for x by unification with for-
mulae in the knowledge base. In fact, in this example matching is sufficient,
but we provide unification in this step for the general case. Having solved
for x, the solve constant x4* can be instantiated from the equational sub-
formula z4* = ... in (30), reducing the solve problem (30) again to a proof
problem, see (32).

In the P-phase, the goal (32) is split using general predicate logic, subgoal
(32.1) is trivially true, and subgoal (32.2) is handled first by a set theory
specific proof rule from STP, see (33).

Finally, the goal (33) is proved by simple rewriting using implications from
the knowledge base in a C-phase, see (34).

8.2.5. An Ezample of “Weak Performance” of the Set Theory Prover

Proof: (SET624) Y BN (CUD)#{} BNC#{}VBND #{}

For proving (SET624) we take all variables arbitrary but fixed and prove:

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema

(1) BQH(CQUD())%{}@BDHCD#{}\/B()QD()%{}.

Direction from left to right:
We assume

(3) BoN(CoU Dy) # {}

and show

(2) BonCo#{}V BonDo#{} .

From (3) we know that we can choose an appropriate value such that
(6) Blg€ ByN(CoU Dy) .

From (6) we can infer

(8) Blo € By,

(9) Blye CoUDy .
From (9) we can infer
(11) Bl,e Cy VvV Blg€ Dy .

We prove (2) by proving the first alternative negating the other(s).
We assume

(13) =~(BoN Do #{}) -

We now show

(12) BonCo# {}.

Formula (12) means that we have to show that

(14) 3 B2€BNCy.

38

We prove (14) by splitting up the intersection into its individual components:

We have to prove:

(15) 3 B2€ByAB2€Cy .

Formula (13) is simplified to
(16) BoNDy=A}.
From (16) we can infer

(17) ¥ B3 ¢ Byn Dy .

From (17) we can infer

(18) ¥ B3¢ ByV B3 ¢ D .

We prove (15) by case distinction using (11).

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 39

Case (11.1) B1g € Cy:
Now, let B2 := B1y. Thus, for proving (15) it is sufficient to prove:
(20) Bily€ By Bly € CO .

Proof of (20.1) B1y € By:

Formula (20.1) is true because it is identical to (8).
Proof of (20.2) B1, € Cy:

Formula (20.2) is true because it is identical to (11.1).
Case (11.2) B1y € Dy:

From (8), by (18), we obtain:

(29) Bi1, ¢ Dy .

Formula (15) is proved because (29) and (11.2) are contradictory.
Direction from right to left:
We assume

(5) BonNCo#{}V BoN Do #{}
and show
(4) Bon(CoUDy) #{} .

Formula (4) means that we have to show that

(30) BE|4 B4y € By N (CQ U Do) .

We prove (30) by splitting up the intersection into its individual components:
We have to prove:

(31) BE|4B4 EBQ/\B4 e CoUDy .

We prove (31) by case distinction using (5).

Case (5.1) BynNCy # {}:

From (5.1) we know that we can choose an appropriate value such that
(32) Bb5g € By N C(] .

From (32) we can infer

(34) B5, € By ,

(35) Bbg € Cy .
Now, let B/ := B5y. Thus, for proving (31) it is sufficient to prove:
(38) B5o € By A B5g € CoUD, .

We prove the individual conjunctive parts of (38):
Proof of (38.1) B5y € By:
Formula (38.1) is true because it is identical to (34).

Proof of (38.2) B5y € Cy U Dy:
In order to prove (38.2) we may assume

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 40

(40) Bb5g ¢ Dg
and show:
(39) Bbg € Cy .

(Note, that in all other cases the formula (38.2) trivially holds!)
Formula (39) is true because it is identical to (35).

Case (5.2) ByN Dy # {}:

From (5.2) we know that we can choose an appropriate value such that

(41) B6o € By Dy .
From (41) we can infer

(43) B6o € By |

(44) B6y € Dy .
Now, let B/ := B6,. Thus, for proving (31) it is sufficient to prove:
(47) B6y e Bo N\ Bby € C() UDy .

We prove the individual conjunctive parts of (47):
Proof of (47.1) B6, € By:

Formula (47.1) is true because it is identical to (43).
Proof of (47.2) B6y € Cy U Dy:

In order to prove (47.2) we may assume

(49) B6o ¢ Do
and show:
(48) B6y € Cy .

(Note, that in all other cases the formula (47.2) trivially holds!)
Formula (48) is proved because (49) and (44) are contradictory. O

Although the prover does not generate any failing branches in this example it
is substantially slower than the CASC provers. SPASS shows similar behavior
like the Theorema prover in that (SET624) is the example in which SPASS
performs by far worst. Most probably, the reason for the weak performance of
the Theorema set theory prover is an inefficient implementation of matching
the existentially quantified variable against constants available in the knowledge
base, which is needed several times in this example. Note, however, that the
proof is straight-forward and easy to comprehend for a human reader.

9. Conclusion

This paper describes the design and the implementation of an automated prover
for Zermelo-Fraenkel set theory (ZF) in the frame of the Theorema system. In

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 41

particular, we describe how the PCS paradigm for structuring automated theo-
rem provers, which has already been used in other provers provided in Theorema,
has been accommodated to set theory. The prover is intended to support math-
ematicians working in arbitrary areas of mathematics that are formulated using
ZF rather than for proving theorems of ZF from the axioms. This means, we aim
at proving theorems in the flavor of the examples shown in Sections B:Z.2 and
B.2.4 much more than most of the examples from the TPTP library. The proofs
shown in Section § demonstrate that the Theorema set theory prover is able
to produce proofs of non-trivial theorems in a human-comprehensible style. In
average, the computing times for automatically generating the formatted proofs
are comparably low. The set theory prover as described in this paper is con-
tained in the public version of the Theorema system, which is freely available at
http://www.theorema.org.

From the point of view of prover design, the set theory prover is the first
prover in the Theorema system that interfaces proving with computing based on
available language semantics. The special provers STKBR and STC will be used as
models for future special provers requiring access to the Theorema computation
engine. Further investigations will be necessary in order to handle conditional
rewriting more efficiently and to improve the S-phase by developing more pow-
erful special solvers and by interfacing solvers available in the computer algebra
and the constraint solving community.

References

Afshordel, B., Hillenbrand, T. & Weidenbach, C. (2001), First Order Atom Defi-
nitions Extended, in R. Nieuwenhuis & A. Voronkov, eds, ‘LPAR 2001’, num-
ber 2250 in ‘LNAI’, Springer Verlag Berlin Heidelberg, pp. 309-319.

Bernays, P. & Fraenkel, A. (1968), Aziomatic Set Theory, Studies in Logic and
the Foundations of Mathematics, 2 edn, North-Holland Publishing Company.

Buchberger, B. (1985), Grobner Bases: An Algorithmic Method in Polynomial
Ideal Theory, in N. Bose, ed., ‘Multidimensional Systems Theory’, D. Reidel
Publishing Company, Dordrecht-Boston-Lancaster, pp. 184-232.

Buchberger, B. (1996), Mathematics: An Introduction to Mathematics Integrat-
ing the Pure and Algorithmic Aspect. Volume I: A Logical Basis for Mathemat-
ics. Lecture notes for the mathematics course in the first and second semester
at the Fachhochschule for Software Engineering in Hagenberg, Austria.

Buchberger, B. (1999), Theory Exploration Versus Theorem Proving, in A. Ar-
mando & T. Jebelean, eds, ‘Electronic Notes in Theoretical Computer Sci-
ence’, Vol. 23-3, Elsevier, pp. 67-69. CALCULEMUS Workshop, University
of Trento, Trento, Italy.

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 42

Buchberger, B. (2000), Computer-assisted Proving by the PCS-Method, in
M. Hazewinkel, ed., ‘Proceedings of the Workshop on Constructive Algebra’,
LNCS, Springer. To appear.

Buchberger, B. (2001), The PCS Prover in Theorema, in R. Moreno-Diaz,
B. Buchberger & J. Freire, eds, ‘Proceedings of EUROCAST 2001 (8th Inter-
national Conference on Computer Aided Systems Theory - Formal Methods

and Tools for Computer Science)’, Lecture Notes in Computer Science 2178,
2201, Springer, Berlin - Heidelberg - New York, pp. 469-478.

Buchberger, B. & Vasaru, D. (2000), The Theorema PCS Prover. Jahrestagung
der DMV, Dresden, September 18-22.

CADE-18 ATP System Competition (CASC-18) (n.d.),
http://www.cs.miami.edu/ " tptp/CASC/18/.

Collins, G. E. (1975), Quantifier Elimination for Real Closed Fields by Cylin-
drical Algebraic Decomposition, in ‘Second GI Conference on Automata The-
ory and Formal Languages’, number 33 in ‘LNCS’, Springer Verlag, Berlin,
pp. 134-183.

Ebbinghaus, H. (1979), Einfihrung in die Mengenlehre, 2 edn, Wissenschaftliche
Buchgesellschaft Darmstadt. ISBN 3-534-06709-6.

Formisano, A. (2000), Theory-based Resolution and Automated Set Reasoning,
PhD thesis, Universita degli Studi di Roma “La Sapienza’.

Ganzinger, H. & Stuber, J. (2003), Superposition with Equivalence Reasoning
and Delayed Clause Normal Form Transformation, in ‘Proc. 19th Int. Conf.
on Automated Deduction (CADE-19)’, LNCS 7, Miami, USA, pp. 77

Halmos, P. (1960), Naive Set Theory, D. Van Nostrand Company, Princeton, NJ.
Reprinted by Springer-Verlag, New York, 1974, ISBN 0-387-90092-6 (Springer-
Verlag edition).

Kriftner, F. (1998), Theorema: The Language, in B. Buchberger & T. Jebelean,
eds, ‘Proceedings of the Second International Theorema Workshop’, pp. 39-54.
RISC report 98-10.

McCarthy, J. (1964), A Tough Nut for Proof Procedures. Stanford Al project
memo.

McCarthy, J. (1995), The Mutilated Checkerboard in Set Theory, in R. Ma-
tuszewski, ed., ‘The QED Workshop II', Warshaw University, pp. 25-26. Tech-
nical Report L/1/95.

Piroi, F. (2004), Tools for Using Automated Provers in Mathematical Theory
Exploration, PhD thesis, RISC Institute, University of Linz.

W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 43

Quine, W. (1963), Set Theory and its Logic, Belknap Press of Harvard University
Press, Cambridge, Massachusetts.

Russell, B. & Whitehead, A. (1910), Principia Mathematica, Cambridge Univer-
sity Press. Reprinted 1980.

Shoenfield, J. R. (1967), Mathematical Logic, Logic, Addison Wesley Publishing
Company.

Tomuta, E. (1998), An Architecture for Combining Provers and its Applications
in the Theorema System, PhD thesis, The Research Institute for Symbolic
Computation, Johannes Kepler University. RISC report 98-14.

TPTP: Thousands of Problems for Theorem Provers (n.d.),
http://www.cs.miami.edu/"tptp/.

Vasaru-Dupré, D. (2000), Automated Theorem Proving by Integrating Proving,
Solving and Computing, PhD thesis, RISC Institute. RISC report 00-19.

Windsteiger, W. (2001a), A Set Theory Prover in Theorema: Implementation
and Practical Applicationsfl, PhD thesis, RISC Institute.

Windsteiger, W. (20015), On a Solution of the Mutilated Checkerboard Problem
using the Theorema Set Theory Proverf], in S. Linton & R. Sebastiani, eds,
‘Proceedings of the Calculemus 2001 Symposium’.

W

http://www.risc.uni-linz.ac.at /people/wwindste /publications.htm]

I

http://www.risc.uni-linz.ac.at /people/wwindste /publications.htm]

	Introduction
	The Theoretical Basis of the Set Theory Prover
	Set Theory in the Theorema System
	Possible Approaches for Set Theory Proving in the Frame of Theorema
	Zermelo-Fraenkel Set Theory as Used in the Set Theory Prover

	How Provers are Organized in Theorema
	Preliminaries on Terminology
	The Generation of Proofs in Theorema
	User Provers
	Special Provers
	The Global Proof Search Procedure and the Proof Object

	The Theorema Set Theory Prover
	STP and STKBR: The Set Theory Proving Units
	Set Theory Specific Goal Reduction
	Set Theory Specific Knowledge Expansion
	Knowledge Expansion by Lazy Level Saturation
	Rule Locking

	STC: The Set Theory Computing Unit
	STS: The Set Theory Solving Unit
	Comparison and Examples
	Comparison to State-of-the-Art Theorem Provers
	Proofs Generated by the Theorema Set Theory Prover
	Properties of Functions Built Into the Set Theory Prover
	Set Theory Specific Knowledge Built into the Prover
	The Interplay between Theorema and Mathematica
	Theory Exploration versus Isolated Theorem Proving
	An Example of ``Weak Performance'' of the Set Theory Prover

	Conclusion

