
RISC-Linz
Research Institute for Symbolic Computation
Johannes Kepler University
A-4040 Linz, Austria, Europe

Calculemus/MKM 2007
Work in Progress

Manuel KAUERS, Manfred KERBER,
Robert MINER, Wolfgang WINDSTEIGER (Eds.)

Hagenberg, Austria
June 27–30, 2007

RISC-Linz Report Series No. 07-06

Editors: RISC-Linz Faculty
B. Buchberger, R. Hemmecke, T. Jebelean, M. Kauers, T. Kutsia, G. Landsmann,
F. Lichtenberger, P. Paule, H. Rolletschek, J. Schicho, C. Schneider, W. Schreiner,
W. Windsteiger, F. Winkler.

Supported by:

Copyright notice: Permission to copy is granted provided the title page is also copied.

Preface

This collection contains the work-in-progress papers presented at two confer-
ences, Calculemus 2007 and MKM 2007. Calculemus 2007 was the 14th in a
series of conferences dedicated to the integration of computer algebra systems
(CAS) and automated deduction systems (ADS). MKM 2007 was the Sixth In-
ternational Conference on Mathematical Knowledge Management, an emerging
interdisciplinary field of research in the intersection of mathematics, computer
science, library science, and scientific publishing. Both conferences aimed to pro-
vide mechanized mathematical assistants. Regular papers of the conferences were
published as Lecture Notes in Artificial Intelligence volume 4573.

Although the two conferences have separate communities and separate foci, there
is a significant overlap in the interests in building mechanized mathematical as-
sistants. For this reason it was decided to collocate the two events in 2007 for the
first time, at RISC in Hagenberg, Austria. The number and quality of the sub-
missions show that this was a good decision. While the proceedings are shared,
the submission process was separate. The responsibility for acceptance/rejection
rests completely with the two separate Program Committees.

By this collocation we made a contribution against the fragmentation of com-
munities which work on different aspects of different independent branches, tra-
ditional branches (e.g., computer algebra and theorem proving), as well as newly
emerging ones (on user interfaces, knowledge management, theory exploration,
etc.). This will also facilitate the development of integrated mechanized math-
ematical assistants that will be routinely used by mathematicians, computer
scientists, and engineers in their every-day business.

1

2

Table of Contents

Contributions to Calculemus 2007

Property inference for Maple: an application of abstract interpretation . . . 5

Jacques Carette and Stephen Forrest

Towards Practical Reflection for Formal Mathematics 21

Martin Giese and Bruno Buchberger

On the Efficiency of Geometry Theorem Proving by Gröbner Bases 35

Shuichi Moritsugu and Chisato Arai

Contributions to MKM 2007

A Document-Oriented Coq Plugin for TeXmacs . 47

Lionel Elie Mamane and Herman Geuvers

Software Specification Using Tabular Expressions and OMDoc 61

Dennis K. Peters, Mark Lawford, and Baltasar Trancón y Widemann

Reasoning inside a formula and ontological correctness of a formal
mathematical text . 77

Andrei Paskevich, Konstantin Verchinine, Alexander Lyaletski, and

Anatoly Anisimov

The Utility of OpenMath . 93

James H. Davenport

3

4

Property inference for Maple: an application of

abstract interpretation

Jacques Carette and Stephen Forrest

Computing and Software Department, McMaster University
Hamilton, Ontario, Canada

{carette,forressa}@mcmaster.ca

Abstract. We continue our investigations of what exactly is in the code
base of a large, general purpose, dynamically-typed computer algebra
system (Maple). In this paper, we apply and adapt formal techniques
from program analysis to automatically infer various core properties of
Maple code as well as of Maple values. Our main tools for this task
are abstract interpretation, systems of constraints, and a very modular
design for the inference engine. As per previous work, our main test case
is the entire Maple library, from which we provide some sample results.

1 Introduction

We first set out to understand what really is in a very large computer alge-
bra library [1]. The results were mixed: we could “infer” types (or more gener-
ally, contracts) for parts of the Maple library, and even for parts of the library
which used non-standard features, but the coverage was nevertheless disappoint-
ing. The analysis contained in [1] explains why: there are eventually simply too
many non-standard features present in a large code base for any kind of ad hoc
approach to succeed.

We were aiming to infer very complex properties from very complex code.
Since we cannot change the code complexity, it was natural to instead see if
we could infer simple properties, especially those which were generally indepen-
dent of the more advanced features of Maple [7]. The present paper explains
our results: by using a very systematic design for a code analysis framework, we
are able to infer simple properties of interesting pieces of code. Some of these
properties are classical [9], while others are Maple-specific. In most cases, these
properties can be seen as enablers for various code transformations, as well as en-
ablers for full-blown type inference. Some of these properties were influenced by
other work on manipulating Maple ([8, 2]) where knowledge of those properties
would have increased the precision of the results.

In this current work we follow classical static program analysis fairly closely.
Thus we make crucial use of Abstract Interpretation as well as Generalized
Monotone Frameworks [9]. We did have to design several instantiations of such
frameworks, and prove that these were indeed proper and correct instances. We
also had to extend these frameworks with more general constraint systems to be
able to properly encode the constraints inherent in Maple code.

In Figure 1 we illustrate some of the facts we seek to infer from code as
motivation for our task. Example 1 is the sort of procedure upon which we
should like to perform successful inferences. We aim to infer that c is an integer
or string at the procedure’s termination; for this we need to encode knowledge
of the behavior of the Maple function nops (“number of operands”) and of the
semantics of *. Example 2 illustrates the fact that Maple programs sometimes
exhibit significantly more polymorphism than their authors intend. We may
believe that the r := 0 assignment requires r to be a numeric type, but in fact
it may be a sum data structure, list, expression sequence, vector, or matrix, upon
which arithmetic is performed componentwise: this “hidden polymorphism” may
inhibit the range of our inferences. Example 3 illustrates “bad” code: it will
always give an error, since the sequence (x, 1, p) automatically flattens within
map’s argument list to produce map(diff,x,1,p,x) and the diff command
cannot accept this. (The list [x, 1, p] would work correctly.) We want to detect
classes of such errors statically.

Example 1 Example 2 Example 3

f 1 := proc (b)
local c ;
c := ”a s t r i n g ” ;
i f b then

c := 7 ∗ nops (b) ;
end i f ;
c

end proc :

f 2 := proc (n)
local i , r ;
r := 0 ;
for i to n do

r := i ∗ r + f (i) ;
end do ;
return r

end proc :

f 3 := proc (p , x : : name)
map(d i f f , (x , 1 , p) , x)

end proc :

Fig. 1. Examples of Maple input

Our main contributions involve: some new abstract interpretation and mono-
tone framework instantiations, and showing that these are effective; the use of
a suitable constraint language for collecting information; a completely generic
implementation (common traversal routines, common constraint gathering, etc).
This genericity certainly makes our analyzer very easy to extend, and does not
seem to have a deleterious effect on efficiency.

The paper is structured as follows: In section 2 we introduce Abstract In-
terpretation, followed by section 3 where we formally define the properties we
are interested in. Section 4 outlines our approach to collecting information via
constraints. In section 5, we give a sample of the results we have obtained thus
far. A description of the software architecture and design is in section 6, followed
by our conclusions.

2 Abstract Interpretation

Abstract Interpretation [5] is a general methodology which is particularly well
suited to program analyses. While the operational semantics of a language pre-
cisely describe how a particular program will transform some input value into an

6

output value1, we are frequently more interested in knowing how a program in-
duces a transformation from one property to another. We proceed to give a quick
introduction to this field; the interested reader may learn more from the many
papers of P. Cousot ([4, 3] being particularly relevant). Our overview has been
thoroughly enlightened by the pleasant introduction [12] by Mads Rosendahl,
and David Schmidt’s lecture notes [13], whose (combined) approach we gener-
ally follow in this section.

Conceptually, given two interpretations I1

�
p � and I2

�
p � from programs, we

would like to establish a relationship R between them. Generally, I1 is the stan-
dard meaning, and I2 is a more abstract meaning, designed to capture a partic-
ular property.

To make this more concrete, let us begin with the standard example, the
Rule of sign. Consider a simple expression language given by the grammar

e ::= n | e + e | e ∗ e

We want to be able to predict, whenever possible, the sign of an expression, by
using only the signs of the constants in the expression. The standard interpre-
tation is usually given as

E
�
e � : Z E

�
e1 + e2 � = E

�
e1 � + E

�
e2 �

E
�
n � = n E

�
e1 ∗ e2 � = E

�
e1 � ∗ E

�
e2 �

The abstract domain we will use will allow us to differentiate between expres-
sions which are constantly zero, positive or negative. In fact, however, we need
more: this is because if we add a positive integer to a negative integer, we cannot
know the sign of the result (without actually computing the result). So we also
give ourselves a value to denote that all we know is the result is a ‘number’.

Taking Sign = {zero, pos, neg, num}, we can define an “abstract” version of
addition and multiplication on Sign:

⊕ : Sign× Sign → Sign

⊕ neg zero pos num

neg neg neg num num

zero neg zero pos num

pos num pos pos num

num num num num num

⊗ : Sign× Sign → Sign

⊗ neg zero pos num

neg pos zero neg num

zero zero zero zero zero

pos neg zero pos num

num num zero num num

Using these operators, we can define the abstract evaluation function for expres-
sions as:

A
�
e � : Sign E

�
e1 + e2 � = A

�
e1 � ⊕ E

�
e2 �

A
�
n � = sign(n) E

�
e1 ∗ e2 � = A

�
e1 � ⊗ E

�
e2 �

where sign(x) = if x > 0 then pos else if x < 0 then neg else zero.

1 where these values can, for imperative programs, consist of state

7

Formally, we can describe the relation between these two operations as fol-
lows (and this is typical):

γ : Sign → P(Z) \ ∅

γ(neg) = {x | x < 0}

γ(zero) = {0}

γ(pos) = {x | x > 0}

γ(num) = Z

α : P(Z) \ ∅ → Sign

α(X) =

neg X ⊆ {x | x < 0}

zero X = {0}

pos X ⊆ {x | x > 0}

num otherwise

The (obvious) relation between γ and α is

∀s ∈ Sign.α(γ(s)) = s and ∀X ∈ P(Z) \ ∅.X ⊆ γ(α(X)).

γ is called a concretization function, while α is called an abstraction function.
These functions allow a much simpler definition of the operations on signs:

s1 ⊕ s2 = α({x1 + x2 | x1 ∈ γ(s1) u x2 ∈ γ(s2)})

s1 ⊗ s2 = α({x1 ∗ x2 | x1 ∈ γ(s1) u x2 ∈ γ(s2)})

From this we get the very important relationship between the two interpreta-
tions:

∀e.{E
�
e � } ⊆ γ(A

�
e �)

In other words, we can safely say that the abstract domain provides us with a
correct approximation to the behaviour in the concrete domain. This relationship
is often called a safety or soundness condition. So while a computation over an
abstract domain may not give us very useful information (think of the case
where the answer is num), it will never be incorrect, in the sense that the true
answer will always be contained in what is returned. More generally we have the
following setup:

Definition 1 Let 〈C,v〉 and 〈A,v〉 be complete lattices, and let α : C → A,
γ : A → C be monotonic and ω-continous functions. If ∀c.c vC γ(α(c)) and
∀a.α(γ(a)) vA a, we say that we have a Galois connection. If we actually have
that ∀a.α(γ(a)) = a, we say that we have a Galois insertion.

The reader is urged to read [6] for a complete mathematical treatment of
lattices and Galois connections. The main property of interest is that α and γ

fully determine each other. Thus it suffices to give a definition of γ : A → C; in
other words, we want to name particular subsets of C which reflect a property
of interest. More precisely, given γ, we can mechanically compute α via α(c) =
u{a | c vC γ(a)}, where u is the meet of A.

Given this, we will want to synthesize abstract operations in A to reflect
those of C; in other words for a continuous lattice function f : C → C we are
interested in f̃ : A → A via f̃ = α ◦ f ◦ γ. Unfortunately, this is frequently too
much to hope for, as this can easily be uncomputable. However, this is still the
correct goal:

8

Definition 2 For a Galois Connection (as above), and functions f : C → C

and g : A → A, g is a sound approximation of f if and only if

∀c.α(f(c)) vA g(α(c))

or equivalently
∀a.f(γ(a)) vC γ(g(a)).

Then we have that (using the same language as above)

Proposition 1 g is a sound approximation of f if and only if g vA→A α◦f ◦γ.

How do we relate this to properties of programs? To each program transition
from point pi to pj , we can associate a transfer function fij : C → C, and also

an abstract version f̃ij : A → A. This defines a computation step as a transition
from a pair (pi, s) of a program point and a state, to (pj , fij(s)) a new program
point and a new (computed) state. In general, we are interested in execution
traces, which are (possibly infinite) sequences of such transitions. We naturally
restrict execution traces to feasible, non-trivial sequences. We always restrict
ourselves to monotone transfer functions, i.e. such that

l1 v l2 =⇒ f(l1) v f(l2)

which essentially means that we never lose any information by approximating.
This is not as simple as it sounds: features like uneval quotes, if treated näıvely,
could introduce non-monotonic functions.

Note that compared to some analyses done via abstract interpretation, our
domains will be relatively simple (see [11] for a complex analysis).

3 Properties and their domains

We are interested in inferring various (static) properties from code. While we
would prefer to work only with decision procedures, this appears to be asking for
too much. Since we have put ourselves in an abstract interpretation framework, it
is natural to look at properties which can be approximated via complete lattices.
As it turns out, these requirements are easy to satisfy in various ways.

On the other hand, some of these lattices do not satisfy the Ascending Chain
Condition, which requires some care to ensure termination.

3.1 The properties

Surface type. The most obvious property of a value is its type. As a first ap-
proximation, we would at least like to know what surface type a value could have:
in Maple parlance, given a value v, what are the possible values for op(0,v)?
More specifically, given the set IK of all kinds of inert forms which correspond
to Maple values, we use the complete lattice L = 〈P(IK),⊆〉 as our framework.

9

Then each Maple operation induces a natural transfer function f : L → L. It is
straightforward to define abstraction α and concretization γ functions between
the complete lattice 〈P(V),⊆〉 of sets of Maple values (V) and L. It is neverthe-
less important to note that f is still an approximation: if we see a piece of code
which does a := l[1], even if we knew that α(l) = LIST, the best we can do is
α(a) ⊆ E, where E = P(IK) \ {EXPSEQ}.

Expression sequence length. This is really two inferences in one: to find
whether the value is a potential expression sequence (expseq), and if so, what
length it may be. From Maple’s semantics, we know that they behave quite dif-
ferently in many contexts than other objects, so it is important to know whether
a given quantity is an expression sequence. An expression sequence is a Maple
data structure which is essentially a self-flattening list. Any object created as
an expression sequence (e.g. the result of a call to op) which has a length of
1 is automatically evaluated to its first (and only) element. That is, an object
whose only potential length as an expression sequence is 1 is not an expression
sequence. The natural lattice for this is I (N) (the set of intervals with natural
number endpoints) with ⊆ given by containment. The abstraction function maps
all non-expseq Maple values to the degenerate interval [1 . . . 1], and expseq values
to (an enclosure for) its length. Note that NULL (the empty expression sequence)
maps to [0 . . . 0], and that unknown expression sequences map to [0 . . .∞].

Variable dependence: Given a value, does it “depend” on a symbol (viewed
as a mathematical variable)? The definition of ‘depends’ here is the same as the
Maple command of that name. In other words, we want to know the complete list
of symbols whose value can affect the value of the current variable. Note that this
can sometimes be huge (given a symbolic input), but also empty (when a variable
contains a static value with no embedded symbols). The natural lattice is the
powerset of all currently known (to the system) symbols, along with an extra >
to capture dynamically created symbols, with set containement ordering. Note
that this comes in different flavours, depending on whether we treat a globally
assigned name as a symbol or as a normal value.

Number of variable reads: In other words, for each local variable in a
procedure, can we tell the number of times it will be read? The natural lattice
is L = V → I (N) with V the set of local variables of a procedure. If s, t ∈ L,
then s t t is defined component-wise as λv.[max sl(v), tl(v), sr(v) + tr(v)] where
s(v) = [sl(v), sr(v)], t(v) = [tl(v), tr(v)].

Number of variable writes: A natural (semantic) dual to the number of
reads, but operationally independent.

Reaching Definition: This is a classical analysis [9] which captures, at every
program point, what assignments may have been been made and not overwritten.
As in [9], the lattice here is P(Var?×Lab?

?), ordered by set inclusion. Here Var?

is finite set of variables which occur in the program, and Lab?
? is the finite set

of program labels augmented by the symbol ?. Note that unlike I (N) this lattice
satisfies the Ascending Chain Condition (because it is finite).

Summarizing, we will infer the following property of values (according to
the definitions above): its surface type, its expression sequence length, and its
variable dependencies. Note that, given a labelled program, we can speak of

10

values at a program point, by which we mean the value of one (or more) state
variable(s) at that program point; of those values, we are interested in similar
properties. For a program variable, we will work with the number of times it is
read or written to. And for a program point, which assignments may have been
made and not overwritten.

For the purposes of increased precision, these analyses are not performed in
isolation. What is actually done is that a Reaching Definition analysis is first
performed, and then the other analyses build on this result. Later, we should look
at taking (reduced) tensor products of the analyses ([9] p. 254-256), although it
is only clear how to do this for finite lattices.

3.2 Idiosyncrasies of Maple

Many of the analyses we wish to attempt are complicated by the particular se-
mantics of Maple. Some of these, such as untypedness and the potential for an
arbitary procedure to alter global state, are shared with many other program-
ming languages. Others are specific to a CAS or to Maple alone. Following is a
list of some key features.

1. Symbols: As Maple is a CAS, every variable (aside from parameters) which
does not have an assigned value may be used as a symbol, and passed around
as any other value. Should the variable later be assigned, any previous ref-
erence to it as a symbol will evaluate to its present value.

2. Functions which return unevaluated: Just as variables may be values
or symbols, function calls may or may not choose to evaluate. Certain of
Maple’s built-in functions, sch as gcd, will return the function invocation
unevaluated when presented with symbolic input.

3. Side effects: Any function invocation may affect global state, so one cannot
assume state remains constant when evaluating an expression.

3.3 A formalization

Here we will give the formalization for the Galois connection associated to the
expression sequence length property inference. The next section will complete
the picture by giving the associated constraints.

The source lattice in this case is 〈P (Val) ,⊆〉 where Val represents the set of
all possible Maple values. The target lattice, as mentionned above, is 〈I (N) ,⊆〉.
The Galois connection in this case is the one given by the representation function
β : Val → I (N) (see Chapter 4 of [9]). Explicitly, for V ∈ P (Val), α(V) =
⊔

{β(b) | v ∈ V }, and γ(l) = {v ∈ Var | β(v) @ l}. But this is completely
trivial! For any value v which is neither NULL nor is an expression sequence,
then β(v) = 1..1. Otherwise β(NULL) = 0..0 and β(e) = nops([e]) for e an
expression sequence. What is much more interesting is, what is the monotone
transfer function induced by β?

In other words, for all the expression constructors and all the statements
of the language, what is the induced function on I (N)? We want to know a

11

safe approximation to f̃ = α ◦ f ◦ γ. For all constructors c whose surface type
is in {INTPOS, INTNEG, RATIONAL, COMPLEX, FLOAT, HFLOAT, STRING, EQUATION,
INEQUAT, LESSEQ, LESSTHAN, DCOLON, RANGE, EXACTSERIES, HFARRAY, MODULE,
PROC, SDPOLY, SERIES, SET, LIST, TABLE, ARRAY, VECTOR COLUMN, VECTOR ROW,
VECTOR, NAME, MODDEF, NARGS}, c̃ = 1..1, with the exception of the special name
NULL which is 0..0. For those in {SUM, PROD, POWER, TABLEREF, MEMBER, EXPSEQ,
ASSIGNEDLOCALNAME, ASSIGNEDNAME}, the best that can be said a priori is 0..∞.
Some of these are expected (for example, an ASSIGNEDNAME can evaluate to an
expression sequence of any length), but others are plain strange Maple-isms:

> (1,2) + (3,4);

4,6

But we can do better than that. Figure 3.3 shows a precise definition of the
transfer function for SUM, EXPSEQ, and PROD. In the table for SUM, we implicitly
assume that a ≤ b and a..b 6= 1..1; also, since adding two expression sequences
of different lengths (other than the 1..1 case) results in an error [in other words,
not-a-value], this case is not included in the table. In the table for PROD, we
further assume that a ≥ 1, c ≥ 1, as well as a..b 6= c..d.

SUM 1..1 a..b

1..1 1..1 1..1

a..b 1..1 a..b

EXPSEQ(a..b, c..d) = (a + c)..(b + d)

PROD 1..1 a..b c..d

1..1 1..1 a..b c..d

a..b a..b 1..1 1..1

c..d c..d 1..1 1..1

Fig. 2. Some transfer functions associated to expression sequence length

Of course, statements and other language features that are only present inside
procedures induce transfer functions too. Some are again quite simple: we know
that a parameter (a PARAM) will always be 1..1. In all other cases, the transfer
function associated to the statements of the language is quite simple: whenever it
is defined, it is the identity. On the other hand, the transfer functions associated
to many of the builtin functions (like map, op, type and so on) are very complex.
We currently have chosen to take a pessimistic approach and always assume the
worst situation. This is mostly a stop-gap measure to enable us to get results,
and we plan on rectifying this in the future.

While it would have been best to obtain all transfer functions from a formal
operational semantics for Maple, no such semantics exists (outside of the actual
closed-source, proprietary implementation). We obtained the above by expanding
the defining equation f̃ = α ◦f ◦γ, for each property and each f of interest, and
the breaking down the results into a series of cases to examine. We then ran a
series of experiments to obtain the actual results. We have to admit that, even
though the authors have (together) more than 30 years’ experience with Maple,
several of the results (including some in figure 3.3) surprised us.

3.4 Applications

We chose those few simple analyses because they are foundational: they have
many applications, and very many of the properties of interest of Maple code
can most easily be derived from those analyses.

12

For example, if we can tell that a variable will never be read, then as long
as the computation that produces that value has no (external) side-effects, then
that computation can be removed2. Similarly, if it is only read once, then the
computation which produces the value can be inlined at its point of use. Oth-
erwise, no optimizations are safe. If we can tell that a local variable is never
written to, then we can conclude that it is used as a symbol, a sure sign that
some symbolic computations are being done (as opposed to numeric or other
more pedestrian computations).

4 Constraints and Constraint Solving

If we took a strict abstract interpretation plus Monotone Framework approach
[9], we would get rather disappointing results. This is because both forward-
propagation and backward-propagation algorithms can be quite approximative
in their results.

This is why we have moved to a general constraint-based approach. Unlike a
Monotone Framework approach, for any given analysis we generate both forward
and backward constraints. More precisely, consider the following code:

proc (a) local b ;
b := op (a) ;
i f b>1 then 1 else −1 end i f ;

end proc ;

If we consider the expression sequence length analysis of the previous section,
the best we could derive from the first statement is that b has length ⊆ [0 . . .∞).
But from the b > 1 in a boolean context and our assumption that the code in its
present state executes correctly, we can deduce that b must have length (exactly)
1 (encoded as [1 . . . 1]). In other words, for this code to be meaningful we have
not only b ⊆ [1 . . . 1] but also [1 . . . 1] ⊆ b.

More formally, given a complete lattice L = (D,u,t, @, =), we have the basic
elements of a constraint language which consists of all constants and operators
of L along with a (finite) set of variables from a (disjoint) set V . The (basic)
constraint language then consists of syntactically valid formulas using those basic
elements, as well as the logical operator ∧ (conjunction). A solution of such a
constraint is a variable assignment which satisfies the formula.

For some lattices L, for example I (N), we also have and use the monoidal
structure (here given by ⊕ and 0..0). This structure also induces a scalar (i.e. N)
multiplication, which we also use. In other words, we have added both ⊕ and a
scalar ∗ to the constraint language when L = I (N).

A keen reader might have noted one discrepancy: in the language of con-
straints that we have just described, it is not possible to express the transfer

2 in the sense that the resulting procedure p′ will be such that p � p′, for the natural
order on functions. Such a transformation may cause some paths to terminate which
previously did not – we consider this to desirable.

13

function (on I (N)) induced by SUM! As this is indeed so, we have added a con-
straint combinator to the language of constraints. This takes the form C(op) for
any (named) function op : L → L. In particular, we can thus use the transfer
function induced by SUM and PROD in our constraint language. This also includes
the expression-sequence constructor , (comma).

One feature of our approach beyond that of classical abstract interpretation
is the addition of recurrence equations. When expressed in terms of our chosen
properties, many loops and other control structures naturally induce recurrences,
often very trivial ones. Consider the following:

f a c t := proc (a) local s ;
s := 1 ;
for i from 1 to n do s := n∗ s ; end i f ;
return (s) ;

end proc ;

At the program point corresponding to the assignment to s within the loop, a
classical Reaching Definitions approach will always give two possibilities for the
preceding assignment: the initial assignment or a previous loop iteration at the
same program point, which complicates the analysis. One means of dealing with
this self-dependency is to regard the problem as a recurrence over s.

Given a loop at program point `, we introduce symbols LIV(`), LFV(`) into
our constraint language to represent, respectively, the state at the start of the
ith iteration and the state upon loop termination. At the program point men-
tioned earlier, there is now only one possibility for the preceding assignment: the
symbolic quantity LIV(`).

At this point, we have to admit that we do not have a complete algorithm
for the solution of all the constraint systems described. What we have does
appear to work rather well, in that it terminates (even for large complex codes),
and returns sensible answers. It works via a combination of successive passes
of propagation of equalities, simplification of constraints, and least-fixed-point
iteration. We are confident that we can prove that what we have implemented
terminates and returns a proper solution of the constraint system.

5 Results

We wish to demonstrate the results of our analyses on various inputs. It is helpful
to begin with some concrete examples for which the analysis can be replicated
by the reader. Consider the following Maple procedure:

IsPrime := proc (n : : i n t e g e r) local S , r e s u l t ;
S := numtheory:− f a c t o r s e t (n) ;
i f nops (S) > 1 then

r e s u l t := (fa lse , S) ;
else

r e s u l t := true ;
end i f ;
return (r e s u l t) ;

end proc :

14

IsPrime is an combined primality tester and factorizer. It factors its input n, then
returns a boolean result which indicates whether n is prime. If it is composite,
the prime factors are also returned.

This small example demonstrates the results of two of our analyses. In the
Expression Sequence length analysis, we are able to conclude, even in the absence
of any special knowledge or analysis of numtheory:-factorset, that S must be
an expression because it is used in a call to the kernel function nops (“number
of operands”).

Combined with the fact that true and false are known to be expressions,
we can estimate the size of result as [2 . . . 2] when the if-clause is satisfied
and [1 . . . 1] otherwise. Upon unifying the two branches, our estimate for result
becomes [1 . . . 2]. For the Surface Type Analysis, we are able to estimate the
result as {NAME,EXPSEQ}.

Our results can also be used for static inference of programming errors. We
assume that the code, as written, reflects the programmers’ intent. In the pres-
ence of a programming error which is captured by one of our properties, the
resulting constraint system will have trivial solutions or no solutions at all.

For an illustration of this, consider the following example. The procedure
faulty is bound to fail, as the arguments to union must be sets or unassigned
names, not integers. As Maple is untyped, this problem will not be caught until
runtime.

f au l t y := proc (c) local d , S ;
d := 1 ; S := {3 ,4 , 5} ;
S union d ;

end proc :

However, our Surface Type analysis can detect this: the two earlier assign-
ments impose the constraints X1 ⊆ {INTPOS} and X2 ⊆ {SET}, while union

imposes on its arguments the constraints that X3, X4 ⊆ {SET} ∪ Tname.
3 No

assignments to d or S could have occurred in the interim, we also have the con-
straints X1 = X4 and X2 = X3. The resulting solution contains X1 = ∅, which
demonstrates that this code will always trigger an error.

grows := proc (c)
x := 2 , 3 , 4 , 5 ;
for y from 1 to 10 do

x := x , y ;
end do ;
return (x) ;

end proc :

Here, we are able to express the relationship between the starting state,
intermediate state, and final state of the for loop as a recurrence equation over
the domain of the ExprSeqLength property. In the end we are able to conclude
that the length of y is [4 . . . 4] + NL(`1) · [1 . . . 1], where NL(`1) signifies the
number of steps of the loop. Another analysis may later supply this fact.

3 Here Tname denotes the set of tags corresponding to names, such as NAME and LOCAL;
the full list is too lengthy to provide, but it does not contain INTPOS.

15

Results from a test library: We have run our tools against a private
collection of Maple functions. This collection is chosen more for the variety of
functions present within than a representative example of a working Maple li-
brary. Therefore, we focus on the results of our analyses on specific functions
present within the database, rather than on summary statistics as a whole.

l o o p t e s t := proc (n : : po s in t) : : i n t e g e r ;
local s : : i n t ege r , i : : i n t ege r , T : : tab le , f l a g : : true ;
(s , i , f l a g) := (0 , 1 , fa l se) ;
T := tab l e () ;
while i ˆ2 < n do

s := i + s ;
i f f l a g then T[i] := s ; end i f ;
i f type (s , ’ even ’) then f l a g := true ; break ; end i f ;
i := 1 + i

end do ;
while type (i , ’ pos int ’) do

i f as s i gned (T[i]) then T[i] := T[i] − s ; end i f ;
i f type (s , ’ odd ’) then s := s − i ˆ2 end i f ;
i := i − 1

end do ;
(s , T)

end proc :

This rather formidable procedure, while not doing anything particularly use-
ful, is certainly complex. It contains two successive conditional loops which march
in opposite directions, and both of which populating the table T along the way.

Here our analysis recognizes the fact that even though flag is written within
the body of the first while loop, this write event cannot reach the if-condition on
the preceding line because the write event is immediately followed by a break

statement. We are also able to conclude that s is always an integer: though this
is easy to see, given that all the write events to s are operations upon integer
quantities.

Results from the Maple library: We present (in figure 3) some results
from applying our tools to the Maple 10 standard library itself. This will serve
as a useful glimpse of how our tools behave on an authentic, working codebase.
Though our analysis focuses on absolutely all subexpressions within a procedure,
here we focus on deriving useful information about a procedure’s local variables
from their context.

Expression Sequence Length Procedures

Local with estimate 6= [0 . . .∞] 862

Local with finite upper bound 593

Local with estimate [1 . . .∞] 374

Local with estimate [0 . . . 1] 43

Solvable loop recurrences 127

Total analyzed 1276

Surface Type Procedures

Local type is � TExpression 827

Local w/ fully-inferred type 721

Local whose value is a posint 342

Local whose value is a list 176

Local whose value is a set 56

Solvable loop recurrences 267

Total analyzed 1330

Fig. 3. Results for analyses on Maple library source

16

For each analysis we sampled approximately 1300 procedures from the Maple
standard library, each of which contained at least one local variable. We are
particularly interested in boundary cases (>, ⊥ in our lattice, or singletons). For
the Expression Sequence analysis, we obtained nontrivial results for at least one
local variable in 862 of 1276 procedures; for 593, we can provide a finite bound
[a . . . b]. For 609 locals, we have both a program point where its size is fully
inferred ([1 . . . 1]) and another where nothing is known; an explanation for this
apparent discrepancy is that locals may be assigned multiple times in different
contexts. In the Surface Type analysis, we have nontrivial results for 827 of 1330
procedures; 721 have a local whose type is fully inferred.

6 Implementation

As we knew that we would be implementing many analyses, now and later, it was
required that the design and implementation be as generic as possible. Because of
Maple’s excellent introspection facilities, but despite it being dynamically typed,
we wrote the analysis in Maple itself.

This led us to design a generic abstract syntax tree (AST) traverser parametrized
by whatever information gathering phase we wanted. In Object-Oriented terms,
we could describe our main architecture as a combination of a Visitor pattern
and a Decorator pattern. To a Haskell programmer, we would describe the archi-
tecture as a combination of a State Monad with a generic map (gmap). The data
gathered are constraints expressed over a particular lattice (with an established
abstract interpretation).

There are several reasons for using a constraint system as we have described
in section 4: modularity, genericity, clarity and expressivity. We can completely
decouple the constraint generation stage from the constraint solving stage (mod-
ularity), as is routinely done in modern type inference engines. All our analyses
have the same structure, and share most of their code (genericity). Because of
this generic structure, the constraints associated to each syntactic structure and
each builtin function are very easy to see and understand. Furthermore, the rich
language of constraints, built over a simple and well-understood mathematical
theory (lattices, monoidal structures), provides an expressive language without
leading too quickly into uncomputable or unsolvable systems.

For all properties, the constraint language generally consists of our chosen
lattice, with its base type and lattice operations. These are extended with a
set of symbols S representing unknown values in T , and a set of constraint
transformers CT : these may be viewed as functions T ∗ → T .

In general, our approach has three stages:

1. Constraint assignment: We traverse the AST: with each code fragment,
we record constraints it imposes on itself and its subcomponents. For exam-
ple, conditionals and while loops constrain their condition to be ⊂ Tbool.

2. Constraint propagation: We traverse the AST again, propagating at-
tached constraints upwards. Constraints arising from subcomponents are

17

inserted into a larger constraint system as appropriate to reflect the control
flow. In some cases, this consists simply taking conjunction of all constraints
arising from subcomponents.

3. Constraint solving: The solution method generally depends on the prop-
erty, particularly as the constraint language itself changes depending on the
property at hand. On the other hand, as we implement more solvers, we are
seeing patterns emerge, which we aim to eventually take advantage of.
In general, we proceed with a series of successive approximations. We first
determine which type variables we seek to approximate: often, at a particular
stage we will desire to find approximations for certain classes of symbols but
leave others as symbols, untouched. (An example where symbols must be
retained is with the symbols used in formulating recurrences.)
We then step through all variables, incrementally refining our approximation
for each variable based on its relations with other quantities. We are done
when no better approximation is possible.

7 Conclusion

This work-in-progress shows that it is possible to apply techniques from Program
Analysis to infer various simple properties from Maple programs, even rather
complex programs like the Maple library. Our current techniques appear to scale
reasonably well too.

One of the outcomes we expect from this work is a better-mint-than-mint4.
As shown by some of our examples, we can already detect problematic code
which mint would not flag with any warnings.

Aside from its genericity, one significant advantage of the constraint approach
and the abstract interpretation framework is that analyses of different properties
may be combined to refine the results of the first. For instance, if a variable
instance was proven to be of size [1 . . . 1] by our Expression Sequence analysis,
the type tag EXPSEQ could be safely removed from its Surface Type results. We
have yet to combine our analyses in this manner on a large scale, though this is
a goal for future experimentation.

References

1. J. Carette and S. Forrest. Mining Maple code for contracts. In Ranise and Bigatti
[10].

2. J. Carette and M. Kucera. Partial Evaluation for Maple. In ACM SIGPLAN 2007

Workshop on Partial Evaluation and Program Manipulation, 2007.
3. P. Cousot. Types as abstract interpretations, invited paper. In Conference Record

of the Twentyfourth Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 316–331, Paris, France, January 1997. ACM
Press, New York, NY.

4 mint is Maple’s analogue of lint, the ancient tool to find flaws in C code, back when
old compilers did not have many built-in warnings.

18

4. P. Cousot and R. Cousot. Compositional and inductive semantic definitions in
fixpoint, equational, constraint, closure-condition, rule-based and game-theoretic
form, invited paper. In P. Wolper, editor, Proceedings of the Seventh International

Conference on Computer Aided Verification, CAV ’95, pages 293–308, Liège, Bel-
gium, Lecture Notes in Computer Science 939, 3–5 July 1995. Springer-Verlag,
Berlin, Germany.

5. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In POPL, pages 238–252, 1977.

6. Brian A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2002.

7. P. DeMarco, K. Geddes, K. M. Heal, G. Labahn, J. McCarron, M. B. Monagan,
and S. M. Vorkoetter. Maple 10 Advanced Programming Guide. Maplesoft, 2005.

8. M. Kucera and J. Carette. Partial evaluation and residual theorems in computer
algebra. In Ranise and Bigatti [10].

9. Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program

Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.
10. Silvio Ranise and Anna Bigatti, editors. Proceedings of Calculemus 2006, Electronic

Notes in Theoretical Computer Science. Elsevier, 2006.
11. Enric Rodŕıguez-Carbonell and Deepak Kapur. An abstract interpretation ap-

proach for automatic generation of polynomial invariants. In Roberto Giacobazzi,
editor, SAS, volume 3148 of Lecture Notes in Computer Science, pages 280–295.
Springer, 2004.

12. Mads Rosendahl. Introduction to abstract interpretation.
http://akira.ruc.dk/ madsr/webpub/absint.pdf.

13. David Schmidt. Abstract interpretation and static analysis. Lectures at the Winter
School on Semantics and Applications, WSSA’03, Montevideo, Uruguay, July 2003.

19

20

Towards Practical Reflection

for Formal Mathematics

Martin Giese1 and Bruno Buchberger2

1 RICAM, Austrian Academy of Sciences,
Altenbergerstr. 69, A-4040 Linz, Austria

martin.giese@oeaw.ac.at
2 RISC, Johannes Kepler University,
A-4232 Schloß Hagenberg, Austria

bruno.buchberger@risc.uni-linz.ac.at

Abstract. We describe a design for a system for mathematical theory
exploration that can be extended by implementing new reasoners using
the logical input language of the system. Such new reasoners can be
applied like the built-in reasoners, and it is possible to reason about
them, e.g. proving their soundness, within the system. This is achieved
in a practical and attractive way by adding reflection, i.e. a representation
mechanism for terms and formulae, to the system’s logical language, and
some knowledge about these entities to the system’s basic reasoners. The
approach has been evaluated using a prototypical implementation called
Mini-Tma. It will be incorporated into the Theorema system.

1 Introduction

Mathematical theory exploration consists not only of inventing axioms and prov-
ing theorems. Amongst other activities, it also includes the discovery of algorith-
mic ways of computing solutions to certain problems, and reasoning about such
algorithms, e.g. to verify their correctness. What is rarely recognized is that it
also includes the discovery and validation of useful techniques for proving the-
orems within a particular mathematical domain. In some cases, these reasoning
techniques might even be algorithmic, making it possible to implement and verify
a specialized theorem prover for that domain.

While various systems for automated theorem proving have been constructed
over the past years, some of them specially for mathematics, and some of them
quite powerful, they essentially treat theorem proving methods as a built-in part
of the services supplied by a system, in general allowing users only to state axioms
and theorems, and then to construct proofs for the theorems, interactively or
automatically. An extension and adaptation of the theorem proving capabilities
themselves, to incorporate knowledge about appropriate reasoning techniques
in a given domain, is only possible by stepping back from the theorem proving
activity, and modifying the theorem proving software itself, programming in
whatever language that system happens to be written.

We consider this to be limiting in two respects:

– To perform this task, which should be an integral part of the exploration
process, the user needs to switch to a different language and a radically
different way of interacting with the system. Usually it will also require an
inordinate amount of insight into the architecture of the system.

– The theorem proving procedures programmed in this way cannot be made
the object of the mathematical studies inside the system: e.g., there is no
simple way to prove the soundness of a newly written reasoner within the
system. It’s part of the system’s code, but it’s not available as part of the
system’s knowledge.

Following a proposal of Buchberger [5, 6], and as part of an ongoing effort to
redesign and reimplement the Theorema system [7], we will extend that system’s
capabilities in such a way that the definition of and the reasoning about new
theorem proving methods is possible seamlessly through the same user interface
as the more conventional tasks of mathematical theory exploration.

In this paper, we describe our approach as it has been implemented by the
first author in a prototype called Mini-Tma, a Mathematica [18] program which
does not share any of the code of the current Theorema implementation. Essen-
tially the same approach will be followed in the upcoming new implementation
of Theorema.

The second author’s contributions are the identification and formulation of
the problem addressed in this paper and the recognition of its importance for
mathematical theory exploration [6], as well as a first illustrating example [5],
a simplified version of which will be used in this paper. The first author has
worked out the technical details and produced the implementation of Mini-Tma.

In Sect. 2, we introduce the required concepts on the level of the system’s
logical language. Sect. 3 shows how this language can be used to describe new
reasoners, and how they can be applied. Sect. 4 illustrates how the system can
be used to reason about the logic itself. These techniques are combined in Sect. 5
to reason about reasoners. We briefly disuss some foundational issues in Sect. 6.
Related work is reviewed in Sect. 7, and Sect. 8 concludes the paper.

2 The Framework

To reason about the syntactic (terms, formulae, proofs,. . .) and semantic (mod-
els, validity. . .) concepts that constitute a logic, it is in principle sufficient to
axiomatize these concepts, which is possible in any logic that permits e.g. in-
ductive data type definitions, and reasoning about them. This holds also if the
formalized logic is the same as the logic it is being formalized in, which is the
case that interests us here.

However, to make this reasoning attractive enough to become a natural part
of using a mathematical assistant system, we consider it important to supply a
built-in representation of at least the relevant syntactic entities. In other words,
one particular way of expressing statements about terms, formulae, etc. needs
to be chosen, along with an appealing syntax, and made part of the logical
language.

22

We start from the logic previously employed in the Theorema system, namely
an untyped higher-order predicate logic with sequence variables. Sequence vari-
ables [16] represent sequences of values and have proven to be very convenient
for expressing statements about operations with variable arity. For instance, the
operation app that appends two lists can be specified by3

∀
xs

∀
ys

app[{xs}, {ys}] = {xs, ys}

using two sequence variables xs and ys . It turns out that sequence variables are
also convenient in statements about terms and formulae, since term construction
in our logic is a variable arity operation.

2.1 Quoting

Terms in our logic are constructed in two ways: symbols (constants or variables)
are one kind of terms, and the other are compound terms, constructed by ‘ap-
plying’ a ‘head’ term to a number of ‘arguments’.4 For the representation of
symbols, we require the signature to contain a quoted version of every symbol.
Designating quotation by underlining, we write the quoted version of a as a, the
quoted version of f as f , etc. Quoted symbols are themselves symbols, so there
are quoted versions of them too, i.e. if a is in the signature, then so are a, a,
etc. For compound terms, the obvious representation would have been a dedi-
cated term construction function, say mkTerm, such that f[a] would be denoted
by mkTerm[f, a]. Using a special syntax, e.g. fancy brackets, would have allowed
us to write something like f〈[a]〉. However, experiments revealed that (in an un-
typed logic!) it is easiest to reuse the function application brackets [· · ·] for term
construction and requiring that if whatever stands to the left of the brackets is
a term, then term construction instead of function application is meant. Any
axioms or reasoning rules involving term construction contain this condition on
the head term. This allows us to write f[a], which is easier to read and easier
to input to the system. For reasoning, the extra condition that the head needs
to be a term is no hindrance, since this condition usually has to be dealt with
anyway.

To further simplify reading and writing of quoted expressions, Mini-Tma
allows underlining a whole sub-expression as a shorthand for recursively under-
lining all occurring symbols. For instance, f[a, h[b]] is accepted as shorthand for
f[a, h[b]]. The system will also output quoted terms in this fashion whenever
possible. While this is convenient, it is important to understand that it is just
a nicer presentation of the underlying representation that requires only quoting
of symbols and complex term construction as function application.

3 Following the notation of Mathematica and Theorema, we use square brackets [· · ·]
to denote function application throughout this paper. Constant symbols will be set
in sans-serif type, and variable names in italic.

4 See Sect. 2.2 for the issue of variable binding in quantifiers, lambda terms, and such.

23

2.2 Dealing with Variable Binding

In the literature, various thoughts can be found on how to appropriately rep-
resent variable binding operators, i.e. quantifiers, lambda abstraction, etc. The
dominant approaches are 1. higher-order abstract syntax, 2. de Bruijn indices,
and 3. explicit representation.

Higher-order abstract syntax (HOAS) [17] is often used to represent variable
binding in logical frameworks and other systems built on higher-order logic or
type theory. With HOAS, a formula ∀

x
p[x] would be represented as ForAll[λ

ξ
p[ξ]].

The argument of the ForAll symbol is a function which, for any term ξ deliv-
ers the result of substituting ξ for the bound variable x in the scope of the
quantifier. This representation has its advantages, in particular that terms are
automatically stored modulo renaming of bound variables, and that capture-
avoiding substitution comes for free, but we found it to be unsuitable for our
purposes: some syntactic operations, such as comparing two terms for syntactic
equality are not effectively possible with HOAS, and also term induction, which
is central for reasoning about logics, is not easily described. Hendriks has come
to the same conclusion in his work on reflection for Coq [13].

Hendriks uses de Bruijn indices [10], which would represent ∀
x

p[x] by a term

like ForAll[p[v1]], where v1 means the variable bound by the innermost binding
operator, v2 would mean to look one level further out, etc. This representation
has some advantages for the implementation of term manipulation operations
and also for reflective reasoning about the logic.

For Mini-Tma however, in view of the projected integration of our work into
the Theorema system, we chose a simple explicit representation. The reason is
mainly that we wanted the representations to be as readable and natural as
possible, to make it easy to debug reasoners, to use them in interactive theorem
proving, etc. A representation that drops the names of variables would have been
disadvantageous. The only derivation from a straight-forward representation is
that we restrict ourselves to λ abstraction as the only binding operator. Thus
∀
x

p[x] is represented as

ForAll[λ[x, p[x]]]

where λ is an ordinary (quoted) symbol, that does not have any binding prop-
erties. The reason for having only one binding operator is to be able to describe
operations like capture avoiding substitution without explicitly naming all op-
erators that might bind a variable. Under this convention, we consider the effort
of explicitly dealing with α-conversion to be acceptable: the additional difficulty
appears mostly in a few basic operations on terms, which can be implemented
once and for all, after which there is no longer any big difference between the
various representations.

2.3 An Execution Mechanism

Writing and verifying programs has always been part of the Theorema project’s
view of mathematical theory exploration [15]. It is also important in the context

24

of this paper, since we want users of the system to be able to define new reasoners,
meaning programs that act on terms.

In order to keep the system’s input language as simple and homogenous as
possible, we use its logical language as programming language. Instead of fixing
any particular way of interpreting formulae as programs, Mini-Tma supports the
general concept of computation mechanisms. Computations are invoked from the
user interface by typing5

Compute[term, by → comp, using → ax]

where term is the term which should be evaluated, comp names a computation
mechanism, and ax is a set of previously declared axioms. Technically, comp is a
function that is given term and ax as arguments, and which eventually returns
a term. The intention is that comp should compute the value of term, possibly
controlled by the formulae in ax . General purpose computation mechanisms
require the formulae of ax to belong to a well-defined subset of predicate logic,
which is interpreted as a programming language. A special purpose computation
mechanism might e.g. only perform arithmetic simplifications on expressions
involving concrete integers, and completely ignore the axioms. In principle, the
author of a computation mechanism has complete freedom to choose what to do
with the term and the axioms.

We shall see in Sect. 3 that it is possible to define new computation mech-
anisms in Mini-Tma. It is however inevitable to provide at least one built-in
computation mechanism which can be used to define others. This ‘standard’
computation mechanism of Mini-Tma is currently based on conditional rewrit-
ing. It requires the axioms to be equational Horn clauses.6 Program execution
proceeds by interpreting these Horn clauses as conditional rewrite rules, apply-
ing equalities from left to right. Rules are exhaustively applied innermost-first,
and left-to-right, and applicability is tested in the order in which the axioms are
given. The conditions are evaluated using the same computation mechanism,
and all conditions have to evaluate to True for a rule to be applicable. The sys-
tem does not order equations, nor does it perform completion. Termination and
confluence are in the responsibility of the programmer.

Mini-Tma does not include a predefined concept of proving mechanism. The-
orem provers are simply realized as computation mechanisms that simplify a
formula to True if they can prove it, and return it unchanged (or maybe par-
tially simplified) otherwise.

3 Defining Reasoners

Since reasoners are just special computation mechanisms in Mini-Tma, we are
interested in how to add a new computation mechanism to the system. This is

5 Compute, by, using are part of the User Language, used to issue commands to the
system. Keywords of the User Language will by set in a serif font.

6 Actually, for convenience, a slightly more general format is accepted, but it is trans-
formed to equational Horn clauses before execution.

25

done in two steps: first, using some existing computation mechanism, we define
a function that takes a (quoted) term and a set of (quoted) axioms, and returns
another (quoted) term. Then we tell the system that the defined function should
be usable as computation mechanism with a certain name.

Consider for instance an exploration of the theory of natural numbers. Af-
ter the associativity of addition has been proved, and used to prove several
other theorems, we notice that it is always possible to rewrite terms in such
a way that all sums are grouped to the right. Moreover, this transformation
is often useful in proofs, since it obviates most explicit applications of the as-
sociativity lemma. This suggests implementing a new computation mechanism
that transforms terms containing the operator Plus in such a way that all ap-
plications of Plus are grouped to the right. E.g., we want to transform the
term Plus[Plus[a, b], Plus[c, d]] to Plus[a, Plus[b, Plus[c, d]]], ignoring any axioms.
We start by defining a function that will transform representations of terms,
e.g. Plus[Plus[a, b], Plus[c, d]] to Plus[a, Plus[b, Plus[c, d]]]. We do this with the fol-
lowing definition:

Axioms ["shift parens", any[s, t, t1, t2, acc, l, ax , comp],
simp[t, ax , comp] = add-terms[collect[t, {}]]

collect [Plus[t1, t2], acc] = collect[t1, collect[t2, acc]]
is-symbol[t] ⇒ collect[t, acc] = cons[t, acc]
head[t] 6= Plus ⇒ collect[t, acc] = cons[t, acc]

add-terms[{}] = 0

add-terms[cons[t, {}]] = t

add-terms[cons[s, cons[t, l]]] = Plus[s, add-terms[cons[t, l]]]
]

The main function is simp, its arguments are the term t, the set of axioms ax ,
and another computation mechanism comp, which will be explained later. simp

performs its task by calling an auxiliary function collect which recursively collects
the fringe of non-Plus subterms in a term, prepending them to an accumulator
acc that is passed in as second argument, and that starts out empty. To continue
our example, collect[Plus[Plus[a, b], Plus[c, d]], {}] evaluates to the list of (quoted)
terms {a, b, c, d}. This list is then passed to a second auxiliary function add-terms

which builds a Plus-term from the elements of a list, grouping to the right. Note
that this transformation is done completely without reference to rewriting or the
associativity lemma. We are interested in programs that can perform arbitrary
operations on terms.

The function is-symbol is evaluated to True if its argument represents a symbol
and not a complex term or any other object. This and some other operations
(equality of terms, . . .) are handled by built-in rewriting rules since a normal
axiomatization would not be possible, or in some cases too inefficient.

Given these axioms, we can now ask the system to simplify a term:

Compute[simp[Plus[Plus[a, b], Plus[c, d]]], {}, {}], by → ConditionalRewriting,

using → {Axioms["shift parens"], . . .}]

26

We are passing in dummy arguments for ax and comp, since they will be dis-
carded anyway. Mini-Tma will answer with the term Plus[a, Plus[b, Plus[c, d]]].

So far, this is an example of a computation that works on terms, and not
very different from a computation on, say, numbers. But we can now make simp

known to the system as a computation mechanism. After typing

DeclareComputer[ShiftParens, simp, by → ConditionalRewriting,

using → {Axioms["shift parens",. . . }]

the system recognizes a new computation mechanism named ShiftParens. We
can now tell it to

Compute[Plus[Plus[a, b], Plus[c, d]], by → ShiftParens]

and receive the answer Plus[a, Plus[b, Plus[c, d]]]. No more quotation is needed,
the behavior is just like for any built-in computation mechanism. Also note that
no axioms need to be given, since the ShiftParens computation mechanism does
its job without considering the axioms.

We now come back to the extra argument comp: Mini-Tma allows compu-
tation mechanisms to be combined in various ways, which we shall not discuss
in this paper, in order to obtain more complex behavior. However, even when
actual computations are done by different mechanisms, within any invocation of
Compute, there is always one global computation mechanism, which is the top-
level one the user asked for. It happens quite frequently that user-defined com-
putation mechanisms would like to delegate the evaluation of subterms that they
cannot handle themselves to the global computation mechanism. It is therefore
provided as the argument comp to every function that is used as a computation
mechanism, and it can be called like a function.

Calling a user-defined computation mechanism declared to be implemented
as a function simp on a term t with some axioms ax under a global computation
mechanism comp proceeds as follows: 1. t is quoted, i.e. a term t′ is constructed
that represents t, 2. simp[t′, ax , comp] is evaluated using the computation mecha-
nism and axioms fixed in the DeclareComputer invocation. 3. The result s′ should
be the representation of a term s, and that s is the result. If step 2 does not
yield a quoted term, an error is signaled.

The ShiftParens simplifier is of course a very simple example, but the same
principle can clearly be used to define and execute arbitrary syntactic manipu-
lations, including proof search mechanisms within the system’s logical language.
Since most reasoning algorithms proceed by applying reasoning rules to some
proof state, constructing a proof tree, the Theorema implementation will include
facilities that make it easy to express this style of algorithm, which would be
more cumbersome to implement in out prototypical Mini-Tma system.

4 Reasoning About Logic

To prove statements about the terms and formulae of the logic, we need a prover
that supports structural induction on terms, or term induction for short.

27

An interesting aspect is that terms in Mini-Tma, like in Theorema, can have
variable arity—there is no type system that enforces the arities of function
applications—and arbitrary terms can appear as the heads of complex terms.
Sequence variables are very convenient in dealing with the variable length argu-
ment lists. While axiomatizing operations like capture avoiding substitution on
arbitrary term representations, we employed a recursion scheme based on the
observation that a term is either a symbol, or a complex term with an empty
argument list, or the result of adding an extra argument to the front of the argu-
ment list of another complex term, or a lambda abstraction. The corresponding
induction rule is:7

∀
is-symbol[s]

P [s]

∀
is-term[f]

(P [f] ⇒ P [f []])

∀
is-term[f]
is-term[hd]

are-terms[tl]

(P [hd] ∧ P [f [tl]] ⇒ P [f [hd , tl]])

∀
is-term[t]

is-symbol[x]

(P [t] ⇒ P [λ[x, t]])

∀
is-term[t]

P [t]

Using the mechanism outlined in Sect. 3, we were able to implement a simple
term induction prover, that applies the term induction rule once, and then tries
to prove the individual cases using standard techniques (conditional rewriting
and case distinction), in less than 1000 characters of code. This näıve prover is
sufficient to prove simple statements about terms, like e.g.

∀
is-term[t]

is-symbol[v]
is-term[s]

(not-free[t, v] ⇒ t{v → s} = t)

where not-free[t, v] denotes that the variable v does not occur free in t, and
t{v → s} denotes capture avoiding substitution of v by s in t, and both these
notions are defined through suitable axiomatizations.

5 Reasoning About Reasoners

Program verification plays an important role in the Theorema project [15]. Using
predicate logic as a programming language obviously makes it particularly easy
to reason about programs’ partial correctness. Of course, termination has to be
proved separately.

With Mini-Tma’s facilities for writing syntax manipulating programs, and
for reasoning about syntactic entities, it should come as no surprise that it is

7
∀

p[x]
q[x] is just convenient syntax for ∀

x

(p[x] ⇒ q[x])

28

possible to use Mini-Tma to reason about reasoners written in Mini-Tma. The
first application that comes to mind is proving the soundness of new reasoners:
they should not be able to prove incorrect statements. Other applications include
completeness for a certain class of problems, proving that a simplifier produces
output of a certain form, etc.

So far, we have concentrated mainly on soundness proofs. In the literature,
we have found two ways of proving the soundness of reasoners: the first way
consists in proving that the new reasoner cannot prove anything that cannot be
proved by the existing calculus. Or, in the case of a simplifier like ShiftParens of
Sect. 3, if a simplifier simplifies t to t′, then there is a rewriting proof between t

and t′. This approach is very difficult to follow in practice: it requires formaliz-
ing the existing calculus, including proof trees, possibly rewriting, etc. Often the
soundness of a reasoner will depend on certain properties of the involved oper-
ations, e.g. ShiftParens requires the associativity of Plus, so the knowledge base
has to be axiomatized as well. Moreover, to achieve reasonable proof automa-
tion, the axiomatization needs to be suitable for the employed prover: finding a
proof can already be hard, making prover A prove that prover B will find a proof
essentially requires re-programming B in the axiomatization. And finally, this
correctness argument works purely on the syntactic level: any special reasoning
techniques available for the mathematical objects some reasoner is concerned
with are useless for its verification!

We have therefore preferred to investigate a second approach: we prove that
anything a new reasoner can prove is simply true with respect to a model se-
mantics. Or, for a simplifier that simplifies t to t′, that t and t′ have the same
value with respect to the semantics. This approach has also been taken in the
very successful NqThm and ACL2 systems [2, 14]. It solves the above problems,
since it is a lot easier to axiomatize a model semantics for our logic, and the
axiomatization is also very easy to use for an automated theorem prover. The
knowledge base does not need to be ‘quoted’, since much of the reasoning is
about the values instead of the terms, and for the same reason, any previously
implemented special reasoners can be employed in the verification.

Similarly to ACL2, we supply a function eval[t, β] that recursively evaluates
a term t under some assignment β that provides the meaning of symbols.8 To
prove the soundness of ShiftParens, we have to show

eval[simp[t, ax , comp], β] = eval[t, β]

for any term t, any ax and comp and any β with β[0] = 0 and β[Plus] = Plus.
To prove this statement inductively, it needs to be strengthened to

eval[add-terms[collect[t, acc]], β] = eval[Plus[t, add-terms[acc]], β] (∗)

for any acc, and an additional lemma

eval[add-terms[cons[t, l]], β] = Plus[eval[t, β], eval[add-terms[l], β]]

8 Care needs to be taken when applying eval to terms containing eval, as has already
been recognized by Boyer and Moore [3].

29

is required. And of course, the associativity of Plus needs to known. Mini-Tma
cannot prove (∗) with the term induction prover described in Sect. 4, since it is
not capable of detecting the special role of the symbol Plus. However, using a
modified induction prover which treats compound terms with head symbol Plus

as a separate case, (*) can be proved automatically.
Automatically extracting such case distinctions from a program is quite con-

ceivable, and one possible topic for future work on Mini-Tma.

Ultimately, we intend to improve and extend the presented approach, so that
it will be possible to successively perform the following tasks within a single
framework, using a common logical language and a single interface to the system:

1. define and prove theorems about the concept of Gröbner bases [4],
2. implement an algorithm to compute Gröbner bases,
3. prove that the implementation is correct,
4. implement a new theorem prover for statements in geometry based on co-

ordinatization, and which uses our implementation of the Gröbner bases
algorithm,

5. prove soundness of the new theorem prover, using the shown properties of
the Gröbner bases algorithm,

6. prove theorems in geometry using the new theorem prover, in the same way
as other theorem provers are used in the system.

Though the case studies performed so far are comparatively modest, we hope to
have convinced the reader that the outlined approach can be extended to more
complex applications.

6 Foundational Issues

Most previous work on reflection in theorem proving environments (see Sect. 7)
has concentrated on the subtle foundational problems arising from adding re-
flection to an existing system. In particular, any axiomatization of the fact that
a reflectively axiomatized logic behaves exactly like the one it is being defined
in can easily lead to inconsistency. In our case, care needs to be taken with
the evaluation function eval which connects the quoted logic to the logic it is
embedded in.

However, within the Theorema project, we are not particularly interested in
the choice and justification of a single logical basis. Any framework a mathemati-
cian considers appropriate for the formalization of mathematical content should
be applicable within the system—be it one or the other flavor of set theory,
type theory, or simply first-order logic. Any restriction to one particular frame-
work would mean a restriction to one particular view of mathematics, which is
something we want to avoid. This is why there is no such thing as the logic of
Theorema. But if there is no unique, well-defined basic logic, then neither can
we give a precise formal basis for its reflective extension. In fact, since the way in
which such an extension is defined is itself an interesting mathematical subject,
we do not even want to restrict ourselves to a single way of doing it.

30

This is of course somewhat unsatisfying, and it is actually not the whole truth.
We are trying to discover a particularly viable standard method of adding re-
flection and reflective reasoners. And we are indeed worried about the soundness
of that method. It turns out that one can convince oneself of the soundness of
such an extension provided the underlying logic satisfies a number of reasonable
assumptions.

Let a logical language L be given. In the context of formalization of mathe-
matics, we may assume that syntactically, L consists of a subset of the formu-
lae of higher order predicate logic. Typically, some type system will forbid the
construction of certain ill-typed formulae, maybe there is also a restriction to
first-order formulae.

Most logics permit using a countably infinite signature, in fact, many cal-
culi require the presence of infinitely many constant symbols for skolemization.
Adding a quoted symbol a for any symbol a of L will then be unproblematic.

Next, we can add a function is-symbol, which may be defined through a
countably infinite and effectively enumerable family of axioms, which should not
pose any problems. The function is-term can then be axiomatized recursively
in any logic that permits recursive definitions. We can assume for the moment
that the logic does not include quoting for is-symbol or is-term, and that the
functions will recognize the quotations of symbols and terms of L, and not of
the reflectiove extension of L we are constructing.

Likewise, if the evaluation of basic symbols is delegated to an assignment
β, it should be possible to give an axiomatization of the recursive evaluation
function eval within any logic that permits recursive definitions:

is-symbol[t] ⇒ eval[t, β] = β[t]
is-term[f] ⇒ eval[f [t], β] = eval[f, β][eval[t, β]]

The exact definitions will depend on the details of L. For instance, if L is typed,
it might be necessary to introduce a family of eval functions for terms of different
types, etc. Still, we do not believe that soundness problems can occur here.

The interesting step is now the introduction of an unquoting function unq,
which relates every quoted symbol a to the entity it represents, namely a. We
define unq by the axioms

unq[s′] = s

for all symbols s of L, where s′ denotes the result of applying one level of reflec-
tion quoting to s, i.e. unq[a] = a, unq[b] = b,. . . The formula unq[unq] = unq is
not an axiom since this would precisely lead to the kind of problems identified by
Boyer and Moore in [3]. If they are only present for the symbols of the original
logic, these axioms do not pose any problems.

All in all, the combined extension is then a conservative extension of the
original logic, meaning that any model M for a set Φ of formulae of L can be
extended to a model M′ of Φ in the reflective extension, such that M′ behaves
like M when restricted to the syntax of L. Moreover, in the extension, the
formula

eval[t′, unq] = t

31

holds for every term t of L with quotation t′, which justifies using eval to prove
the correctness of new reasoners.

To allow for several levels of quotation, this process can be iterated. It is easy
to see that the is-symbol, is-term, and eval functions defined for consecutive levels
can be merged. For the unq function, one possible solution is to use a hierarchy
unq(i) of unquoting functions, where there is an axiom unq(i)[unq(j)] = unq(j) if
and only if j < i.

Another difficulty is the introduction of new symbols required by many calculi
for skolemization, which can be jeopardized by the presence of knowledge about
the unquoting of quoted symbols. Here, a possible solution is to fix the set of
symbols for which unq axioms are required before proofs, as is done in ACL2.

7 Related Work

John Harrison has written a very thorough survey [11] of reflection mechanisms
in theorem proving systems, and most of the work reviewed there is in some way
connected to ours.

The most closely related approach is surely that of the NqThm and ACL2
systems, see e.g. [2, 14]. The proving power of these systems can be extended
by writing simplifiers in the same programming language as that which can be
verified by the system. Before using a new simplifier, its soundness has to be
shown using a technique similar to that of Sect. 5. Our work extends theirs in
the following respects:

– We use a stronger logic, ACL2 is restricted to first-order quantifier-free logic.
– Our framework allows coding full, possibly non-terminating theorem provers,

and not just simplifiers embedded in a fixed prover.
– Through the comp argument, reasoners can be called recursively.
– The specialized quoting syntax and sequence variables make Mini-Tma more

pleasant and practical to use.
– In Mini-Tma, Meta-programming can be used without being forced to prove

soundness first, which is useful for experimentation and exploration.

Experiments in reflection have also recently been done in Coq [13], but to
our knowledge these are restricted to first-order logic, and meta-programmed
provers cannot be used as part of a proof construction. There has also been
some work on adding reflection to Nuprl [1]. This is still in its beginnings, and
its principal focus seems to be to prove theorems about logics, while our main
goal is to increase the system’s reasoning power.

Recent work on the self-verification of HOL Light [12] is of a different char-
acter. Here, the HOL Light system is not used to verify extensions of itself, but
rather for the self-verification of the kernel of the system. Self-verification raises
some foundational issues of its own that do not occur in our work.

In the context of programming languages, LISP has always supported quot-
ing of programs and meta-programming, e.g. in macros. Amongst more modern
languages, Maude should be mentioned for its practically employed reflective

32

capabilities, see e.g. [9]. A quoting mechanism is part of the language, and it is
used to define the ‘full’ Maude language in terms of a smaller basic language.
However, this reflection is just used for programming, there is no reasoning in-
volved.

8 Conclusion and Future Work

We have reported on ongoing research in the frame of the Theorema project, that
aims at making coding of new (special purpose) reasoners and reasoning about
them, e.g. to prove their soundness, an integral part of the theory exploration
process within the system. The approach has been evaluated in the prototypical
implementation Mini-Tma.

The main features of our approach are to start from a logic with a built-in
quoting mechanism, and to use the same logic for the definition of programs,
and in particular reasoners. We have shown that this makes it possible to de-
fine reasoners which can be used by the system like the built-in ones. It also
enables the user to reason about terms, formulae, etc. and also about reasoners
themselves.

We have briefly discussed two alternatives for defining and proving the sound-
ness of new reasoners, and concluded that an approach based on formalizing a
model semantics is more suitable for automated deduction than one that is based
on formalizing proof theory.

Future work includes improving the execution efficiency of programs written
within the Theorema logic. Improvements are also required for the theorem
proving methods, i.e. better heuristics for term induction, program verification,
etc., but also the production of human-readable proof texts or proof trees, which
are essential for the successful application of the theorem provers. All these
developments will have to be accompanied by case studies demonstrating their
effectiveness.

Acknowledgments

The authors would like to thank the other members of the Theorema Group,
in particular Temur Kutsia and Markus Rosenkranz, for contributing to the
numerous intense discussions about the presented work.

References

1. Eli Barzilay. Implementing Reflection in Nuprl. PhD thesis, Cornell University
Computer Science, 2006.

2. Robert S. Boyer, Matt Kaufmann, and J Strother Moore. The Boyer-Moore the-
orem prover and its interactive enhancement. Computers and Mathematics with
Applications, 29(2):27–62, 1995.

3. Robert S. Boyer and J Strother Moore. The addition of bounded quantification
and partial functions to a computational logic and its theorem prover. J. Autom.
Reasoning, 4(2):117–172, 1988.

33

4. Bruno Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines alge-
braischen Gleichungssystems. Aequationes Math., 4:374–383, 1970. English trans-
lation published in [8].

5. Bruno Buchberger. Lifting knowledge to the state of inferencing. Technical Report
TR 2004-12-03, Research Institute for Symbolic Computation, Johannes Kepler
University, Linz, Austria, 2004.

6. Bruno Buchberger. Proving by first and intermediate principles, November 2,
2004. Invited talk at Workshop on Types for Mathematics / Libraries of Formal
Mathematics, University of Nijmegen, The Netherlands.

7. Bruno Buchberger, Adrian Crǎciun, Tudor Jebelean, Laura Kovács, Temur Kutsia,
Koji Nakagawa, Florina Piroi, Nikolaj Popov, Judit Robu, Markus Rosenkranz, and
Wolfgang Windsteiger. Theorema: Towards computer-aided mathematical theory
exploration. Journal of Applied Logic, pages 470–504, 2006.

8. Bruno Buchberger and Franz Winkler. Gröbner bases and applications. In B. Buch-
berger and F. Winkler, editors, 33 Years of Gröbner Bases, London Mathematical
Society Lecture Notes Series 251. Cambridge University Press, 1998.

9. Manuel Clavel and José Meseguer. Reflection in conditional rewriting logic. The-
oretical Computer Science, 285(2):245–288, 2002.

10. Nicolas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae (Proceedings), 34:381–392, 1972.

11. John Harrison. Metatheory and reflection in theorem proving: A survey and cri-
tique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK,
1995.

12. John Harrison. Towards self-verification of HOL Light. In Ulrich Furbach and
Natarajan Shankar, editors, Automated Reasoning, Third International Joint Con-
ference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume
4130 of LNCS, pages 177–191. Springer, 2006.

13. Dimitri Hendriks. Proof reflection in Coq. Journal of Automated Reasoning, 29(3–
4):277–307, 2002.

14. Warren A. Hunt Jr., Matt Kaufmann, Robert Bellarmine Krug, J Strother Moore,
and Eric Whitman Smith. Meta reasoning in ACL2. In Joe Hurd and Thomas F.
Melham, editors, Proc. Theorem Proving in Higher Order Logics, TPHOLs 2005,
Oxford, UK, volume 3603 of LNCS, pages 163–178. Springer, 2005.

15. Laura Kovács, Nikolaj Popov, and Tudor Jebelean. Verification environment in
Theorema. Annals of Mathematics, Computing and Teleinformatics (AMCT),
1(2):27–34, 2005.

16. Temur Kutsia and Bruno Buchberger. Predicate logic with sequence variables and
sequence function symbols. In A. Asperti, G. Bancerek, and A. Trybulec, editors,
Proc. 3rd Intl. Conf. on Mathematical Knowledge Management, MKM’04, volume
3119 of LNCS, pages 205–219. Springer Verlag, 2004.

17. Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proc. ACM SIG-
PLAN 1988 Conf. on Programming Language design and Implementation, PLDI
’88, Atlanta, United States, pages 199–208. ACM Press, New York, 1988.

18. Stephen Wolfram. The Mathematica Book. Wolfram Media, Inc., 1996.

34

On the Efficiency of Geometry Theorem Proving

by Gröbner Bases

Shuichi Moritsugu and Chisato Arai

University of Tsukuba,
Tsukuba 305-8550, Ibaraki, JAPAN,

{moritsug, arai}@slis.tsukuba.ac.jp

Abstract. We show experimental results for proving Euclidean geom-
etry theorems by Gröbner basis method. In 1988, Chou Shang-Ching
proved 512 theorems by Wu’s method, and reported that 35 among them
remained unsolvable by Gröbner basis method. In this paper, we tried to
prove these 35 theorems by Gröbner basis method, and we succeeded in
proving 26 theorems but have found that the other 9 theorems are essen-
tially difficult to compute Gröbner bases. We show the table of timing
data and discuss several devices to complete the proof by solving radical
membership problem.

1 Introduction

In the area of mechanical proving geometry theorems, Wu’s method [21] has
been widely and successfully used since Wu Wen-Tsün introduced the original
algorithm in 1977. Meanwhile, another approach [9, 10, 20] based on Gröbner
basis method [2] was also proposed and has been studied.

In 1988, Chou Shang-Ching [3] published an extensive collection of 512 the-
orems that were proved by Wu’s method. He also applied Gröbner basis method
and succeeded in proving 477 theorems among them. However, it is reported
that none of the computation for the other 35 theorems finished within 4 hours.

Since then, there seems to have been few attempts to reconfirm Chou’s re-
sults, even though the inferiority of Gröbner basis method to Wu’s method is
sometimes pointed out from the viewpoint of computational efficiency. However,
a recent project [7] is in progress, which is intended to collect and construct the
benchmark including the Chou’s problems.

Independently, our group has been trying to prove the above 35 theorems
by Gröbner basis method since 2004, and we succeeded in proving 26 theorems
among them [13]. On the other hand, we consider that the 9 theorems left are
essentially difficult to compute the Gröbner bases.

In this paper, we show the results of computation by both of Gröbner basis
method and Wu’s method, and we discuss the comparison of several ways to
solve the radical membership using Maple11 [12] and Epsilon library [19].

2 Algebraic Proof by Gröbner Basis Method

2.1 Radical Membership Problem

We translate the geometric hypotheses in the theorem into polynomials

f1, . . . , f` ∈ Q(u1, . . . , um) [x1, . . . , xn] .

According to Chou [3], we construct the points in order, using two types of
variables:

– ui: parameters whose values are arbitrarily chosen,
– xj : variables whose values depend on other ui, xk.

Next, we translate the conclusion of the theorem into

g ∈ Q(u1, . . . , um) [x1, . . . , xn] .

In these formulations, we apply the following proposition to “prove the theorem”:

g follows generically from f1, . . . , f` ⇔ g ∈
√

(f1, . . . , f`).

There exist several methods to solve this type of radical membership problem,
and we adopt the following proposition [4] whose algorithmic computations are
based on Gröbner bases. More precise description of the algorithms and further
references can be found in [18].

Proposition 1 (Radical Membership) Let K be an arbitrary field and let
I = (f1, . . . , f`) ⊂ K [x1, . . . , xn] be a polynomial ideal. We compute the Gröbner
basis G of I with any term order, and let g ∈ K [x1, . . . , xn] be another polyno-
mial. Then, g ∈

√
I is equivalent to each of the following three conditions.

(a) ∃s ∈ N, gs G−→ 0. (Compute for s = 1, 2,)
(b) For J = (I, 1 − yg) ⊂ K [x1, . . . , xn, y], we have its Gröbner basis with any

term order becomes (1).
(c) For J = (I, g − y) ⊂ K [x1, . . . , xn, y], if we compute the Gröbner basis

with block term order {x1, . . . , xn}
lex

> y, then the basis contains a univariate
polynomial such as ys (∃s ∈ N).

Since K = Q(u1, . . . , um) in our formulation, the formula (c) is not efficient
due to the term order and is not suitable for proving geometric theorems.

When we apply the formula (a), we first try g
G−→ 0. Since you have s = 1

in almost all cases for geometry theorems [3, 4], this method seems practical.

Actually, we obtained g
G−→ 0 in all the 26 theorems we succeeded in proof by

Gröbner basis method.
The experimental results imply that the formula (b) deserves consideration

from the viewpoint of computational efficiency. Hence, later we discuss the com-
parison of the methods (a) and (b).

36

(u1, 0)

(x1, x2)(u2, u3)

(0, 0)

(x3, x4)

A B

C D

N

Fig. 1. Parallelogram

2.2 Example

In order to describe the flow of the implemented algorithms, we show an example
of proof by Gröbner basis method and Wu’s method [3, 4, 19].

Example 1 (Parallelogram) We show the proof for the theorem “ the two
diagonals of any parallelogram intersect at a point which bisects both diagonals”.
The following polynomial expressions are the output of our program, where the
computations are carried out over Q(u1, u2, u3) [x1, x2, x3, x4].

(1) Let A(0, 0), B(u1, 0), C(u2, u3), D(x1, x2), N(x3, x4) be the points shown
in Fig.1. We translate the geometric hypotheses (in order) as follows.
(i) AB ‖ CD ⇒ f1 := u1x2 − u3u1

(ii) AC ‖ BD ⇒ f2 := u2x2 − u3x1 + u3u1

(iii) A, N, D are collinear ⇒ f3 := −x4x1 + x3x2

(iv) B, N, C are collinear ⇒ f4 := −(u2 − u1)x4 + u3x3 − u3u1

(2) We translate the conclusions of the theorem.
(i) AN = ND ⇒ g1 := 2x4x2 + 2x3x1 − x2

2 − x2
1

(ii) BN = NC ⇒ g2 := 2u3x4 + 2(u2 − u1)x3 − u2
3 − u2

2 + u2
1

(3) Proof 1: Gröbner basis method
(i) Using the lexicographic order with x4 > x3 > x2 > x1, we compute the

Gröbner basis for the ideal I = (f1, f2, f3, f4):

G = {2x4 − u3, 2x3 − (u2 + u1), x2 − u3, x1 − (u2 + u1)} .

(Note) Collecting the prime factors in denominators throughout the
Gröbner basis computation, we obtain subsidiary conditions
{u1 6= 0, u2 6= 0, u2 − u1 6= 0, u3 6= 0}. However, we restrict
ourselves to the “generic case” [4], and here we do not discuss
the constraint for the parameters ui.

(ii) Reducing the conclusion g1 by G, we obtain g1

G−→ 0, hence g1 ∈ I is
proved. For the conclusion g2, it is similarly proved that g2 ∈ I .

(4) Proof 2: Wu’s method
We apply the functions ‘CharSet’ and ‘prem’ using Epsilon library [19] on
Maple11 [12].

37

(i) Using the order x4 > x3 > x2 > x1, we compute the characteristic
polynomials for {f1, f2, f3, f4} and let them
CS = {x1 − u2 − u1, u1x2 − u3u1, −(u2 − u1)x3 + x3x1 − u1x1,

−(u2 − u1)x4 + u3x3 − u3u1} =: {h1, h2, h3, h4}
(ii) For the conclusion g1 and CS, we compute the sequence of pseudo re-

mainders with x4, x3, x2, x1 in order:
g13 := prem(g1, h4, x4)
= −2u3x3x2 − 2(u2 − u1)x3x1 + (u2 − u1)x

2
2 + (u2 − u1)x

2
1 + 2u3u1x2,

g12 := prem(g13, h3, x3)
= (u2 − u1)(x

2
2x1 + x3

1 − (u2 − u1)x
2
2 − (u2 + u1)x

2
1 − 2u3u1x2),

g11 := prem(g12, h2, x2) = u2
1(u2 − u1)(x

2
1 + u2

3)(x1 − u2 − u1),
g10 := prem(g11, h1, x1) = 0.

This result means that the conclusion g1 is proved.
(iii) For the conclusion g2, we compute the sequence g23, g22, g21, g20 simi-

larly and obtain g20 = 0, which means that g2 is proved.

3 Results of Experiment

3.1 Environment and Results of Experiment

Table 1. Environment for Maple & Epsilon

CPU Pentium 4 (3.6 GHz)
OS Windows XP professional ed.

Main Memory 2.0 GB

In the computational environment shown in Table 1, we tried to prove 35
among Chou’s 512 theorems that were not solved by Gröbner basis method in
1988. We extracted them from the list of timing data by Chou [3] in its Appendix.

Using the graded-reverse-lex (grevlex) order with xn > xn−1 > · · · > x1,
the Gröbner bases were computered over the coefficient field Q(u1, . . . , um) by
Maple11 [12]. For comparison, Wu’s method was also applied using Epsilon li-
brary [19] over Maple11.

As a result, we succeeded in proving 26 among the 35 theorems, but the other
9 theorems remained unsolvable. In our previous paper [13], we tried to prove
them using three computer algebra systems : Reduce3.6 [8] and Risa/Asir [14],
adding to Maple10 [11]. However, none of these systems has succeeded yet in
computing Gröbner bases for the same 9 theorems, mainly because of the lack
of memory. (Maple10 seems just to take very long time to exhaust the memory.)

For the computation of Gröbner bases by Maple11, we used the option
method=maplef4 first, but it failed in some cases. Then we tried again using

38

the option method=buchberger, and we succeeded in proving 26 theorems in
total. It does not seem clear yet which option is suitable for these rational ex-
pression coefficient cases Q (ui) [xi].

We show the precise timing data in Table 2, where the columns and symbols
indicate the following. In the next subsections, we show the details of devices for
computation (♦, ♣).

#xi number of dependent variables in the hypotheses
#ui number of free parameters in the hypotheses
#hi number of polynomials for the hypotheses
× failure (∗: insufficient memory)
© success by direct computation
♦, ♣ success by some devices
Maple(1) Using the formula (a) in Proposition 1
Maple(2) Using the formula (b) in Proposition 1
Epsilon(1) Using the functions ‘CS’ and ‘prem’
Epsilon(2) Using the function ‘RIM’ for radical ideal membership

Wu’s method (Epsilon(1)) and Wang’s method [16] (Epsilon (2)) seem un-
stable for a few examples, but we consider that these 35 theorems in total can
be proved by Epsilon library.

3.2 Device 1: Incremental Computation (♦)

O

A B

CD

E

F

S

P
Q

Fig. 2. Example 48

In some theorems, we succeeded in computing the Gröbner basis by grouping
the ideal of hypotheses I = (f1, . . . , f`), where we changed the input order of
these polynomials such as ((. . . ((f1, . . . , fk), fk+1), . . .), f`).

We can see the relations of polynomials fi by their inclusion of variables, be-
cause the geometric hypotheses are constructed in some kind of order. However,
if the polynomials {f1, . . . , f`} are input at a time to computer algebra systems,

39

Table 2. Success / Failure and CPU-Time(sec) for Chou’s Examples

No. #xi #ui #hi Maple(1) Maple(2) Epsilon(1) Epsilon(2)

ex6 12 11 12 × ∗ ∗ 1.33 2.06
ex7 12 11 12 × ∗ ∗ 38.73 9.00
ex8 11 8 13 © 0.92 7.00 0.59 0.31
ex10 20 6 23 × ∗ ∗ 0.52 7.38
ex11 20 6 23 × ∗ ∗ 0.72 9.31
ex12 20 6 23 × ∗ ∗ 1.70 6.45
ex13 17 6 19 × ∗ ∗ 0.27 31.53
ex14 17 6 19 × ∗ ∗ 0.16 0.86
ex19 17 6 19 × ∗ ∗ 3.67 ∗
ex21 11 4 13 © 0.69 0.58 0.06 0.58
ex26 13 7 14 © 0.39 0.16 1.99 2.63
ex40 15 3 15 © 18.97 42.48 3.91 14.86
ex45 14 3 14 © 0.22 0.14 0.06 0.20
ex48 10 6 11 ♦ 545.11 515.31 0.20 0.44
ex63 15 6 19 © 0.19 0.13 1.17 0.78
ex72 10 6 13 ♦♣ 0.41 1.30 1468.17 56.08
ex80 14 5 16 × ∗ ∗ 19.34 10.03
ex94 7 3 8 © 4.58 4.50 0.02 0.05
ex96 7 4 7 ♦ 11.27 11.11 0.02 0.05
ex99 10 4 13 ♣ 33.28 3.77 2.73 0.42
ex106 8 4 9 © 2.09 0.06 1.59 0.28
ex109 7 6 11 ♣ 2.80 0.11 1247.34 7.24
ex115 8 3 10 ♣ 1.41 0.33 0.11 0.09
ex240 10 3 10 ♣ 9.69 0.36 0.55 162.95
ex310 14 5 16 ♦ 6.34 2.70 295.22 17.41
ex311 13 4 17 © 0.27 0.24 0.05 0.20
ex315 20 4 23 ♦♣ 1.97 1.92 0.19 0.59
ex316 24 4 31 ♦ 11.34 2.27 1004.00 493.69
ex367 14 5 18 © 17.34 2.63 11.25 0.08
ex379 9 4 11 © 0.59 0.44 0.05 0.22
ex395 5 3 6 © 0.16 0.14 0.02 0.38
ex396 14 5 16 ♣ 3.05 2.22 2.13 138.33
ex401 7 6 9 © 21.53 0.02 1.27 0.14
ex492 17 3 18 © 0.38 0.23 3.75 1.75
ex507 8 7 8 © 1.45 0.84 0.49 0.47

40

the optimal way is not necessarily followed in the inner function for Gröbner
bases. Consequently, this incremental computation worked effectively for some
examples, even though it is heuristic and not algorithmic.

Example 2 (Example 48 [3]: Fig.2) If five of six vertices of a hexagon lie
on a circle, and the three pairs of opposite sides meet a three collinear points,
then the sixth vertex lies on the same circle.

Hypotheses We translate the following conditions in order : OA = OC, OA =
OB, DO = OA, EO = OA, P is on line AB, S is on line EA, S is on
line CD, Q is on line BC, Q is on line SP , F is on line QE, F is on line
PD. Then we obtain 11 polynomials: f1, . . . , f11.

Conclusion We let OA = OF be expressed by g.
Proof We compute the Gröbner basis G in two steps : ((f1, . . . , f9, f11), f10),

because f10 has longer form than others. Then we obtain g
G−→ 0.

3.3 Device 2: Decomposition of the ideal (♣)

O O1

B

A

D

F

P

E

C

Fig. 3. Example 109

In some cases, we cannot obtain the conclusion g
G−→ 0 because of insuf-

ficient hypotheses. The prover developed by Chou [3] found automatically the
nondegenerate conditions that should be added to the hypotheses. Using Chou’s
results, we added such nondegenerate conditions for xi’s and recomputed the
Gröbner bases.

Example 3 (Example 109 [3]: Fig.3) From a point P on the line joining the
two common points A and B of two circles O and O1, two secants PCE and
PFD are drawn to the circles respectively. Show that PC · PE = PF · PD.

41

Hypotheses We translate the following conditions in order : O1 is on line OX ,
AX ⊥ XO, X is the midpoint of AB, P is on line AB, EO = OA,
CO = OA, C is on line PE, FO1 = O1A, DO1 = O1A, D is on line PF .
Then we obtain 11 polynomials: f1, . . . , f11.

Conclusion We let PC · PE = PF · PD be expressed by g.
Proof For I = (f1, . . . , f11), we have g 6∈ I . Hence we need to add the following

nondegenerate conditions.
C(x4, x3) 6= E(x2, u5) ⇒ h1 := (x3 − u5)z1 − 1 = 0
D(x7, x6) 6= F (x5, u6) ⇒ h2 := (x6 − u6)z2 − 1 = 0
If we add h1, h2 to I = (f1, . . . , f11) and let I ′ = (I, h1, h2), then we have
g ∈ I ′ and complete the proof.

Note 1 The above nondegenerate conditions can be also computed by the Gröb-
ner basis of I = (f1, . . . , f11). If we compute the minimal polynomials of x3

and x6 in I , we obtain the following (k = 3, 6):

I 3 (x3 − u5) · ϕ3(x3), (x6 − u6) · ϕ6(x6) ϕk(xk) ∈ Q(u1, . . . u6)[xk].

If we decompose the ideal I = (f1, . . . , f11), and we restrict ourselves into
Ĩ = (I, ϕ3, ϕ6), then we have g ∈ Ĩ and complete the proof. This implies
that x3 −u5 6= 0 and x6 −u6 6= 0 are necessary as nondegenerate conditions.

Note 2 The theorem itself remains true for the cases where C = E or D = F .
Above nondegenerate conditions means that the same set of polynomials can-
not express such tangent cases in common. This kind of automatic derivation
of nondegenerate conditions has been already discussed by several authors
such as [1, 15].

The following example is not included in the 512 theorems by Chou [3],
but it is known as the case where the decomposition of components and rather
complicated computation are needed to confirm the conclusion. Several authors
have succeeded in proving this theorem so far [17], but there does not seem to
be any attempt to apply Gröbner method to it. We proved this theorem by the
following way based on Gröbner basis algorithms.

Example 4 (Thèbault-Taylor) We follow the second formulation in Chou
[3](pp.67-68), where some auxiliary points are added to Fig.4.

Hypotheses We translate the conditions in order and obtain f1, . . . , f14 ∈
Q(u2, u3, u4)[x1, . . . , x14].

Conclusion We let the tangent condition of two circles be expressed by g.
Step 1 Computing the Gröbner basis of I = (f1, . . . , f14), we have g 6∈ I . Ac-

tually, this computation fails because g is not reduced to 0 by the Gröbner
basis, but its normal form will explode.

Step 2 We try to find a reducible univariate polynomial in the ideal I , and first
obtain ϕ5(x5) · ϕ′

5(x5) ∈ I , where the degree in x5 of each factor is two.
Step 3 We let Ĩ = (I, ϕ5(x5)), but again we have g 6∈ Ĩ by computing the

Gröbner basis of Ĩ . Then, we try to find a reducible univariate polynomial in
Ĩ , and obtain ϕ11(x11) · ϕ′

11(x11) ∈ Ĩ , where the degree in x11 of each factor
is two.

42

C

A

B

O

J

I

M F

W2

D

W1

Fig. 4. Thèbault-Taylor’s Theorem

Step 4 We let Ĩ ′ = (I, ϕ′

5(x5)), but again we have g 6∈ Ĩ ′ by computing the
Gröbner basis of Ĩ ′. Then, we try to find a reducible univariate polynomial
in Ĩ ′, and obtain ϕ′′

11(x11) · ϕ′′′

11(x11) ∈ Ĩ ′, where the degree in x11 of each
factor is two.

Step 5 Thus the hypotheses ideal I is decomposed into the following 4 compo-
nents:

I1 = ((I, ϕ5(x5)), ϕ11(x11)),
I2 = ((I, ϕ5(x5)), ϕ′

11(x11)),
I3 = ((I, ϕ′

5(x5)), ϕ′′

11(x11)),
I4 = ((I, ϕ′

5(x5)), ϕ′′′

11(x11)).
Then, we obtain g ∈ I1 and g 6∈ I2, I3, I4 by computing each Gröbner basis
of Ij . Therefore, the conclusion is confirmed to be true only in the ideal I1.

It took about 1900 seconds as a whole for the above computation in the same
environment as Table 1. More than 95% of the CPU time was used for computing
Gröbner bases of I, Ĩ and Ĩ ′ in steps 1, 3 and 4 in total. Since this formulation
is based on a rather naive way to decompose an ideal, its improvement should
be considered for a future work.

43

4 Concluding Remarks

Through all the experiments, we find that the following 9 among Chou’s 512
theorems are essentially difficult to compute their Gröbner bases by any means
in a moderate computational environment at present.

Ex.6,7,10,11,12 Pascal’s theorem and related ones
Ex.13 Steiner’s theorem
Ex.14 Kirkman’s theorem
Ex.19 Brianchon’s theorem (The dual of Pascal’s theorem)
Ex.80 Theorem of Pratt-Wu

Except for Pratt-Wu, 8 of the 9 theorems are related to Pascal’s theorem (figures
constructed from 6 points on a conic). Consequently, these figures yield rather
complicated polynomial systems with more variables and parameters than the
other solvable 26 systems. Therefore, it seems still difficult to compute Gröbner
bases with rational expression coefficient Q(u1, . . . , um) for such systems.

Finally, we itemize the remarks on our present results.

(1) Formulae (a) and (b) in Proposition 1 are comparable. As shown in Table 2, it
is usually faster to compute the Gröbner basis of (f1, . . . , f`, 1−yg) directly.
However, we should confirm (f1, . . . , fj , . . . , f`) 6= (1) at first, because we

may have (f1, . . . , f̃j , . . . , f`) = (1) by some mistakes during the translation.
(2) If we clear the common denominator and compute in Q [ui] [xi], then inter-

mediate expressions explode seriously. The total number (m+n) of variables
has severe influence, and the computation of Gröbner basis becomes much
more difficult by reverse effect.

(3) It is not known yet how efficiently new algorithms such as F4 [5], F5 [6] work
in the rational expression coefficient cases Q (ui) [xi]. In Maple11, the option
method=maplef4 is usually faster but requires more memory space than the
option method=buchberger.

Acknowledgements We are grateful to Ms. R.Kikuchi for permitting us to
convert her original program written in Reduce.

References

1. Bazzotti, L., Dalzotto, G., and Robbiano, L.: Remarks on Geometric Theorem
Proving, Automated Deduction in Geometry 2000 (Richter-Gebert, J. and Wang,
D., eds.), LNAI , 2061, Zurich, Springer, 2001, 104–128.

2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal , PhD thesis, Universität
Innsbruck, 1965.

3. Chou, S.-C.: Mechanical Geometry Theorem Proving , D.Reidel, Dordrecht, 1988.
4. Cox, D., Little, J., and O’Shea, D.: Ideals, Varieties, and Algorithms (2nd ed.),

Springer, N.Y., 1997.

44

5. Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases (F4), J.
Pure and Applied Algebra, 139, 1999, 61–88.

6. Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases without
Reduction to Zero (F5), ISSAC 2002 (Mora, T., ed.), Lille, ACM, 2002, 75–83.

7. Gräbe, H.-G.: The SymbolicData Project, http://www.symbolicdata.org/, 2000–
2006.

8. Hearn, A. C.: Reduce User’s Manual (Ver. 3.6), RAND Corp., Santa Monica, 1995.
9. Kapur, D.: Using Gröbner Bases to Reason About Geometry Problems, J.Symbolic

Computation, 2(4), 1986, 399–408.
10. Kutzler, B. and Stifter, S.: On the Application of Buchberger’s Algorithm to Auto-

mated Geometry Theorem Proving, J.Symbolic Computation, 2(4), 1986, 389–397.
11. Maplesoft: Maple 10 User Manual , Maplesoft, Tokyo, 2005. (in Japanese).
12. Maplesoft: Maple 11 User Manual , Maplesoft, Tokyo, 2007. (in Japanese).
13. Moritsugu, S. and Arai, C.: On the Efficiency of Geometry Theorem Proving by

Gröbner Bases, Trans.Japan Soc.Indust.Appl.Math., 17(2), 2007. (to appear; in
Japanese).

14. Noro, M. and Takeshima, T.: Risa/Asir - A Computer Algebra System, ISSAC ’92
(Wang, P., ed.), Berkeley, ACM, 1992, 387–396.

15. Recio, T. and Vélez, M. P.: Automatic Discovery of Theorems in Elementary Ge-
ometry, J. of Automated Reasoning , 23(1), 1999, 63–82.

16. Wang, D.: An Elimination Method for Polynomial Systems, J.Symbolic Computa-
tion, 16(2), 1993, 83–114.

17. Wang, D.: Geometry Machines: From AI to SMC, AISMC 3 (Calmet, J., Campbell,
J. A., and Pfalzgraf, J., eds.), LNCS , 1138, Steyr, Springer, 1996, 213–239.

18. Wang, D.: Gröbner Bases Applied to Geometric Theorem Proving and Discov-
ering, Gröbner Bases and Applications (Buchberger, B. and Winkler, F., eds.),
London Mathematical Society Lecture Note Series, 251, Cambridge Univ. Press,
Cambridge, 1998, 281–301.

19. Wang, D.: Elimination Practice: Software Tools and Applications, Imperial College
Press, London, 2004.

20. Winkler, F.: A Geometrical Decision Algorithm Based on the Gröbner Bases Algo-
rithm, ISSAC ’88 (Gianni, P., ed.), LNCS , 358, Rome, Springer, 1988, 356–363.

21. Wu, W.-T.: On the decision problem and the mechanization of theorem-proving in
elementary geometry, Automated Theorem Proving: After 25 Years (Bledsoe, W.
and Loveland, D., eds.), Contemporary Mathematics, 29, AMS, Providence, 1983,
213–234.

45

46

A Document-Oriented Coq Plugin for TEXmacs

Lionel Elie Mamane and Herman Geuvers

ICIS, Radboud University Nijmegen, NL

Abstract. We discuss the integration of the authoring of a mathemat-
ical document with the formalisation of the mathematics contained in
that document. To achieve this we are developing a Coq plugin for the
TEXmacs scientific editor, called tmEgg. TEXmacs allows the wysiwyg
editing of mathematical documents, much in the style of LATEX. Our
plugin allows to integrate into a TEXmacs document mathematics for-
malised in the Coq proof assistant: formal definitions, lemmas and proofs.
The plugin is still undergoing active development and improvement.
As opposed to what is usual for TEXmacs plugins, tmEgg focuses on a
document consistent model of interaction. This means that a Coq com-
mand is evaluated in a context defined by other Coq commands in the
document. In contrast, TEXmacs plugins usually use a temporal model
of interaction, where commands are evaluated in the order (in time) of
the user requests. We will explain this distinction in more detail in the
paper.

Furhermore, Coq proofs that have been done using tmEgg are stored
completely in the document, so they can be browsed without running
Coq.

1 Introduction

TEXmacs [1] is a tool for editing mathematical documents in a wysiwyg style.
The input an author types is close to LATEX, but the output is rendered on screen
in real time as it will be on paper. TEXmacs supports structure editing and it
stores the files in a structured way using tags, which is close to XML. So, a
TEXmacs document is a labelled tree. The labels (tags) provide information that
can be used as content or display information. For a specific label, the user can
choose a specific way of rendering the subtrees under a node with that label,
for example rendering all subtrees in math mode. But a user may also choose a
specific action for the subtrees, for example sending the subtrees as commands
to the computer algebra package Maple. Of course, many labels are predefined,
like in LATEX, so a user is not starting from scratch.

TEXmacs facilitates interaction with other applications: within TEXmacs one
can open a“session”, for example a Maple session, and then input text within that
session is sent to a Maple process that is running in the background. The Maple
output is input to the TEXmacs document, and rendered accordingly. In this way,
TEXmacs can be used as an interface for Maple, with the additional possibility
to add text or mathematical formulas around the Maple session, creating a kind

of interactive mathematical document. Here the interaction lies in the possibility
to execute parts of the document in the background application.

In this paper we present tmEgg, a Coq plugin for TEXmacs. The plugin allows
the user to call Coq from within a TEXmacs document, yielding a TEXmacs

document interleaved with Coq sessions. It also provides special commands for
Coq, like stating a definition or a lemma. The plugin does not provide its own
proof language, but leverages any proof language that Coq understands or will
understand in the future, such as [2]. This means that when doing a proof, the
user types actual Coq commands (usually tactics) in the TEXmacs document,
which are then sent to Coq as-is and the Coq output is rendered by TEXmacs.
This is in contrast with the approach of e.g. [3], [4] or [5], that seek to change
the way a proof is written or the way a user interface interacts with the prover.

A crucial aspect of the plugin is that it views the sequence of Coq sessions
within a document as one Coq file. So, when one opens a document and executes
a command within a Coq session, first all previous Coq commands are executed
and the present command is then executed in the Coq state thus obtained. So
the TEXmacs document as a whole also constitutes a valid Coq development.
Additionally, tmEgg automatically reexecutes any command that is modified;
no command is locked and unmodifiable.

From the Coq perspective, one can thus see the TEXmacs document as a doc-
umentation of the underlying Coq file. Using TEXmacs, one adds pretty printed
versions of the definitions and lemmas. The plugin further supports this by a
folding (hiding) mechanism: a lemma statement has a folded version, showing
only the pretty printed (standard mathematical) statement of the lemma, and
an unfolded version, showing also the Coq statement of the lemma. A further
unfolding also shows the Coq proof of the lemma.

Altogether there are four ways of seeing the tmEgg TEXmacs plugin. These
are not disjoint or orthogonal, but it is good to distinguish them and to consider
the various requirements that they impose upon our plugin.

A Coq interface. One can call Coq from within TEXmacs, thus providing an
interface to Coq. When the user presses the return key in a Coq interaction field,
the Coq commands in this field are sent to Coq and Coq returns the result to
TEXmacs. The plugin doesn’t do any pretty printing of Coq output (yet), but it
allows to save a Coq development as a TEXmacs file which can be replayed.

A documented Coq formalisation. A Coq formalisation usually has explana-
tory comments to give intuitions of the definitions, lemmas and proofs or to give a
mathematical (e.g. in LATEX) explanation of the formal Coq code. The plugin can
be used for doing just that: the traditional TEXmacs elements are used for com-
menting the underlying Coq file. In this respect, tmEgg can play the same role
as Coqdoc [6], but goes beyong this. Coqdoc extracts document snippets from
specially formatted comments in Coq scripts and creates an HTML or LATEX
document containing these snippets and the vernacular statements with some
basic pretty-printing of terms. In Coqdoc, there is no Coq interaction possible

48

from within this HTML or LATEX document. tmEgg enables the user to have a
mathematical document (in TEXmacs), whose formal definitions and proofs can
also be executed in Coq. Moreover, the formal proofs can also be read without
Coq, because the full Coq interaction was stored within the document at the
time it was created.

Taking this use case to its extreme, one arrives at a notion of literate proving,
by analogy to literate programming: a system that allows to write formal defini-
tions and proofs in one document together with their (high-level) mathematical
documentation.

A document with a Coq formalisation underneath. One can write a
mathematical article in TEXmacs, like one does in LATEX. With tmEgg, one can
take a mathematical article and extend it with formal statements and proofs.
Due to the folding mechanism, the“view”of the article where everything is folded
can be the original article one started with. It should be noted that, if one adds
a Coq formalisation underneath this, not everything needs to be formalised:
lemmas can be left unproven etc., as long as the Coq file is consistent, i.e. no
notions are used unless they are defined. In this sense, tmEgg makes a step in
the direction of the Formal Proof Sketches idea of [7].

Course notes with formal definitions and proofs. We can use the TEXmacs

document for course notes (handouts made by the teacher for students). An
added value of our plugin is that we have formal definitions and proofs under-
neath, but we don’t expect that to be a very appealing feature for students. On
the other hand, we also have full access to Coq, so we can have exercises that are
to be done with Coq, like“prove this statement”or“define this concept such that
such and such property holds”. This is comparable in its intent to ActiveMath
[8].

In the following we present our plugin tmEgg, including some technical details
and a fragment of a TEXmacs document with underlying Coq formalisation.
We will discuss the four views on the plugin as mentioned above in detail. An
essential difference between the tmEgg Coq plugin that we have created and
other TEXmacs plugins, e.g. the one for Maple, is that we take a document

oriented approach. This we will describe first.

2 The document-consistent model

The TEXmacs plugins to computer algebra or proof systems usually obey a tem-
poral model of interaction, that is, the expressions given to the plugin by the
user are evaluated in the chronological order the user asks for their evaluation,
irrespective of their relative position in the document and dependencies. In other
words, the TEXmacs plugin system ignores the fact that the interpreter it is in-
terfacing with has an internal state which is modified by the commands TEXmacs

49

gives it. This can lead to the result of a command in the current session to be
irreproducible in later sessions because the sequence of commands leading to the
state in which the interpreter was when evaluating the command is lost. See Fig.
1 for an example, with the CAS Axiom. The user first assigns the value 5 to a,
and asks for the value of a. The correct answer is given. The user then redefines
a to be 6 and goes back up to the command a and asks for its reexecution. The
answer given is 6, which corresponds to the chronological order of execution of
the commands, but not to the order in which the said commands are read by a
somebody that hasn’t seen the chronological history. While in that simple case,
one may guess what has happened, if the user deletes the assignation of 6 of a
or even both definitions (third row in the figure), the explanation is gone, and
the behaviour of TEXmacs and Axiom is seemingly unexplainable to someone
that walks in at that moment and finds TEXmacs and Axiom in that state. If
the document is saved and reloaded, one will not get the same results again.

Contrast with Fig. 2, showing a tmEgg Coq session. Empty_set is predefined
in Coq’s standard library, and gets redefined in the second command. However,
independently of the order in which the user asks for evaluation of the commands,
it will always give the same result, shown in the figure. E.g. if the user asks
for evaluation of the second command (defining Empty_set to be 5) and then
asks for the evaluation of the first one, the first command will always answer
“Empty_set is an inductively defined type of sort Set without any constructor”,
not “Empty_set is 5”. Similarly, if the user opens the document and evaluates
the third command, it will answer Empty_set = 5 because the second command
will have been automatically executed before the third one.

The risk of inconsistency brought by the temporal model is naturally even
more undesirable in the context of writing formal mathematics, leading to a
document-consistent model of interaction: a statement is always evaluated in
the context defined by evaluating all statements before it in the document, in
document order, starting from a blank state.

2.1 Implementation

Coq 8.1 thankfully provides the features essential for implementing the docu-
ment-consistent model, in the form of a backtrack command that can restore the
state to a past point B. It works under the condition that no object (definition,
lemma, . . .) whose definition is currently finished was incomplete at point B. If
this condition is not satisfied, tmEgg backtracks up to a point before B where
this condition does hold and then replays the statements between that point and
B. This condition always holds somewhere at or before B: it holds at the very
beginning of the document, where no definition is started.

The arguments given to the backtrack command are derived from state infor-
mation that Coq gives after completion of each command, in the prompt. tmEgg
stores the information on the Coq state before a command as a state marker next
to the command itself, that is a document subtree whose rendering is the empty
string. This state information consists (roughly speaking) of the number of def-

50

Fig. 1. Example of inconsistent output

initions made in the current session, the list of unfinished definitions and the
number of steps made in the current unfinished definition, if any.

51

Fig. 2. Example of consistent output

tmEgg also keeps a copy in memory of the Coq commands that have been
executed; when the user asks for evaluation of a Coq command, tmEgg checks
whether an already executed command was modified (respectively deleted, or a
new one inserted between already executed commands) in the document since
its execution, and if any was, automatically reexecutes it.

2.2 A better model

The underlying model is that the document contains a sequence of Coq com-
mands to be evaluated exactly in that order. This model will be familiar to users
of other popular interfaces, such as Proof General/Emacs and CoqIDE, where
one edits directly a “.v file”, that is a text file made of a concatenation of Coq
commands. The tmEgg document is just a superset of that, that contains both
Coq commands and other document snippets that get ignored by Coq.

This presents the restriction that the definition of an object (e.g. a lemma)
has to precede any use of it in the document. This forces the order of presentation
of objects in the document to be a valid order in the formal logical meaning.
While this is considered a feature by overly formalist people (such as one of the
authors), it is considered a hindrance for writing documents optimised for reading
by the rest of humanity. Indeed, the author of a document may e.g. consider it
better to first present the main theorem, making liberal use of lemmas that are
best read after understanding their role in the overall picture. He may even wish
to banish an uninteresting technical lemma to an appendix.

Also, from a performance point of view, if an object T is followed by several
objects that do not use T and then one object S that does use T, changing the
definition of T will lead to unnecessarily cancelling and redoing the definitions of
the intermediary objects that are guaranteed not to be affected by a change in
T; only S needs to be cancelled. A similar situation arises when the user works
on several unfinished definitions in a temporally interleaved way; the already
executed steps of the objects placed lower in the document will constantly be
cancelled and reexecuted, for no good reason.

52

In order to better accommodate these usage scenarios, a future version of
tmEgg will have a different model: the document will be seen as containing a
set of Coq objects (definitions, lemmas, theorems, . . .). When the user opens a
document and asks for reexecution of the definition of an object A, all the objects
necessary for A, but no more, are redefined, irrespective of their position in the
document. Similarly, if A is changed, only the objects using it will have their
definition removed from the Coq session, not all those that happen to be defined
later in the document.

Furthermore, in this model, if the user jumps between two unfinished defi-
nitions, there is no need to abort either of them; they can be simply suspended
and resumed, without cancelling proof steps that don’t need to be.

However, the proof script of one particular proof will - at least in a first
version - still be considered as a strictly linear sequence.

Coq makes that model easier to implement than other systems. Indeed, Coq
does not allow any redefinition1. Any document will thus have only one definition
of any (fully qualified) name, and there will be no ambiguity on which definition
of B shall be used to define A, if the definition of A uses B. tmEgg can then store
the dependencies (hidden) in the document at the time a definition is finished.

3 Presentation of tmEgg

tmEgg extends TEXmacs with Coq interaction fields. The user enters Coq com-
mands in one of these fields and presses enter to have the command executed.
Coq’s answer is placed below the input field in the document itself. One can nat-
urally freely interleave Coq interaction fields with usual document constructs,
permitting one to interleave the formal mathematics in Coq and their presen-
tation in LATEX-level mathematics or comments about the formalisation. Each
Coq interaction can be folded away at the press of a button, as well as each
specific result of a command individually. The output of the previous command
is automatically folded upon evaluation of a following command. See Fig. 3 for
an example: The empty circles indicate a folded part and can be clicked to un-
fold that part, and the full circles indicate a foldable unfolded part and can be
clicked to fold it. Here, the formal counterpart to hypothesis 2 is completely
folded, while the statement of lemma 3 is unfolded and its proof folded. The
proof of lemma 4 is unfolded, but the result of most of its steps is folded.

Note that the result of each Coq command is inserted into the document
statically (and replaced upon reevaluation), just after the command itself, before
the next command; this means that they can be copied and pasted like any part of
the document, but also that the saved file contains them, so that the development
can be followed without running Coq, a potentially lengthy operation. As a

1 Fig. 1 may seem to be a counter-example to this assertion, but it is not: What
happens here is merely shadowing of the library definition by one in the current name-
space, but this affects only the unqualified name Empty_set. The library object is still
available under its fully qualified name, namely Coq.Init.Datatypes.Empty_set.

53

Fig. 3. tmEgg screenshot

corollary, the development can even be followed (but not independently checked)
on a computer lacking Coq.

This choice of placing the Coq output visibly in the document itself was partly
an experiment; traditionally the user interfaces place the prover’s answer/state
in a fixed-size reserved area of the screen. Interleaving the Coq output with its
input has proven well suited to small toy examples. Mainly, it avoids having
to constantly switch eye focus between the separate edition area and the Coq
output area, leading to a smoother experience. It also has the advantage that
it permits having several consecutive Coq outputs on screen simultaneously,
making comparing them easier. This is especially useful when reading a proof,
when one is trying to figure out what a Coq command is doing.

54

However, it has proven unpopular with users doing bigger proofs, mainly
because it is not as spill-resistant as a fixed-size reserved area when the proof
state reaches a moderate size or because it “clutters up the screen”.

As both approaches have inherent advantages, future versions of tmEgg will
support both approaches. Coq output will be saved in the document, but can be
completely hidden globally. A separate window, which can be shown or hidden,
will contain the output corresponding to the current Coq command.

In order to help the user create the proposed“formal and informal version of the
same mathematics” structure (particularly in the “mathematical document with
a Coq formalisation underneath” scenario), we present him with a menu where
he can choose a Coq statement type (such as Lemma, Hypothesis, Definition,
. . .) and that will create an empty template to fill made of:

– the corresponding TEXmacs theorem-like environment for the informal state-
ment;

– a foldable Coq interaction field for the formal statement;
– a foldable Coq interaction field for the formal proof, if appropriate;

This is illustrated in Fig. 4.

Fig. 4. New statement menu, empty lemma structure

3.1 Architecture

We have decided to avoid putting TEXmacs-specific code in Coq. That’s why,
rather than adapt Coq to speak the TEXmacs plugin protocol by itself, we have
implemented a wrapper in OCaml that translates from Coq to TEXmacs (see
Fig. 5). We try to keep that wrapper as simple and stateless as possible, putting
most of the intelligence of the plugin in Scheme in TEXmacs.

55

CoqTEXmacs wrapper

Fig. 5. tmEgg architecture

3.2 Adaptations in Coq for tmEgg

However, a few generic enhancements to Coq were necessary:

– One could not backtrack into a finished section (that is, from a point where
this section was finished to a point where it is unfinished). This is now
possible.

– There are two protocols to interact with Coq: the “emacs” protocol and the
“Pcoq”protocol. The Pcoq protocol has the huge advantage of clearly stating
which of the commands you gave to Coq failed or succeeded, while the emacs
protocol leaves you to carefully parse the output to see whether there is an
error message contained in it. On the other hand, the Pcoq protocol was tied
to a different term printer than the one usual to Coq users and a different
history management model than the one described above.
We have untied the term printer and communication protocol, so that either
printer can be used with either protocol, allowed disabling the Pcoq history
management mechanism and added the backtracking state information of
the emacs protocol to the Pcoq protocol. This allows us to use a robust com-
munication protocol (the Pcoq one), while still displaying terms in the same
syntax the users can type them in and leveraging the backtrack command.

4 How well does the plugin do?

In the introduction, we have described four views (possible applications) on the
tmEgg plugin. We now want to discuss to which extent the plugin satisfies the
requirements for each of those views.

A Coq interface. One can do Coq from within a TEXmacs document using
our plugin, if one has the patience or a machine fast enough to put up with
TEXmacs’s slowness. However, as detailed above, compared to well-known inter-
faces like Proof General [9] and CoqIde [6], the display of the proof state inside

the document can be a disadvantage. Other things that our plugin does not (yet)
support but are in principle possible to add in TEXmacs are: menus for special
tactics and pretty printing (but Proof General and CoqIde don’t have this ei-
ther). Pretty printing is of course interesting to add in the context of TEXmacs,
because it has various LATEX-like facilities to add it. However, it should be noted
that, if we want to use our plugin as an interface for Coq, the syntax should be
accepted as input syntax too, so as to not confuse the user. The user may also
prefer to use the default Coq pure text syntax rather than graphical mathemat-
ical notations; this will always be supported.

56

Compared to traditional user interfaces, tmEgg has the advantage that one
can scroll to any point in the proof script and reexamine Coq’s state. One can
then always edit the Coq command there freely, and tmEgg will do whatever is
necessary to make Coq aware of that. Traditional user interfaces lock already
executed commands, that is they cannot be edited.

A documented Coq formalisation. As a documentation tool, the plugin
works fine. One can easily add high level mathematical explanations. One can
import a complete uncommented Coq file and start adding annotations. It would
be better if existing Coq comments, in particular Coqdoc annotations, were im-
ported and converted to TEXmacs document snippets, but this is not imple-
mented yet. Note however that there is no (formal) link between the formal Coq
and the high level explanation in TEXmacs, because the high level translation is
not a translation of the Coq code, but added by a human. This is different from,
e.g. the work in the Mowgli [10] project, where we have a high level rendering
of the formal Coq statements.

A document with a Coq formalisation underneath. This is a way the
plugin can be used now. One would probably want to hide even more details, so
more folding would be desirable, e.g. folding a whole series of lemmas into one
“main lemma” which is the conclusion of that series. Thus one would be able to
create a higher level of abstraction that is usual in mathematical documents. Of
course this can already be done in TEXmacs, but our plugin does not specifically
propose it automatically. If such nested folding were added, it would also be
advisable to be able to display the “folding structure” separately, to give the
high level structure of the document.

Course notes with formal definitions and proofs. In general, proof as-
sistants are tools that require quite some maturity to be used, so therefore we
don’t expect students to easily make an exercise in their TEXmacs course notes
using the underlying proof assistant Coq, i.e. as an exercise in the mathematics
studied rather than as an exercise in Coq. This situation may improve in the fu-
ture though, depending on the maturity of proof assistant technology. It should
also be noted that the plugin does not (yet) explain/render the Coq formalised
proofs, like e.g. the Helm tool [11] does (by translating a formal proof into a
mathematically readable proof). See also [12].

5 More Future Outlooks

5.1 Mathematical input/output

Current TEXmacs interfaces to computer algebra systems include conversion to
and from mathematical notations (see Fig. 6). Doing the same with Coq brings
some difficulties in a more acute way than with a CAS:

57

Fig. 6. Mathematical notation input/output with Axiom

– Different developments will call for the same notation to map to different Coq
objects; there are for example several different real numbers implementations
for Coq.

– Similarly, the best notation to use for the same Coq construct will vary de-
pending on the document, where in the document one is, or even more subtle
factors. A prime example of this is parentheses around associative operators:
One usually doesn’t want a full parenthesising in statements, but if one al-
ways leaves out “unnecessary”parentheses, the statement of the associativity
lemma itself looks quite pointless, as do the proof steps consisting of applying
the associativity lemma.

– Some Coq constructs (such as some ways to define division) need information
that is not part of usual mathematical notation (such as proof that the divisor
is not zero).

Ideally, the notations would thus probably have to be highly dynamic; if making
good choices automatically proves impossible, maybe a good compromise will be
to let the author of the document choose on a case-by-case basis. What can be
achieved sanely is still to be explored.

Once at least the conversion to mathematical notation is satisfying, we can
make a TEXmacs command that takes a Coq term (or the name of one) and
whose rendering is the “nice” mathematical rendering for that term. This means
that users will be able to put Coq terms in their documents and have them look
like LATEX-level mathematics.

This conversion from and to“normal”mathematical notation might also form
a usable mechanism for informal and unsafe exchange of terms between different
computer algebra systems and proof assistants. E.g. if the Coq goal to prove is
x

18
− 5x

7 + 5 = 0 → x > 2, the user could select in the goal the expression
x18

− 5x7 + 5 = 0 (duly converted from Coq term to mathematical notation by
tmEgg), paste it into a CAS session and ask the CAS to solve that equation
(where the TEXmacs-CAS integration plugin will duly convert it to the syntax
of the CAS being used) to quickly check whether the goal is provable, or use the
CAS as an oracle to find the roots and use knowledge of the roots to make the
proof easier to write.

58

It was originally planned to use the Pcoq term printer to get the Coq terms as
pure λ-term trees, and handle all the transformation to TEX-level presentational
notations in tmEgg itself, e.g. through mapping Coq terms to TEXmacs document
macros. This would have allowed to easily use different notations in (different
places of) different documents, but it means loosing the ability to look at the
type of a term to make a presentation decision. In consultation with the Coq
team, we finally decided we will add a term pretty-printer to TEXmacs syntax
in Coq itself, sharing most infrastructure with the existing Coq ASCII/Unicode
text term printer.

5.2 Miscellaneous

Once the basic framework of tmEgg has matured and works well, all kinds of
small, but highly useful, features can be imagined:

– Import of Coq files containing Coqdoc document snippets, leveraging the
LATEX import of TEXmacs.

– Automatic generation of table of Coq constructs in the document and cor-
responding index.

– Similarly, menu command to jump to the definition of a particular Coq
object.

– Make any place where a Coq object (e.g. a lemma) is used a hyperlink to its
definition. This could even eventually be expanded up to making tmEgg a
Coq library browser.

References

1. van der Hoeven, J.: GNU TEXmacs. SIGSAM Bull. 38(1) (2004) 24–25

2. Corbineau, P.: Declarative proof language for coq. http://www.cs.ru.nl/ cor-
binea/mmode.html (2006)

3. Théry, L.: Formal proof authoring: an experiment. In Lüth, C., Aspinall, D.,
eds.: UITP2003 International Workshop on User Interfaces for Theorem Provers,
informal proceedings. Volume 189 of Technical Report., Institut für Informatik
Albert-Ludwigs-Universität Freiburg, Aracne (2003) 143–159

4. Dixon, L., Fleuriot, J.: A proof-centric approach to mathematical assistants. Jour-
nal of Applied Logic: Special Issue on Mathematics Assistance Systems (2005) 35
To be published.

5. Aspinall, D., Lüth, C., Wolff, B.: Assisted proof document authoring. In Kohlhase,
M., ed.: MKM 2005, Mathematical Knowledge Management: 4th International
Conference. Volume 3863 of Lecture Notes in Computer Science., Springer Ver-
lag (2006) 65–80

6. The Coq Development Team: The Coq Proof Assistant Reference Manual. (LogiCal
Project - INRIA Futurs)

7. Wiedijk, F.: Formal proof sketches. In Berardi, S., Coppo, M., Damiani, F.,
eds.: Types for Proofs and Programs: Third International Workshop, TYPES 2003,
Torino, Italy. Volume 3085 of LNCS., Springer (2004) 378–393

59

8. Melis, E., Andres, E., Büdenbender, J., Frischauf, A., Goduadze, G., Libbrecht,
P., Pollet, M., Ullrich, C.: ActiveMath: A generic and adaptive web-based learning
environment. Artifical Intelligence and Education 12(4) (2001)

9. Aspinall, D.: Proof general - a generic tool for proof development. In S. Graf, M.S.,
ed.: TACAS 2000. Volume 1785 of LNCS. (2000)

10. Asperti, A., Wegner, B.: MoWGLI - a new approach for the content description
in digital documents. In: Proceedings of the Ninth International Conference on
Electronic Resources and the Social Role of Libraries in the Future. Volume 1.,
Autonomous Republic of Crimea (2002) (Section 4).

11. Asperti, A., Padovani, L., Coen, C.S., Guidi, F., Schena, I.: Mathematical knowl-
edge management in HELM. Annals of Mathematics and Artificial Intelligence,
Special Issue on Mathematical Knowledge Management 38(1-3) (2003) 27–46

12. Asperti, A., Geuvers, H., Loeb, I., Mamane, L.E., Coen, C.S.: An interactive alge-
bra course with formalised proofs and definitions. In Kohlhase, M., ed.: Mathemat-
ical Knowledge Management: 4th International Conference, MKM 2005, Bremen,
Germany. Volume 3863 of Lecture Notes in Computer Science., Springer Verlag
(2006) 315–329

13. Audebaud, P., Rideau, L.: TEXmacs as authoring tool for formal developments. In
Aspinall, D., Lüth, C., eds.: Proceedings of the User Interfaces for Theorem Provers
Workshop, UITP 2003. Volume 103 of Electronic Notes in Theoretical Computer
Science., Rome, Italy, Elsevier (2004) 27–48

14. INRIA Sophia-Antipolis Lemme Team: PCoq, a graphical user-interface for Coq.
(http://www-sop.inria.fr/lemme/pcoq/)

60

Software Specification Using Tabular

Expressions and OMDoc?

Dennis K. Peters1, Mark Lawford2, and Baltasar Trancón y Widemann3

1 Electrical and Computer Engineering
Faculty of Engineering and Applied Science

Memorial University of Newfoundland
St. John’s, Newfoundland Canada

dpeters@engr.mun.ca

http://www.engr.mun.ca/~dpeters
2 Dept. of Computing and Software

Faculty of Engineering, McMaster University
Hamilton, Ontario, Canada

lawford@mcmaster.ca

http://www.cas.mcmaster.ca/~lawford
3 Software Quality Research Laboratory

Computer Science and Information Systems Building
University of Limerick, Limerick, Ireland

Baltasar.Trancon@ul.ie

http://www.sqrl.ul.ie

Abstract. Precise specifications or descriptions of software system be-
haviour often involve fairly complex mathematical expressions. Research
has shown that these expressions can be effectively presented as tabular
expressions, but that tool support is needed to do this well. Traditional
documentation tools (e.g., plain text or word processors) are insufficient
because they do not i) have good support for mathematical expressions,
particularly in tabular forms, and ii) retain sufficient semantic informa-
tion about the expressions to permit the use of tools such as automated
reasoning systems, and code or oracle generators. This paper presents
initial work in the development of a suite of tools, using OMDoc as an
exchange medium, for development, analysis and use of tabular software
specifications. It shows by some simple examples how these tools can
work together with other systems to add significant value to the docu-
mentation process.

1 Software Specifications

Researchers in the area that has come to be called “software engineering” have,
over the years, proposed many techniques for documenting required or actual
behaviour and designs for software based systems. Despite the purported benefits

? This work was carried out while all three authors were at the Software Quality
Research Laboratory, University of Limerick.

of these techniques with respect to the quality of the software produced, very few
of these have found widespread use in industrial software practice. It is suggested
that developers are reluctant to use these techniques because they are not seen
to add enough value to the development process to justify the effort required to
produce and maintain the documentation. In this work we hope to improve this
situation by developing tools that support both the production and maintenance
of good documentation and the application of this documentation to such tasks
as design analysis, verification and testing.

Some of our goals for the tools that we are developing are that they should:

– Free authors from devoting inappropriate effort to the presentation details
of the document – the effort should be focused on the content.

– Assist the authors to avoid typographical mistakes, for example through
content assist techniques similar to those found in integrated development
environments.

– Support checking of consistency both within a document (self consistency)
and between documents, including code where appropriate.

– Assist in design analysis and verification, possibly using tools such as proof
systems, model checkers, or computer algebra systems.

– Support automated specification based testing, for example by test case and
oracle generation.

To achieve these goals the documentation being produced must be in a form
that has a precisely defined syntax and semantics – that is, it must be formal

– and it must be in a form that enables access to the semantic content. Such
formal documentation techniques usually make use of a substantial amount of
reasonably complicated mathematics for which general purpose documentation
production tools (e.g., word processing software) are less than ideal because they
focus on the presentation of the information, rather than its semantic content.
The mathematical content markup language OMDoc[1] addresses this problem
and serves as a basis on which to build our tools.

1.1 Tabular Expressions

The nature of computer system behaviour often is that the system must react to
changes in its environment and behave differently under different circumstances.
The result is that the mathematics describing this behaviour consists of a large
number of conditions and cases that must be described. It has been recognized
for some time that tables can be used to help in the effective presentation of
such mathematics [2–5]. In this work we view such tabular representations of
relations and functions as an important factor in making the documentation
more readable, and so we have specialized our tools to support them [6–8].

A full discussion of tabular expressions is beyond the scope of this paper,
so interested readers are referred to the cited publications. In their most basic
form, tabular expressions represent conditional expressions, so for example, (in
Janicki’s style [7]) the function definition given in (1), could be represented by
the tabular expression in (2).

62

f(x, y)
df
=

x + y if x > 1 ∧ y < 0
x − y if x ≤ 1 ∧ y < 0
x if x > 1 ∧ y = 0
xy if x ≤ 1 ∧ y = 0
y if x > 1 ∧ y > 0
x/y if x ≤ 1 ∧ y > 0

(1)

f(x, y)
df
=

x > 1 x ≤ 1
y < 0 x + y x − y
y = 0 x xy
y > 0 y x/y

(2)

In OMDoc it is straightforward to add support for tabular expressions, simply
by defining appropriate (OpenMath) symbols to denote them: we use a symbol
for “table”, which, following the model presented in [8], takes four argument
expressions representing

1. The evaluation term, which expresses how the value of a tabular expression is
defined in terms of the expressions in its grids. For (2) this expression would
express that the value is that of the element of the central grid, T [0], that is
indexed by indices of the true elements of each of the “header” grids, T [1]
and T [2], as follows: T [0][select(T [1]), select(T [2])], where select is a function
on a predicate grid that gives the index of the cell that is true.

2. The static restriction, which defines a condition that must be true of the
grids, independent of the expressions in the grids, but possibly dependent
on their types. This is used, for example, to assert the conditions on the
number and size of the grids (i.e., the shape of the table). For (2) this would
express that the index set of the central grid should be the power set of
the index sets of the header grids, and that the header grids must contain
predicate expressions.

3. The dynamic restriction, which defines a condition that must be true of the
grid expressions. This is used to assert constraints on the table to ensure
that it has a well defined meaning. For (2) this would assert than the header
grids, T [1] and T [2], must be “proper” – only one cell expression should be
true for any assignment.

4. A list of grids, which are indexed sets, represented by n-ary applications
with symbol “grid” and taking pairs of cell index and cell contents as its
arguments.

Figure 3 illustrates the OMDoc representation of a tabular expression.
Although (1) and (2) are clearly a nonsensical example, they are representa-

tive of the kind of conditional expression that occurs often in documentation of
software based systems. We have found that the tabular form of the expressions
is not only easier to read, but, perhaps more importantly, it is also easier to
write correctly. Of particular importance is that they make it very clear what
the cases are, and that all cases are considered.

63

Modern general purpose documentation tools, of course, have support for
tables as part of the documents, but they are often not very good at dealing with
tables as part of mathematical expressions. These tools also encourage authors
to focus efforts on the wrong things: authors will work very hard to try to get
the appearance of the table right, sometimes even to the detriment of readability
(e.g., shortening variable names so that expressions fit in the columns).

One could argue that the two alternative presentations given in (1) and
(2) are simply presentational styles and so should not be our focus, and we
would have to agree to a point. As should be clear from the above discussion,
however, our encoding of tabular expressions in OpenMath does not encode
the presentational aspects other than implicitly in the symbol names – it simply
defines new kinds of conditional (piecewise) expressions where the conditions are
defined in indexed sets that we call grids. The symbols defined in the “piece1”
standard OpenMath Content Dictionary4 are not sufficient for our purposes
since they group the conditions with the value expression, as in (1), rather than
along other dimensions. The latter form improves readability and allows for clear
expression of “properness” constraints (e.g., that the expressions in a grid must
cover all cases and not overlap).

1.2 Classes of Documents

Although tabular expressions could be useful in many forms of documentation,
our particular emphasis has been on documents that either specify or describe
behaviour of software entities using relations on the quantities that are input
and output from the component [9]. Rather than define a specification language,
per se, we use standard mathematics together with some special functions or
notations that are particular to the kind of document and are defined using
standard mathematics [10]. The following are the particular kinds of documents
that we are targeting.

System or Software Requirements documents define the required or actual
behaviour of an entity by giving the acceptable values of the “controlled”
quantities (outputs) at any time in terms of the history and current value of
the “monitored” quantities (inputs) [11–13].

Module interface documents define the required behaviour of a software mod-
ule (component) by giving the values of all output variables in terms of the
sequence of past program calls, events and outputs of that module [14].

Module internal design documents describe the internal design of a module
by identifying the data structure used, giving the abstraction relation that
relates this data structure to the module interface specification, and defining
the relations on values of the data structure and output variables before and
after a call to an access program [15].

Note that our documents are not documents about mathematics, but rather
make use of mathematics as a means to communicate. Also note that our doc-
uments will not normally include proofs but may be used as input to proof

4 http://www.openmath.org/cd/piece1.xhtml

64

systems, as illustrated in section 2.2, for example to reason about the properties
of a design.

1.3 Specification Document Model

A review of the contents of the above document types leads us to propose a
document model consisting of the following elements.

Theory is the main structural element of our documents. Each document will
contain one or more theories. Theories may include sub-theories either di-
rectly or via import references.

Symbols represent constants, variables, relations, functions or types. A speci-
fication document fundamentally is about identifying the symbols that are
relevant and, where appropriate, defining their value in terms of other sym-
bols.

Types declare the mathematical type of a symbol.
Definitions declare the meaning of a symbol (e.g., an expression describing the

relation).
Code is unparsed formal text that, although it doesn’t play a role in the doc-

uments we have mentioned, is likely to be needed for some documents.
Text is unparsed informal text that is included for readability of the document.

Readers familiar with OMDoc will recognize the above elements and see that
our documents clearly fit within the OMDoc model. We have found, however,
that the standard OMDoc attributes are insufficient for our purposes, so we
have added a few that are specific to this project and have identified these by
a namespace for the project (http://www.fillmoresoftware.ca/ns), which we use
the prefix “tts” to represent. The attributes are as follows:

tts:role is used for symbols to denote the role that the symbol plays in the
document. A symbol might represent, for example, an output value relation,
an auxiliary definition or a variable.

tts:kind is used for theories to denote the kind of specification document that
the theory represents (requirements, module interface, module internal de-
sign).

OMDoc supports both OpenMath [16] and Content MathML [17] for math-
ematical content, but since our intention is to use tabular expressions, we need
to use an extensible notation, so we use only OpenMath in this version.

2 Tool Support

The set of tools that may be appropriate outcomes from this project is very
large and includes powerful editors, document consistency checkers, verification
systems, oracle generators, test case generators and model checkers, to name a
few. Clearly to develop all of these from scratch would be a major undertaking

65

far beyond the resources of this project. However, we strongly believe in the
value of building on the strengths of existing tools where appropriate, so we are
focusing our initial efforts on ways to leverage existing systems to our advantage
in this project. The OMDoc representation of a tabular specification with its
embedded semantics is the common glue that allows us to easily bind together
components as diverse as a Eclipse plugin GUI, the PVS theorem prover and
a prototype function based specification system that also acts as a Java code
generator. Once development is completed to enable these tools to extract the
general table representation and semantics of [8], support will be available for all
known types of tabular specifications and any future ones that can be represented
within this general table model. The current state of these three components of
the table tool system are outlined below.

2.1 Prototype Eclipse Plugin GUI

Eclipse (www.eclipse.org) is an open development platform that supports exten-
sion through a plugin mechanism. The platform provides an advanced integrated
development environment for software development, and a wide range of avail-
able plugins to support such tasks as testing, modeling and documentation. By
developing a plugin to support production of the documents described above,
we hope to be able to build on the strengths of Eclipse and to help integrate the
documentation into the development process, for example by supporting navi-
gation between a specification and the code that implements the specification or
by generating oracles or test cases that integrate with automated testing using
JUnit (www.junit.org) and the JUnit plugin.

The initial version of this plugin, which is pictured in figure 1, provides a
“multi-page editor” (which provides different views of the same source file) for
“.tts” files, which are OMDoc files. One page of the editor is a structured view of
the document, while another shows the raw XML representation. The support
libraries in Eclipse provide techniques to ensure that the views of the document
are consistent. The plugin is built using several open source libraries including
the RIACA OpenMath Library5.

This plugin is seen as a primary means for the human users to interact with
specification documents. Currently it supports basic verification and validation
of tabular specifications via export to the Prototype Verification System (PVS)
[18] using XSLT to translate the OMDoc into PVS, as described below.

2.2 Example Verification and Validation Environment

PVS is a “proof assistant” that can automatically check for completeness (cov-
erage) and determinism (disjointness) of several types of tables [19], i.e. PVS
checks that a table defines a total function. This is typically very important in
safety critical environments since the engineers want to avoid any unspecified

5 http://www.mathdox.org/projects/openmath/lib/2.0/

66

Fig. 1. Screenshot of Eclipse Plugin

behaviour. Although PVS has a steep learning curve for users, with further de-
velopment effort we can design our table tools and software process to “shield”
the users from PVS. Further, new features in PVS such as the random test
[20] and execution of a subset of the PVS specification language via the ground
evaluator [21] can be easily translated into new table tool features.

We illustrate these capabilities with an example, a simple Reactor Shutdown
System (SDS) component. An SDS is a watchdog system that monitors system
parameters. It shuts down (trips) the reactor if it observes ”bad” behaviour.
The process control is performed by a separate Digital Control computer (DCC)
since that functionality is not as critical.

We will consider a “Power Conditioning” subsystem. Often sensors have a
power threshold below (or above) which readings are unreliable so it’s “condi-
tioned out” for certain power levels. A deadband is used to eliminate sensor
“chatter”. Since there are many different sensor types with similar power condi-
tioning requirements, during the design phase it was decided to write one general
routine and pass in sensor parameters for different sensors, thereby taking ad-
vantage of code reuse.

Consider the General Power Conditioning Function illustrated in Figure 2
When Power:

– drops below Kout, sensor is unreliable so it’s “conditioned out” (PwrCond =
FALSE).

– exceeds Kin, the sensor is “conditioned in” and is used to evaluate the
system.

67

PwrCond(Prev:bool, Power, Kin, Kout:posreal):bool =

Power ≤ Kout Kout < Power < Kin Power ≥ Kin

FALSE Prev TRUE

Fig. 2. General power conditioning function with deadband from [22]

– is between Kout and Kin, the value of PwrCond is left unchanged by setting
it to its previous value, Prev.

For the graph of Power above, PwrCond would start out FALSE, then become
TRUE at time t1 and remain TRUE.

The PVS Specification of the General PwrCond Function can be generated
from the OMDoc tabular specification shown in Figure 3 by applying a modified
version of the original omdoc2pvs.xsl by Kolhase that is available from the
OMDoc subversion repository6

The PVS generated by applying the stylesheet is shown Figure 4. We note
that white space has been manual added to the figure to improve its readabil-
ity, though this does not change the semantics of the generated file. This PVS
specification of the PwrCond table produces the following proof obligations or
“TCCs” (Type Correctness Conditions).

% Disjointness TCC generated (at line 14, column 55) for

% unfinished

PwrCond_TCC1: OBLIGATION

FORALL (Kin, Kout: posreal, Power):

NOT (Power <= Kout AND Power > Kout & Power < Kin) AND

NOT (Power <= Kout AND Power >= Kin) AND

NOT ((Power > Kout & Power < Kin) AND Power >= Kin);

% Coverage TCC generated (at line 14, column 55) for

% proved - complete

PwrCond_TCC2: OBLIGATION

FORALL (Kin, Kout: posreal, Power):

(Power <= Kout OR % Column1

(Power > Kout & Power < Kin) % Column2

OR Power >= Kin) % Column3

When type-checking the PwrCond table the coverage TCC is automatically
proved by PVS. Thus we conclude that at least one column is always satis-
fied for every input. But PVS attempt to prove the Disjointness TCC fails,

6 Available at https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2.

68

<?xml ve r s ion =”1.0” encoding=”utf −8” standa lone=”no”?>

<!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc Spec 1 .2//EN”
”http :/ /www. omdoc . org /omdoc/dtd /omdoc−spec . dtd” [] >

<omdoc modules=”@spec” ve r s ion =”1.2” xml : id=”sampletab le2 . omdoc”
xmlns=”http ://www. omdoc . org /omdoc” xmlns : cc=”http :// creativecommons . org/ns”
xmlns : dc=”http :/ / pur l . org /dc/ elements /1.1/”
xmlns : t t s=”http ://www. f i l lmo r e s o f twa r e . ca/ns”>

<theory xml : id=”samp le tab le2 theory”>

<symbol name=”sampletab le2” scope=”g loba l ” t t s : r o l e=”aux i l i a r y ”
xml : id=”sampletab le2”>

<type system=”pvs”>

<OMOBJ xmlns=”http :/ /www. openmath . org/OpenMath”>

<OMA>
<OMS cd=”pvs” name=”funtype ” /> <OMS cd=”boo leans” name=”bool ” />

<OMS cd=”r e a l s ” name=”r e a l ” /> <OMS cd=”r e a l s ” name=”r e a l ” />

<OMS cd=”r e a l s ” name=”r e a l ” /> <OMS cd=”boo leans” name=”bool ” />

</OMA>
</OMOBJ>

</type>

</symbol>
<d e f i n i t i o n f o r=”#sampletab le2” type=”simple ” xml : id=”sampletable2−de f”>

<OMOBJ xmlns=”http ://www. openmath . org /OpenMath”>

<OMBIND> <OMS cd=”pvs” name=”lambda” />

<OMBVAR>
<OMATTR>

<OMATP> <OMS cd=”pvs” name=”type ” /> <OMS cd=”boo leans” name=”bool ” />

</OMATP>
<OMV name=”Prev” /> </OMATTR>

<OMATTR>
<OMATP> <OMS cd=”pvs” name=”type ” /> <OMS cd=”r e a l s ” name=”r e a l ” />

</OMATP>
<OMV name=”Power” /> </OMATTR>

<OMATTR>
<OMATP> <OMS cd=”pvs” name=”type ” /> <OMS cd=”r e a l s ” name=”r e a l ” />

</OMATP>
<OMV name=”Kin” /> </OMATTR>

<OMATTR>
<OMATP> <OMS cd=”pvs” name=”type ” /> <OMS cd=”r e a l s ” name=”r e a l ” />

</OMATP>
<OMV name=”Kout” /> </OMATTR>

</OMBVAR>
<OMA> <OMS cd=”tab le ” cdbase=”http ://www. f i l lmo r e s o f tw a r e . ca/cd”

name=”tab le ” />

<!−− Evaluation term : normal (0) : normal tab le , value g r i d = 0 . −−>

<OMA> <OMS cd=”tab le ” cdbase=”http :/ /www. f i l lmo r e s o f tw a r e . ca/cd”
name=”normal ” /> <OMI> 0 </OMI> </OMA>

<!−− S ta t i c r e s t r i c t i o n : r e c t S t r u c tu r e (1 , <3>) −−>

<OMA> <OMS cd=”tab le ” cdbase=”http :/ /www. f i l lmo r e s o f tw a r e . ca/cd”
name=”r e c t S t ru c tu r e ” />

<OMI> 1 </OMI>
<OMA> <OMS cd=” l i n a l g 2 ” cdbase=”http ://www. openmath . org /cd”

name=”vec to r ” /> <OMI> 3 </OMI> </OMA>
</OMA>

<!−− dynamic r e s t r i c t i o n : proper (1) −−>

<OMA> <OMS cd=”tab le ” cdbase=”http :/ /www. f i l lmo r e s o f tw a r e . ca/cd”
name=”proper ” /> <OMI> 1 </OMI> </OMA>

<OMA>
<!−− L i s t o f g r i d s −−>

<OMS cd=” l i s t 1 ” cdbase=”http ://www. openmath . org /cd” name=” l i s t ” />

<!−− Grid 0 : f a l s e | Prev | t rue −−>

<OMA> <OMS cd=”tab l e ” cdbase=”http :/ /www. f i l lmo r e s o f twa r e . ca/cd”
name=”g r id ” />

<OMA> <OMS cd=”products ” cdbase=”http ://www. openmath . org /cd”
name=”pai r ” />

<OMA> <OMS cd=” l i n a l g 2 ” name=”ve ct or ” /> <OMI> 0 </OMI> </OMA>

<OMS cd=”l o g i c 1 ” cdbase=”http :/ /www. openmath . org/cd”
name=” f a l s e ” />

</OMA>
. . .

</OMA>

<OMA>

<!−− Grid 1 : Power <= Kout | Power > Kout & Power < Kin
| Power >= Kin −−>

<OMS cd=”tab le ” cdbase=”http ://www. f i l lmo r e s o f tw a r e . ca/cd”
name=”gr id ” />

<OMA cdbase=”http ://www. openmath . org /cd”>

<OMS cd=”products ” name=”pai r ” />

<OMA>
<OMS cd=” l i n a l g 2 ” name=”vec to r ” /> <OMI> 0 </OMI> </OMA>

<OMA> <OMS cd=”r e l a t i on 1 ” name=”leq ” />

<OMV name=”Power” /> <OMV name=”Kout” /> </OMA>
</OMA>
. . .

</OMA> </OMA> </OMA> </OMBIND> </OMOBJ> </d e f i n i t i o n > </theory >

</omdoc>

Fig. 3. Partial OMDoc representation of General Power Conditioning

69

PwrCond(Prev:bool, Power, Kin, Kout:posreal):bool = TABLE

%---%

|[Power<=Kout | Power>Kout & Power<Kin | Power>=Kin]|

%---%

| FALSE | Prev | TRUE ||

%---%

ENDTABLE

Fig. 4. PVS Specification generated modified omdoc2pvs.xsl stylesheet

indicating that the columns might overlap. The resulting unprovable sequent
for the disjointness TCC is given below along with the results of running the
(random-test) prover command to attempt to generate a counter example for
the sequent:

PwrCond_TCC1 :

[-1] Kin!1 > 0

[-2] Kout!1 > 0

[-3] Power!1 > 0

[-4] Power!1 <= Kout!1

[-5] (Kin!1 <= Power!1)

|-------

[1] FALSE

Rule? (random-test)

The formula is falsified with the substitutions:

Power ==> 67 / 80

Kin ==> 31 / 85

Kout ==> 42 / 25

This command generates and evaluates a “theorem” on random inputs to look
for counter examples, printing the first counter example (if any) found [20]. To
confirm the counter example and locate problem we can use the PVSio evaluator
[21] to check the headers of all columns at once on the above counterexample
values.

<PVSio> let (Prev,Power,Kin,Kout) = (FALSE, 67/80, 31/85, 42/25)

in (Power<=Kout, Power>Kout & Power<Kin, Power>=Kin);

==>

(TRUE, FALSE, TRUE)

Thus we conclude that columns 1 and 3 overlap.
While the above steps in PVS were done manually, there is no reason why

these steps could not be automated via the Eclipse plugin using PVS’s batch
processing mode, thus “shielding” the user from the theorem prover under the
hood of the table tool system. For example, the plugin could simply provide
the counter example and highlight the overlapping columns in a visual display

70

rendered as display MathML and xhtml by modifying existing XSLT stylesheets
contained in the OMDoc distribution.

2.3 Functional Specification and Code Generation

Applied mathematics in science and engineering are traditionally formulated in
first-order predicate logic. With the advent of theoretical computer science and
computer assisted formalization, alternative logical foundations have emerged.
Many automated theorem provers such as PVS or Isabelle/HOL [23] are based
on higher-order logic. Via the Curry-Howard isomorphism, higher-order logic is
closely related to the typed lambda-calculus [24], the foundation of functional
programming. Writing formal specifications in a style based on functions and
higher-order logic has several benefits:

– Type systems for lambda-calculus are precise, powerful and well understood.

Checking and inference algorithms are well documented. Specifications can
be typechecked for consistency, catching many simple errors and ambiguities.

– Type systems for lambda-calculus are largely self-contained. Algebraic data-
types such as integers, tuples, enumeration and record types and the associ-
ated operations can be defined within the formalism, instead of being given
by axioms or external reference. Paremetrization is for free in the lambda-
calculus. Hence complex specifications can refer to a common library of basic
definitions, rather than requiring special support in every processing tool.

– Function-based specification is computationally constructive. Standard inter-
pretation and compilation techniques for functional programming languages
apply, yielding direct and universal evaluation algorithms and code genera-
tors for agile specification tool support, simulation and oracle generation.

We have constructed the prototype of a tool that provides basic support
for function-based specification. It has a frontend syntax similar to a functional
programming or theorem prover language, and a semantic intermediate repre-
sentation based on OpenMath objects for individual types and definitions, and
OMDoc for theory-level structure. A typechecker supports the Calculus of Con-
structions [25] (CC). This is a subset of the Extended Calculus of Construction
[26] (ECC), the proposed higher-order type system for OpenMath [27]. Exe-
cutable code can be generated from the typechecked intermediate representa-
tion. The tool is implemented in Java, and currently only Java code generation
is supported. Specification modules processed by the tool fulfill several roles:

Generic Library Some datatypes and operations common to all tabular ex-
pressions. The grids of a table are organized as hierarchical arrays, lists or
associative lists of cell expressions. Evaluation and restriction terms are con-
veniently defined in terms of well-known higher-order operations such as map,
filter and fold, extending the work of [28].
The logic of tables in [8] is total. For the transparent embedding of partial
functions into cell expressions, a monadic error-handling framework [29] is
provided.

71

Specific Tables Individual tables can be extracted from tts files and trans-
lated to function-based style. An automatic translation procedure is cur-
rently being implemented. It assumes that the expressions in a table do not
involve infinite quantification, which has no direct effective translation to
lambda-calculus. Table cell expressions are represented as functions of all
free variables, so that each cell is a closed expression and can be checked and
compiled individually. For example, the table (2) would be rendered as:

f(x, y)
df
=

λx, y. x > 1 λx, y. x ≤ 1
λx, y. y < 0 λx, y. x + y λx, y. x − y
λx, y. y = 0 λx, y. x λx, y. x ∗ y
λx, y. y > 0 λx, y. y λx, y. x/y

(3)

In this form, the assignment of values to the variables requires no reinter-
pretation or substitution of cell expressions, because it can be expressed by
simply applying each cell function to the tuple of values. For example, the
assignment {x := 2, y := 4} is given by the value tuple (2, 4).

Specifications represented in function-based style and processed using this
tool have two important properties. Firstly, they are defined in a self-contained
and unambiguous way in pure typed lambda-calculus. Together with the OMDoc-
based format, this makes a good starting point for interaction with various the-
orem proving tools. Secondly, all properties that do not involve infinite quantifi-
cation are directly computable. Hence the static restriction check for a table and
the evaluation and dynamic restriction check for a table and a given variable
assignment can be interpreted or compiled to executable code, whereas the dy-
namic restriction check for all possible values still requires the use of a theorem
prover.

By combining both properties, substantial support for constructing new spec-
ification tools can be given. We have defined table types from [8] not yet sup-
ported by either PVS or any other available tool as part of the domain-independent
library. Such a table type definition can be written by a skilled functional pro-
grammer in one day. By using our Java code generator, the core of an oracle
generator is obtained immediately.

3 Related Work

A very good discussion of the need for mathematical content markup such as
OMDoc is given in Part I of [1], so it will not be repeated here. In summary,
general purpose documentation tools and presentation markup languages (e.g.,
LATEX, HTML, Presentation MathML) are insufficient for our purposes since
they encode the appearance of the mathematics, not its intended meaning. For
example, given the expression “x + 2”, we are concerned primarily with the fact
that this represents the sum of a variable x and the constant 2. The choice of pre-
sentation of this expression in this or another form (e.g., “x 2 +” or “sum(x, 2)”)

72

is a matter of style that will be determined by the conventions adopted by the
author and the intended readers.

The use of XSLT to translate the OMDoc into PVS input represents a
lightweight approach to providing support for OMDoc specification in existing
tools. A more rigorous approach to preservation of table semantics in multiple
verification environments such as PVS and the prototype functional specifica-
tion/code generation environment might be based upon the Heterogeneous Tool
Set (Hets) [30], a parsing, static analysis and proof management tool combin-
ing various tools for different specification languages. Currently the Hets system
does not support PVS or Java code generation, though it does support the Is-
abelle interactive higher-order theorem prover and SPASS automatic first-order
theorem prover and can generate Haskell code. A list of other projects using
OMDoc is found in Ch. 26 of [1].

Several projects have addressed the problem of developing tools for use of
tabular expressions in documents [22, 31–35]. All of these efforts, with the excep-
tion of [33], are limited in the set of tabular expressions or document types that
they targeted, and none used a standard interchange format such as OMDoc to
take advantage of other tools. The table tools developed by the CANDU owners
group and used at Ontario Power Generation (OPG) on the Darlington Nuclear
Generating Station Shutdown Systems, used standard wordprocessors to create
documents containing tabular specification. These documents were saved in RTF
format and then custom tools extracted the tables and exported them to PVS
[22, 35]. One of the difficulties faced in developing the tools is that the table se-
mantics had to be inferred from the table layout in RTF. This limited the tools’
capabilities to support new table formats.

4 Conclusions and Future Work

This is a development project in its early stages, and we expect that it will evolve
as it progresses by the enhancement of the existing tools and the addition of new
tools. Our early results show that there is promise in the chosen techniques –
the model supports the needs of our documentation and the ability to interact
with other tools such as PVS shows the potential to achieve significant leverage
from these tools.

Near term targets for the tools are to enhance the plugin such that it is a
reasonably complete and user-friendly editor, to continue to work with transla-
tion to PVS so that we can effectively check properties of our documents, and
to add oracle generation similar to [36] and [13].

Acknowledgements This work draws on the contributions of many people who
have worked on tabular methods in the past primarily at McMaster University
and the University of Limerick. In particular we are grateful to Dr. David L.
Parnas for his inspiration, support, and helpful comments and to Jin (Kim)
Ying and Adam Balaban for their work on the formalization of the semantics of
tabular expressions.

73

The authors gratefully acknowledge support received for this work from the
Science Foundation Ireland (SFI) through the Software Quality Research Labo-
ratory (SQRL) at the University of Limerick and from the Natural Sciences and
Engineering Research Council of Canada (NSERC).

References

1. Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Documents
(Version 1.2). Number 4180 in LNAI. Springer Verlag (2006)

2. Heninger, K.L., Parnas, D.L., Shore, J.E., Kallander, J.: Software requirements for
the A-7E aircraft. Technical Report MR 3876, Naval Research Laboratory (1978)

3. Parnas, D.L.: Inspection of safety critical software using function tables. In: Proc.
IFIP Congress. Volume I., North Holland (1994) 270–277

4. Weiss, G.H., Hohendorf, R., Wassyng, A., B.Quigley, Borsch, M.R.: Verification of
the shutdown system software at the darlington nuclear generating station. In: Int’l
Conf. Control & Instrumentation in Nuclear Installations. Number 4.3, Glasgow,
United Kingdom, Institution of Nuclear Engineers (1990)

5. Abraham, R.F.: Evaluating generalized tabular expressions in software documen-
tation. M. Eng. thesis, McMaster University, Dept. of Electrical and Computer
Engineering, Hamilton, ON (1997)

6. Parnas, D.L.: Tabular representation of relations. CRL Report 260, Communica-
tions Research Laboratory, Hamilton, Ontario, Canada (1992)

7. Janicki, R., Khedri, R.: On a formal semantics of tabular expressions. Science of
Computer Programming 39(2–3) (2001) 189–213

8. Balaban, A., Bane, D., Jin, Y., Parnas, D.: Mathematical model of tabular expres-
sions. SQRL Document (2006)

9. Parnas, D.L., Madey, J.: Functional documentation for computer systems. Science
of Computer Programming 25(1) (1995) 41–61

10. Parnas, D.L.: A family of mathematical methods for professional software docu-
mentation. In Romijn, J.M.T., Smith, G.P., van de Pol, J.C., eds.: Proc. Int’l Conf.
on Integrated Formal Methods. Number 3771 in LNCS, Springer-Verlag (2005) 1–4

11. van Schouwen, A.J., Parnas, D.L., Madey, J.: Documentation of requirements for
computer systems. In: Proc. Int’l Symp. Requirements Eng. (RE ’93), IEEE (1993)
198–207

12. Peters, D.K.: Deriving Real-Time Monitors from System Requirements Documen-
tation. PhD thesis, McMaster University, Hamilton ON (2000)

13. Peters, D.K., Parnas, D.L.: Requirements-based monitors for real-time systems.
IEEE Trans. Software Engineering 28(2) (2002) 146–158

14. Quinn, C., Vilkomir, S., Parnas, D., Kostic, S.: Specification of software compo-
nent requirements using the trace function method. In: Int’l Conf. on Software
Engineering Advances, Los Alamitos, CA, IEEE Computer Society (2006) 50

15. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Trans. Software Engineering 20(12) (1994) 948–976

16. The OpenMath Society: The OpenMath Standard. 2.0 edn. (2004)
http://www.openmath.org/standard/om20-2004-06-30/.

17. W3C: Mathematical Markup Language (MathML) Version 2.0. Second edn. (2003)
http://www.w3.org/TR/MathML2/.

18. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering 21(2) (1995) 107–125

74

19. Owre, S., Rushby, J., Shankar, N.: Integration in PVS: Tables, types, and model
checking. In Brinksma, E., ed.: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’97). Volume 1217 of LNCS, Enschede, The Nether-
lands, Springer-Verlag (1997) 366–383

20. Owre, S.: Random testing in pvs. In: Proceedings of Automated
Formal Methods (AFM06), SRI International (2006) Available online:
http://fm.csl.sri.com/AFM06/.

21. Muñoz, C.A.: PVSio Reference Manual. National Institute of Aerospace (NIA),
Formal Methods Group, 100 Exploration Way, Hampton VA 23666. Version 2.b
(draft) edn. (2005) Available at http://research.nianet.org/ munoz/PVSio/.

22. Lawford, M., Froebel, P., Moum, G.: Application of tabular methods to the speci-
fication and verification of a nuclear reactor shutdown system. Accepted for publi-
cation in Oct 2004. http://www.cas.mcmaster.ca/ lawford/papers/ (To appear in
FMSD)

23. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

24. Barendregt, H.: Lambda calculi with types. In Abramsky, Gabbay, Maibaum, eds.:
Handbook of Logic in Computer Science. Volume 2. Clarendon (1992)

25. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2-3) (1988)
95–120

26. Luo, Z.: An Extended Calculus of Constructions. PhD thesis, University of Edin-
burgh (1990)

27. The OpenMath Society: A Type System for OpenMath. 1.0 edn. (1999)
http://www.openmath.org/standard/ecc.pdf.

28. Kahl, W.: Compositional syntax and semantics of tables. SQRL Report 15, Soft-
ware Quality Research Laboratory, Department of Computing and Software, Mc-
Master University (2003)

29. Spivey, M.: A functional theory of exceptions. Sci. Comput. Program. 14(1) (1990)
25–42

30. Mossakowski, T.: HETS User Guide. Department of Com-
puter Science and Bremen Institute for Safe Systems, University
of Bremen, Germany. (2006) Online: http://www.informatik.uni-
bremen.de/agbkb/forschung/formal methods/CoFI/hets/UserGuide.pdf.

31. Heitmeyer, C.L., Bull, A., Gasarch, C., Labaw, B.G.: SCR*: A toolset for specifying
and analyzing requirements. In: Proc. Conf. Computer Assurance (COMPASS),
Gaithersburg, MD, National Institute of Standards and Technology (1995) 109–122

32. Hoover, D.N., Chen, Z.: Tablewise, a decision table tool. In: Proc. Conf. Computer
Assurance (COMPASS), Gaithersburg, MD, National Institute of Standards and
Technology (1995) 97–108

33. Parnas, D.L., Peters, D.K.: An easily extensible toolset for tabular mathematical
expressions. In: Proc. Fifth Int’l Conf. Tools and Algorithms for the Construction
and Analysis of Systems. Number 1579 in LNCS, Springer-Verlag (1999) 345–359

34. Lawford, M., McDougall, J., Froebel, P., Moum, G.: Practical application of func-
tional and relational methods for the specification and verification of safety critical
software. In Rus, T., ed.: Proc. of AMAST 2000. Volume 1816 of LNCS., Iowa City,
Iowa, USA, Springer (2000) 73–88

35. Wassyng, A., Lawford, M.: Software tools for safety-critical software development.
International Journal on Software Tools for Technology Transfer (STTT) 8(4–5)
(2006) 337–354

36. Peters, D.K., Parnas, D.L.: Using test oracles generated from program documen-
tation. IEEE Trans. Software Engineering 24(3) (1998) 161–173

75

76

Reasoning inside a formula and ontological

correctness of a formal mathematical text

Andrei Paskevich1, Konstantin Verchinine1,
Alexander Lyaletski2, and Anatoly Anisimov2

1 Université Paris 12, IUT Sénart/Fontainebleau, 77300 Fontainebleau, France,
andrei@capet.iut-fbleau.fr verko@capet.iut-fbleau.fr

2 Kyiv National Taras Shevchenko University, Faculty of Cybernetics,
03680 Kyiv, Ukraine,

lav@unicyb.kiev.ua ava@unicyb.kiev.ua

Abstract. Dealing with a formal mathematical text (which we regard as
a structured collection of hypotheses and conclusions), we often want to
perform various analysis and transformation tasks on the initial formulas,
without preliminary normalization. One particular example is checking
for “ontological correctness”, namely, that every occurrence of a non-
logical symbol stems from some definition of that symbol in the forego-
ing text. Generally, we wish to test whether some known fact (axiom,
definition, lemma) is “applicable” at a given position inside a statement,
and to actually apply it (when needed) in a logically sound way.
In this paper, we introduce the notion of a locally valid statement, a
statement that can be considered true at a given position inside a first-
order formula. We justify the reasoning about “innards” of a formula; in
particular, we show that a locally valid equivalence is a sufficient condi-
tion for an equivalent transformation of a subformula. Using the notion
of local validity, we give a formal definition of ontological correctness for
a text written in a special formal language called ForTheL.

1 Introduction

In a mathematical text, be it intended for a human reader or formalized for
automated processing (Mizar Mathematical Library [1] is a classical example, see
also [2]), we rarely meet “absolute”, unconstrained rules, definitions, statements.
Usually, everything we use is supplied with certain conditions so that we have
to take them into consideration. For example, we can not reduce the fraction xy

x

until we prove that x is a nonzero number.
Let us consider a formula of the form (· · · ∀x (x ∈ IR+ ⊃ (· · · xy

x
· · ·)) · · ·).

It seems to be evident that we can replace xy
x

with y, but could we justify
that? The task itself seems to be absurd: as soon as a term depends on bound
variables, we can not reason about it. In the traditional fashion, we should first
split our big formula up to the quantifier that binds x, make a substitution (or
skolemization), separate x ∈ IR+, and only then make the simplification.

However, while the statement “x is non-zero” is surely meaningless, we can
say that “x is non-zero in this occurrence of xy

x
”. Our intuition suggests that

along with the usual notion of validity, a certain local validity of a proposition
can be defined with respect to some position in a formula. A statement that is
generally false or just meaningless can become locally valid being considered in
the corresponding context. In what follows, we call such a proposition a local

property of the position in question.
It can be argued that there is no gain in any simplifications when a formula

to be simplified lies deep inside. We would split our big formula anyway to use
the properties of that fraction in a proof. However, we believe that it is useful
and instructive to simplify a problem in its initial form as far as possible in order
to select the most perspective direction of the proof search.

Local properties are also necessary to verify (and even to define!) what we
call ontological correctness of a mathematical text. Informally, we consider a text
ontologically correct whenever it contains no occurrence of a non-logical symbol
that comes from nowhere: for every such occurrence there must be an applicable
definition or some other “introductory” premise. The purpose of ontological cor-
rectness may be not immediately obvious: for example, the famous disjunction
“to be or not to be” is perfectly valid (at least, in classical logic) even if the
sense of being has never been defined. Nevertheless, ontologically correct texts
are preferable in many aspects.

Ontological correctness is closely related to type correctness in typed lan-
guages (especially, in weakly typed systems such as WTT [3]). It allows to spot
formalization errors which otherwise could hardly be detected. Indeed, an acci-
dental ontological incorrectness most often implies logical incorrectness (i.e. pres-
ence of false or unprovable claims). And it is much harder to trace a failure log
of a prover back to an invalid occurrence than to discover it in the first place.

Moreover, during ontological verification, we obtain information about ap-
plicability of definitions and other preliminary facts at individual positions in
the text in question. As long as subsequent transformations (e.g. during the logi-
cal verification phase) preserve ontological correctness and other local properties
(and that should always be the case) we can unfold definitions and apply lemmas
without further checking.

This paper is devoted to formalization of ontological correctness for a partic-
ular language of formal mathematical texts, called ForTheL [4]. To this purpose,
we develop a theoretical background for reasoning about local properties based
on the notion of local image. The rest of the paper is organized as follows. In
Section 2, we briefly describe the ForTheL language and provide an informal (at
the moment) definition of ontological correctness of a ForTheL text. Section 3
introduces preliminary notions and notation which we use to define and inves-
tigate the notion of local image in Section 4. With the help of local images, we
give a precise definition of ontological correctness in Section 5.

2 ForTheL language

Like any usual mathematical text, a ForTheL text consists of definitions, as-
sumptions, affirmations, theorems, proofs, etc. The syntax of a ForTheL sentence

78

follows the rules of English grammar. Sentences are built of units: statements,
predicates, notions (that denote classes of objects) and terms (that denote in-
dividual entities). Units are composed of syntactical primitives: nouns which
form notions (e.g. “subset of”) or terms (“closure of”), verbs and adjectives
which form predicates (“belongs to”, “compact”), symbolic primitives that use
a concise symbolic notation for predicates and functions and allow to consider
usual quantifier-free first-order formulas as ForTheL statements. Of course, just
a little fragment of English is formalized in the syntax of ForTheL.

There are three kinds of sentences in the ForTheL language: assumptions,
selections, and affirmations. Assumptions serve to declare variables or to provide
some hypotheses for the following text. For example, the following sentences are
typical assumptions: “Let S be a finite set.”, “Assume that m is greater

than n.”. Selections state the existence of representatives of notions and can
be used to declare variables, too. Here follows an example of a selection: “Take
an even prime number X.”. Finally, affirmations are simply statements: “If p

divides n - p then p divides n.”. The semantics of a sentence is determined
by a series of transformations that convert a ForTheL statement to a first-order
formula, so called formula image.

Example 1. The formula image of the statement “all closed subsets of any

compact set are compact” is:

∀ A ((A is a set ∧ A is compact) ⊃

∀ B ((B is a subset of A ∧ B is closed) ⊃ B is compact))

ForTheL sections are: sentences, sentences with proofs, cases, and top-le-
vel sections: axioms, definitions, signature extensions, lemmas, and theorems.
A top-level section is a sequence of assumptions concluded by an affirmation.
Proofs attached to affirmations and selections are simply sequences of low-level
sections. A case section consists of an assumption called case hypothesis followed
by a sequence of low-level sections (the proof of a case).

Any section A or sequence of sections ∆ has a formula image, denoted |A|
or, respectively, |∆|. The image of a sentence with proof is the same as the
image of that sentence taken without proof. The image of a case section is the
implication (H ⊃ thesis), where H is the formula image of the case hypothesis
and thesis is a placeholder that will be replaced by the statement being proved
during verification. The formula image of a top-level section is simply the image
of the corresponding sequence of sentences.

The formula image of a sequence of sections A, ∆ is a conjunction |A| ∧ |∆|,
whenever A is a conclusion (affirmation, case section, lemma, theorem); or a
universally quantified implication ∀xA(|A| ⊃ |∆|), whenever A is a hypothesis
(assumption, selection, case hypothesis, axiom, definition, signature extension).
Here, xA denotes the set, possibly empty, of variables declared in A (this set
also depends on the logical context of A, since any variable which is declared
above A in the text must not be bound in |A|). The formula image of the empty
sequence is >, the truth.

79

Thus, a ForTheL text as a whole, being a sequence of section, can be ex-
pressed as a single logical formula. In what follows, we often use formulas, sec-
tions and sequence of sections interchangeably: whenever a section or a sequence
of sections is mentioned where a formula is expected, the corresponding formula
image should be considered.

In this syntax, we can express various proof schemes like proof by contradic-
tion, by case analysis, and by general induction. The last scheme merits special
consideration. Whenever an affirmation is marked to be proved by induction,
the system constructs an appropriate induction hypothesis and inserts it into
the statement to be verified. The induction hypothesis mentions a binary rela-
tion which is declared to be a well-founded ordering, hence, suitable for induc-
tion proofs. Note that we cannot express the very property of well-foundness in
ForTheL (since it is essentially a first-order language), so that the correctness of
this declaration is unverifiable and we take it for granted. After that transfor-
mation, the proof and the transformed statement can be verified in a first-order
setting, without any specific means to build induction proofs.

Example 2. Consider the following ForTheL formalization of Newman’s lemma
about term rewriting systems. We give it in an abridged form, with some pre-
liminary definitions and axioms omitted. The expression “x -R> y” means that
y is a reduct of x in the rewriting system R; R+ and R* denote, respectively, the
transitive and the reflexive transitive closure of R.

Let a,b,c,d,u,v,w,x,y,z denote elements.

Let R,S,T denote rewriting systems.

Definition CRDef. R is confluent iff

for all a,b,c such that a -R*> b and a -R*> c

there exists d such that b -R*> d and c -R*> d.

Definition WCRDef. R is locally confluent iff

for all a,b,c such that a -R> b and a -R> c

there exists d such that b -R*> d and c -R*> d.

Definition TrmDef. R is terminating iff

for all a,b a -R+> b => b -<- a.

Definition NFRDef. A normal form of x in R is

an element y such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every element x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof.

Let R be locally confluent and terminating.

Let us demonstrate by induction that

for all a,b,c such that a -R*> b and a -R*> c

there exists d such that b -R*> d and c -R*> d.

80

Assume that a -R+> b and a -R+> c.

Take u such that a -R> u and u -R*> b.

Take v such that a -R> v and v -R*> c.

Take w such that u -R*> w and v -R*> w.

Take a normal form d of w in R.

Let us show that b -R*> d.

Take x such that b -R*> x and d -R*> x.

end.

Let us show that c -R*> d.

Take y such that c -R*> y and d -R*> y.

end.

end.

qed.

Our formalization is simplified in that the notion “element” takes no argu-
ments, i.e. we consider rewriting systems to be defined on a common (implicit)
universum. Also, in our current implementation of ForTheL, one can not declare
a given binary relation to be well-founded, and therefore a rewriting system is
defined to be terminating iff its inverted transitive closure is a subset of the well-
founded relation “-<-” (Definition TrmDef). The induction hypothesis (namely,
that any reduct of a is confluent) is used to verify the selections “Take x...” and
“Take y...” at the end of the proof. Note that we do not consider cases where b

or c, or both are equal to a — these cases are trivial enough so that the system
can handle them without our assistance.

The ForTheL proof of Newman’s lemma, while being quite terse and close
to a hand-written argument, is formal and has been automatically verified by
the SAD proof assistant, using SPASS 2.2, E 0.99, and Vampire 7.45 as back-
ground provers. We refer the reader to the papers [4, 5] and to the website
http://ea.unicyb.kiev.ua for a description of SAD and further examples.

We call a ForTheL text ontologically correct whenever: (a) every non-logical
symbol (constant, function, notion or relation) in the text is either a signature
symbol or is introduced by a definition; and (b) in every occurrence of a non-
logical symbol, the arguments, if any, satisfy the guards of the corresponding
definition or signature extension. Since ForTheL is a one-sorted and untyped
language, these guards can be arbitrary logical formulas. Therefore, the latter
condition cannot be checked by purely syntactical means nor by type inference
of any kind. Instead, it requires proving statements about terms inside complex
formulas, possibly, under quantifiers. The following sections provide a theoretical
basis for such reasoning.

3 Preliminary notions

We consider a one-sorted first-order language with equality (≈), the standard
propositional connectives ¬, ∧, ∨, ⊃, ≡, the quantifier symbols ∀ and ∃, and
the boolean constant >, denoting truth. The respective order of subformulas is

81

significant for some of our definitions, therefore we consider F ∧ G and G ∧ F
as different formulas (the same is true for ∨, ≡, and ≈). We write the negated
equality ¬(s1 ≈ s2) as s1 6≈ s2 and the negated truth ¬> as ⊥.

We suppose that the sets of free and bound variables in any term or formula
are always disjoint. Also, a quantifier on a variable may never appear in the
scope of another quantifier on the same variable.

We consider substitutions as functions which map variables to terms. For any
substitution φ, if xφ is different from x, we call the term xφ a substitute of x in
φ. A substitution is finite whenever the set of its substitutes is finite. We write
finite substitutions as sequences of the form [t1/x1, . . . , tn/xn].

Position is a word in the alphabet {0, 1, . . .}. In what follows, positions
are denoted by Greek letters τ , µ and ν; the letter ε denotes the null position
(the empty word). Positions point to particular subformulas and subterms in a
formula or term.

The set of positions in an atomic formula or a term E, denoted Π(E), is
defined as follows (below i.Π stands for { i.τ | τ ∈ Π }):

Π(P (s0, . . . , sn)) = {ε} ∪
⋃

i.Π(si) Π(s ≈ t) = {ε} ∪ 0.Π(s) ∪ 1.Π(t)

Π(f(s0, . . . , sn)) = {ε} ∪
⋃

i.Π(si) Π(>) = {ε}

The set of positions in a formula H , denoted Π(H), is the disjoint union

Π(F) = Π+(F) ∪ Π−(F) ∪ Π◦(F)

of the set of positive positions Π+(H), the set of negative positions Π−(H),
and the set of neutral positions Π◦(H) (in what follows, A stands for an atomic
formula):

Π+(F ≡ G) = {ε} Π+(∀x F) = {ε} ∪ 0.Π+(F)

Π+(F ⊃ G) = {ε} ∪ 0.Π−(F) ∪ 1.Π+(G) Π+(∃x F) = {ε} ∪ 0.Π+(F)

Π+(F ∨ G) = {ε} ∪ 0.Π+(F) ∪ 1.Π+(G) Π+(¬F) = {ε} ∪ 0.Π−(F)

Π+(F ∧ G) = {ε} ∪ 0.Π+(F) ∪ 1.Π+(G) Π+(A) = Π(A)

Π−(F ≡ G) = ∅ Π−(∀x F) = 0.Π−(F)

Π−(F ⊃ G) = 0.Π+(F) ∪ 1.Π−(G) Π−(∃x F) = 0.Π−(F)

Π−(F ∨ G) = 0.Π−(F) ∪ 1.Π−(G) Π−(¬F) = 0.Π+(F)

Π−(F ∧ G) = 0.Π−(F) ∪ 1.Π−(G) Π−(A) = ∅

Π◦(F ≡ G) = 0.Π(F) ∪ 1.Π(G) Π◦(∀x F) = 0.Π◦(F)

Π◦(F ⊃ G) = 0.Π◦(F) ∪ 1.Π◦(G) Π◦(∃x F) = 0.Π◦(F)

Π◦(F ∧ G) = 0.Π◦(F) ∪ 1.Π◦(G) Π◦(¬F) = 0.Π◦(F)

Π◦(F ∨ G) = 0.Π◦(F) ∪ 1.Π◦(G) Π◦(A) = ∅

82

For the sake of consistency, we set Π+(t) = Π(t) and Π−(t) = Π◦(t) = ∅ for
any term t.

Among positions, we distinguish those of formulas (ΠF), those of atomic
formulas (ΠA), and those of terms (Πt). Obviously, Π(F) = Πt(F) ∪ ΠF(F),
ΠA(t) = ΠF(t) = ∅, ΠA(F) ⊆ ΠF(F), Π(t) = Πt(t). We split the sets Πt, ΠA,
and ΠF into positive, negative, and neutral parts, too.

Given a formula H and a position π ∈ Π(H), the position π̂ is the maximal
prefix of π in ΠF(H). In what follows, we will often use this conversion to extend
notions and operations defined on positions from ΠF to the whole Π .

A formula or a term E along with a position τ ∈ Π(E) defines an occurrence.
Let us say that π is a textual predecessor of τ whenever π = ω.i.µ and

τ = ω.j.η and i < j. Such positions will be called adjacent. If µ = ε, we will
say that π is a logical predecessor of τ . By default, “predecessor” means “logical
predecessor”.

Given a formula or a term E and a position τ in Π(E), we will denote by
E|τ the subformula or subterm occurring in that position. In what follows, (∗F)
stands for (¬F), (∀x F), or (∃x F); and (F ∗ G) stands for (F ≡ G), (F ⊃ G),
(F ∧ G), or (F ∨ G):

E|ε = E (∗ F)|0.τ = F |τ

(F ∗ G)|0.τ = F |τ (F ∗ G)|1.τ = G|τ

P (s0, . . . , sn)|i.τ = si|τ (s ≈ t)|0.τ = s|τ

f(s0, . . . , sn)|i.τ = si|τ (s ≈ t)|1.τ = t|τ

Given a formula or a term E, a position τ in Π(E), and a formula or a term
e, we will denote by E[e]τ the result of replacement of E|τ with e:

E[e]ε = e (∗ F)[e]0.τ = ∗ F [e]τ

(F ∗ G)[e]0.τ = F [e]τ ∗ G (F ∗ G)[e]1.τ = F ∗ G[e]τ

P (s0, . . . , sn)[e]i.τ = P (s0, . . . , si[p]τ , . . . , sn) (s ≈ t)[e]0.τ = s[e]τ ≈ t

f(s0, . . . , sn)[e]i.τ = f(s0, . . . , si[p]τ , . . . , sn) (s ≈ t)[e]1.τ = s ≈ t[e]τ

The expression e must be a term if τ ∈ Πt(E), and a formula otherwise. Free
variables of e may become bound in F [e]τ .

4 Local validity and local properties

Given a formula F , a position π ∈ ΠF(F), and a formula U , we define the local

image of U w.r.t. F and π, denoted 〈U〉Fπ , as follows:

〈U〉F≡G
0.π = 〈U〉Fπ 〈U〉F≡G

1.π = 〈U〉Gπ 〈U〉∀xF
0.π = ∀x 〈U〉Fπ

〈U〉F⊃G
0.π = G ∨ 〈U〉Fπ 〈U〉F⊃G

1.π = F ⊃ 〈U〉Gπ 〈U〉∃xF
0.π = ∀x 〈U〉Fπ

〈U〉F∧G
0.π = G ⊃ 〈U〉Fπ 〈U〉F∧G

1.π = F ⊃ 〈U〉Gπ 〈U〉¬F
0.π = 〈U〉Fπ

〈U〉F∨G
0.π = G ∨ 〈U〉Fπ 〈U〉F∨G

1.π = F ∨ 〈U〉Gπ 〈U〉Fε = U

83

Roughly, the formula 〈U〉Fπ says “U is true at the position π in F”. Note that
this formula does not depend on the subformula F |π. For a position π ∈ Πt(F),
we define 〈U〉Fπ to be 〈U〉F�π , where π̂ is the longest prefix of π in ΠF(F).

Example 3. Let F be the formula

∀x (x ∈ IN ⊃ ∀n (n ∈ IN ⊃ (x ≈ fib(n) ≡

≡ ((n ≤ 1 ∧ x ≈ 1) ∨ x ≈ (fib(n − 1) + fib(n − 2))))))

This formula represents a recursive definition. We want to verify that the argu-
ments (n − 1) and (n − 2) satisfy the guards of the definition and are strictly
less than n.

Consider the second argument. Let π denote its position, 0.1.0.1.1.1.1.1.0.
We want to prove 〈(n− 2) ∈ IN ∧ (n− 2) < n〉Fπ . The latter formula is equal to

∀x (x ∈ IN ⊃ ∀n (n ∈ IN ⊃ ((n ≤ 1 ∧ x ≈ 1) ∨ ((n− 2) ∈ IN ∧ (n− 2) < n))))

But this formula is false given n = x = 0. And that reveals an error in our
definition: x = 0 makes false the left side of the disjunction F |0.1.0.1.1, so we
have to consider the right side with n = 0 in order to evaluate the truth value
of the whole disjunction. Now it is easy to build a good definition F ′ of fib:

∀x (x ∈ IN ⊃ ∀n (n ∈ IN ⊃ (x ≈ fib(n) ≡

≡ ((n ≤ 1 ∧ x ≈ 1) ∨ (n ≥ 2 ∧ x ≈ (fib(n − 1) + fib(n − 2)))))))

Obviously, the local image 〈(n− 2) ∈ IN ∧ (n− 2) < n〉F
′

0.1.0.1.1.1.1.1.1.0 is a valid
formula:

∀x (x ∈ IN ⊃ ∀n (n ∈ IN ⊃

⊃ ((n ≤ 1 ∧ x ≈ 1) ∨ (n ≥ 2 ⊃ ((n − 2) ∈ IN ∧ (n − 2) < n)))))

Lemma 1. For any F , π ∈ Π(F), and a formula U , ∀U ` 〈U〉Fπ .

Proof. Here, ∀U denotes the universal closure of U . The formula 〈U〉Fπ is equiv-
alent to a universally quantified disjunction and U is a positive component of
this disjunction. ut

Lemma 2. (local modus ponens) ` 〈U ⊃ V 〉Fπ ⊃ (〈U〉Fπ ⊃ 〈V 〉Fπ)

Lemma 2 can be proved by a simple induction on the length of π.
The lemmas above show that we can consistently reason about local proper-

ties. They are powerful enough to prove some interesting corollaries.

Corollary 1. ` 〈U ≡ V 〉Fπ ⊃ (〈U〉Fπ ≡ 〈V 〉Fπ)

Proof. By Lemma 1 we have ` 〈(U ≡ V) ⊃ (U ⊃ V)〉Fπ . Hence by Lemma 2,
` 〈(U ≡ V)〉Fπ ⊃ (〈U ⊃ V 〉Fπ). Again by local modus ponens, ` 〈(U ≡ V)〉Fπ ⊃
(〈U〉Fπ ⊃ 〈V 〉Fπ). In the same way, ` 〈(U ≡ V)〉Fπ ⊃ (〈V 〉Fπ ⊃ 〈U〉Fπ). ut

84

Corollary 2. ` 〈U ∧ V 〉Fπ ≡ (〈U〉Fπ ∧ 〈V 〉Fπ)

Proof. In order to prove the necessity, we take the propositional tautologies
(U ∧ V) ⊃ U and (U ∧ V) ⊃ V . In order to prove the sufficiency, we take
the propositional tautology U ⊃ (V ⊃ (U ∧ V)). Then we “immerse” a chosen
tautology inside the formula F by Lemma 1 and apply local modus ponens. ut

Corollary 3. For any quantifier-free context C,

`
(
〈U1 ≡ V1〉

F
π ∧ · · · ∧ 〈Un ≡ Vn〉

F
π ∧ 〈t1 ≈ s1〉

F
π ∧ · · · ∧ 〈tm ≈ sm〉Fπ

)
⊃

⊃ 〈C[U1, . . . , Un, t1, . . . , tm] ≡ C[V1, . . . , Vn, s1, . . . , sm]〉Fπ

The term “context” stands here for a formula with “holes”, in which formulas
or terms can be inserted, completing the context up to a well-formed formula.
The corollary can be proved similarly to previous statements.

The key property of local images is given by the following theorem.

Theorem 1. For any formulas F , U , V

π ∈ ΠF(F) ⇒ ` 〈U ≡ V 〉Fπ ⊃ (F [U]π ≡ F [V]π)

π ∈ Π+
F

(F) ⇒ ` 〈U ⊃ V 〉Fπ ⊃ (F [U]π ⊃ F [V]π)

π ∈ Π−

F
(F) ⇒ ` 〈V ⊃ U〉Fπ ⊃ (F [U]π ⊃ F [V]π)

This theorem is proved by induction on the length of π. The proof is quite
straightforward and we omit it because of lack of space.

By Theorem 1, we can safely replace subformulas not only by equivalent
formulas but by locally equivalent ones as well. Note that the inverse of the
theorem holds in the propositional logic: `0 〈U ≡ V 〉Fπ ≡ (F [U]π ≡ F [V]π).
Local equivalence is there a criterion of substitutional equivalence. It is not the
case for the first-order logic, where (∃x x ≈ 0) is equivalent to (∃x x ≈ 1).

Remark 1. In what follows, we often apply Theorem 1 and related results to
positions from Πt, having in mind the position of the enclosing atomic formula.
Note that any statement which is locally true in a term position is also locally
true in the position of the enclosing atomic formula, since the local images are
the same.

Corollary 4. For any formula F , a position π ∈ Πt(F), and terms s and t,

` 〈s ≈ t〉Fπ ⊃ (F [s]π ≡ F [t]π)

Follows from Theorem 1 and Corollary 3.

Corollary 5. For any formula F , a position π ∈ ΠF(F), and formulas U , V

` 〈U〉Fπ ⊃ (F [V]π ≡ F [U ∧ V]π) ` 〈U〉Fπ ⊃ (F [V]π ≡ F [U ⊃ V]π)

` 〈V ⊃ U〉Fπ ⊃ (F [V]π ≡ F [U ∧ V]π) ` 〈U ⊃ V 〉Fπ ⊃ (F [V]π ≡ F [U ∨ V]π)

85

Consider a closed formula H of the form ∀x (C ⊃ (A ≡ D)), where A
is an atomic formula. Consider a formula F and a position π ∈ ΠA(F) such
that F |π = Aσ for some substitution σ. If we can prove 〈Cσ〉Fπ , then we have
〈Aσ ≡ Dσ〉Fπ by Lemma 1 and Corollary 2 (provided that H is among the
premises). Then we can replace Aσ with Dσ by Theorem 1 (we generalize this
technique in the following section). Returning to Example 3, we can guarantee
that such an expansion is always possible (since 〈n − 1 ∈ IN ∧ n − 2 ∈ IN 〉Fπ
holds) and is never infinite (since 〈n − 1 < n ∧ n − 2 < n〉Fπ holds).

However, the notion of a local image introduced above has a disadvantage:
it is not invariant w.r.t. transformations at adjacent positions.

Example 4. Since 〈A〉A∧A
0 is valid, (A∧A) is equivalent to (>∧A) by Theorem 1.

But 〈A〉A∧A
1 is also valid, whereas 〈A〉>∧A

1 is not.

Generally, we can build a formula F whose two subformulas U and V assure
certain local properties for each other. Using these properties, we replace U with
a locally equivalent formula U ′. But thus we can lose the local properties of V .

This does not play an important role when we consider one-time transforma-
tions, e.g. simplifications. Indeed, one should check that simplification is possible
just before doing it. But there are also certain local properties that we would
prefer keep intact during the entire proof.

For example, we can verify the ontological correctness of a given occurrence
of a function symbol in the initial task and it is quite desirable to preserve further
this correctness in order to expand the definition of that symbol at any moment,
without extra verifications.

To that aim, we slightly change the definition of a local image in such a way
that only the formulas at precedent positions get into the context. Psychologi-
cally, this is natural, since assertions of that kind (type declarations, limits, etc)
are usually written before “significant” formulas.

The directed local image of a formula U w.r.t. a formula F and a position
π ∈ ΠF(F), denoted 〈|U |〉Fπ , is defined as follows:

〈|U |〉F≡G
0.π = 〈|U |〉Fπ 〈|U |〉F≡G

1.π = 〈|U |〉Gπ 〈|U |〉∀xF
0.π = ∀x 〈|U |〉Fπ

〈|U |〉F⊃G
0.π = 〈|U |〉Fπ 〈|U |〉F⊃G

1.π = F ⊃ 〈|U |〉Gπ 〈|U |〉∃xF
0.π = ∀x 〈|U |〉Fπ

〈|U |〉F∧G
0.π = 〈|U |〉Fπ 〈|U |〉F∧G

1.π = F ⊃ 〈|U |〉Gπ 〈|U |〉¬F
0.π = 〈|U |〉Fπ

〈|U |〉F∨G
0.π = 〈|U |〉Fπ 〈|U |〉F∨G

1.π = F ∨ 〈|U |〉Gπ 〈|U |〉Fε = U

For a position π ∈ Πt(F), we define 〈|U |〉Fπ to be 〈|U |〉F�π , where π̂ is the longest
prefix of π in ΠF(F).

First, note that all statements proved so far about “indirected” images hold
for directed ones, too. In some sense, directed image is just a reduction, with
some conditions and alternatives eliminated. This is illustrated by the following
trivial lemma.

Lemma 3. ` 〈|U |〉Fπ ⊃ 〈U〉Fπ

86

Theorem 2. For any formula F and two adjacent π, τ ∈ ΠF(F),

` 〈|U ≡ V |〉Fπ ⊃
(
〈|W |〉F [U]π

τ ≡ 〈|W |〉F [V]π
τ

)

Proof. We proceed by induction on the length of π. It is easy to see that, if τ

textually precedes π, then the formulas 〈|W |〉
F [U]π
τ and 〈|W |〉

F [V]π
τ are identical.

So we can suppose that π textually precedes τ , that is, there exist ω, µ, and η
such that π = ω.0.µ and τ = ω.1.η. It is easy to see that we can reduce our
problem to

` 〈|U ≡ V |〉G∗H
0.µ ⊃

(
〈|W |〉

(G∗H)[U]0.µ

1.η ≡ 〈|W |〉
(G∗H)[V]0.µ

1.η

)

where (G ∗ H) = F |ω. The latter is equivalent to

` 〈|U ≡ V |〉Gµ ⊃
(
〈|W |〉

G[U]µ∗H
1.η ≡ 〈|W |〉

G[V]µ∗H
1.η

)

and then to

` 〈|U ≡ V |〉Gµ ⊃
(
(G[U]µ ? 〈|W |〉Hη) ≡ (G[V]µ ? 〈|W |〉Hη)

)

where ? is either ⊃ or ∨, in dependence of ∗. By Lemma 3 and Theorem 1,
〈|U ≡ V |〉Gµ implies (G[U]µ ≡ G[V]µ), hence the claim is proved. ut

Corollary 6. For any formula F and two adjacent π, τ ∈ Πt(F),

` 〈|s ≈ t|〉Fπ ⊃
(
〈|W |〉F [s]π

τ ≡ 〈|W |〉F [t]π
τ

)

Finally, we introduce the notion of local substitution. Let H be a formula such
that no quantifier occurs in H in the scope of another quantifier over the same
variable. Given a position π ∈ ΠF(H), the result of local substitution H [σ]π is
defined as follows:

F [σ]ε = F (F ∗ G)[σ]0.τ = F [σ]τ ∗ G

(¬F)[σ]0.τ = ¬F [σ]τ (F ∗ G)[σ]1.τ = F ∗ G[σ]τ

(∀x F)[σ]0.τ = (F [x/xσ])[σ]τ (∀y F)[σ]0.τ = ∀y F [σ]τ

(∃x F)[σ]0.τ = (F [x/xσ])[σ]τ (∃y F)[σ]0.τ = ∃y F [σ]τ

where xσ 6= x and yσ = y in the last four equations, i.e. we eliminate the
quantifiers over the instantiated variables. Here and below, we will assume that
xσ is free for x in F and further, σ does not instantiate any variable that occurs
in one of the substitutes of σ.

When applied without restrictions, local substitutions may produce illegal
instances (e.g. when variables of opposite polarities are instantiated). Also, local
substitutions do not preserve local properties in adjacent positions. Consider the
formula F = ∀x P (x) ∧ A and the substitution σ = [s/x] to be applied in F at
π = 1.0, so that F [σ]π = (P (s)∧A). The atom A has the local property ∀x P (x)
in F but loses this property in F [σ]π — something we would like to avoid.

87

Therefore, we introduce a more fine-grained operation. As before, let H be
a formula such that no quantifier occurs in H in the scope of another quantifier
over the same variable, and π be a position in ΠF(H).

(F ⊃ G)[σ]+0.τ = F [σ]−τ ⊃ ⊥ (F ⊃ G)[σ]+1.τ = F ⊃ G[σ]+τ

(F ∨ G)[σ]+0.τ = F [σ]+τ ∨ ⊥ (F ∨ G)[σ]+1.τ = F ∨ G[σ]+τ

(F ∧ G)[σ]+0.τ = F [σ]+τ ∧ G (F ∧ G)[σ]+1.τ = F ∧ G[σ]+τ

(∃x F)[σ]+0.τ = (F [x/xσ])[σ]+τ (F ≡ G)[σ]+τ = F ≡ G

(∃y F)[σ]+0.τ = ∃y F [σ]+τ (¬F)[σ]+0.τ = ¬F [σ]−τ

(∀z F)[σ]+0.τ = ∀z F [σ]+τ F [σ]+ε = F

(F ⊃ G)[σ]−0.τ = F [σ]+τ ⊃ G (F ⊃ G)[σ]−1.τ = F ⊃ G[σ]−τ

(F ∨ G)[σ]−0.τ = F [σ]−τ ∨ G (F ∨ G)[σ]−1.τ = F ∨ G[σ]−τ

(F ∧ G)[σ]−0.τ = F [σ]−τ ∧ > (F ∧ G)[σ]−1.τ = F ∧ G[σ]−τ

(∀x F)[σ]−0.τ = (F [x/xσ])[σ]−τ (F ≡ G)[σ]−τ = F ≡ G

(∀y F)[σ]−0.τ = ∀y F [σ]−τ (¬F)[σ]−0.τ = ¬F [σ]+τ

(∃z F)[σ]−0.τ = ∃z F [σ]−τ F [σ]−ε = F

where xσ 6= x and yσ = y. For a position π ∈ Πt(H), we define H [σ]+π = H [σ]+�
π

and H [σ]−π = H [σ]−�
π

, where π̂ is the longest prefix of π in ΠF(H).
These operations keep track of polarity of an occurrence in question and

do not instantiate inappropriate variables. Also they eliminate subformulas in
certain adjacent positions — exactly those ones which may lose their local prop-
erties after instantiation.

Lemma 4. Let H be a formula such that no quantifier occurs in H in the scope

of another quantifier over the same variable. Let π be a position in Π(H) and

σ, a substitution. Then we have:

` H [σ]+π ⊃ H ` H ⊃ H [σ]−π

Theorem 3. Let H be a formula such that no quantifier occurs in H in the scope

of another quantifier over the same variable. Let π be a position in Π(H) and σ,

a substitution. For any polarity s ∈ {+,−} and any position τ ∈ ΠA(H [σ]sπ), ei-

ther (H [σ]sπ)|τ = > or there exists a position τ ′ ∈ ΠA(H) such that the following

holds:

Let µ be the longest common prefix of π and τ ′. Let σ′ be a substitution

such that for any varaible x, if a quantifier over x is eliminated in H [σ]sµ, then

xσ′ = xσ, otherwise xσ′ = x. Then (H [σ]sπ)|τ = (H |τ ′)σ′ and

` 〈|U |〉Hτ ′ ⊃ 〈|Uσ′|〉
H[σ]s

π

τ

Proof. We can suppose without loss of generality that π ∈ ΠF(H) (otherwise
π̂ should be taken instead of π). We will prove this lemma by induction on

88

the length of π. In the base case (π = ε), we take τ ′ = τ and σ′ = ι, the
trivial substitution. Thus the claim is obviously true. Otherwise we consider
three typical cases.

Case H = (F ⊃ G), π = 0.π0, s = −, H [σ]sπ = F [σ]+π0
⊃ G, τ = 1.τ0.

We take τ ′ = τ and σ′ = ι. Obviously, (H [σ]−π)|τ = G|τ0
= (H |τ ′)σ′. Further-

more, 〈|U |〉Hτ ′ = F ⊃ 〈|U |〉Gτ0
and 〈|Uσ′|〉

H[σ]s
π

τ = F [σ]+π0
⊃ 〈|U |〉Gτ0

. By Lemma 4,
` F [σ]+π0

⊃ F , and the claim holds. Note that we could not make the final step
in the case s = +, and therefore we had to define H [σ]+π = F [σ]−π0

⊃ ⊥.
Case H = (F ⊃ G), π = 1.π0, s = +, H [σ]sπ = F ⊃ G[σ]+π0

, τ = 1.τ0. By the
induction hypothesis, there exist τ ′

0 ∈ ΠA(G) and a substitution σ′ such that

(G[σ]+π0
)|τ0

= (G|τ ′

0
)σ′ and ` 〈|U |〉Gτ ′

0

⊃ 〈|Uσ′|〉
G[σ]+

π0
τ0 . Then we take τ ′ = 1.τ ′

0 and

obtain (H [σ]+π)|τ = (H |τ ′)σ′. Moreover, 〈|U |〉Hτ ′ (equal to F ⊃ 〈|U |〉Gτ ′

0

) implies

〈|Uσ′|〉
H[σ]+

π

τ (equal to F ⊃ 〈|U |〉
G[σ]+

π0
τ0

).
Case H = (∀x F), π = 0.π0, s = −, H [σ]sπ = (F [x/xσ])[σ]−π0

, τ = τ0.
Let F ′ stand for F [x/xσ]. By the induction hypothesis, there exist some τ ′

0 ∈
ΠA(F ′) and a substitution σ′

0 such that (F ′[σ]−π0
)|τ0

= (F ′|τ ′

0
)σ′

0 and for any V ,

` 〈|V |〉F
′

τ ′

0

⊃ 〈|V σ′
0|〉

F ′[σ]−
π0

τ0
. Then we take τ ′ = 0.τ ′

0 and σ′ = σ′
0◦[x/xσ] (recall that

σ′
0 does not instantiate variables from xσ). We obtain (H [σ]−π)|τ = (F ′[σ]−π0

)|τ0
=

(F ′|τ ′

0
)σ′

0 = (F |τ ′

0
)σ′ = (H |τ ′)σ′. Further, the local image 〈|U |〉Hτ ′ (equal to

∀x 〈|U |〉F
τ ′

0

) implies (〈|U |〉F
τ ′

0

)[x/xσ]. The latter formula is equal to 〈|U [x/xσ]|〉F
′

τ ′

0

and thus implies 〈|(U [x/xσ])σ′
0|〉

F ′[σ]−
π0

τ0
, that is, 〈|Uσ′|〉

H[σ]−
π

τ . ut

Informally, Theorem 3 says that any atom in H that “survives” instantiation
(i.e. is not replaced with a boolean constant) preserves its local properties, which
are instantiated together with the atom.

5 Applying local properties

Let us consider a formula of the form H [F]π such that no quantifier occurs in it
in the scope of another quantifier over the same variable. Let σ be a substitu-
tion. By Theorem 3, there exist a formula H ′, a position π′, and a substitution
σ′ such that (H [F]π)[σ]−π ≡ H ′[Fσ′]π′ and every local property of F in H is
preserved (modulo instantiation) in H ′. (While π is not a position of atom in
H [F]π, we can take an atom P (x), where P is a new predicate symbol and x are
the free variables of F , and prove (H [P (x)]π)[σ]−π ≡ H ′[P (x)σ′]π′ . Note that
P (x) cannot turn into a boolean constant in (H [P (x)]π)[σ]−π . Then we have
∀x (P (x) ≡ F) ` (H [F]π)[σ]−π = H ′[Fσ′]π′ , by Lemma 1 and Theorem 1. Since
P is a new symbol, the premise ∀x (P (x) ≡ F) can be discarded.) By Lemma 4,
H [F]π implies H ′[Fσ′]π′ .

We can prove that H ′[Fσ′]π′ implies ∃x
′ (Fσ′) ∨ H ′[⊥]π′ , where x

′ are the
free variables of Fσ′. Indeed, H ′[Fσ′]π′ implies ∃x

′ (Fσ′) ∨ H ′[Fσ′]π′ , which
is equivalent to ∀x

′ (¬Fσ′) ⊃ H ′[Fσ′]π′ , which is equivalent to ∀x
′ (¬Fσ′) ⊃

H ′[⊥]π′ by Theorem 1. Therefore, H [F]π implies ¬H ′[⊥]π′ ⊃ ∃x
′ (Fσ′).

89

This provides us with a handy tool to test applicability of definitions in a
ForTheL text. Consider a section A and suppose that Γ is the set of sections
which logically precede A in the text. Let G be the formula image of A. Let
P (s) occur in G in a position µ. Now, suppose that D ∈ Γ is a definition for
the predicate symbol P . Quite naturally, the formula image of D is of the form
∀x1(H1 ⊃ . . . ∀xk(Hk ⊃ (P (x1,...,k) ≡ D)) . . .). By previous, it suffices to prove
Γ ` 〈|H1σ ⊃ . . .Hkσ ⊃ ⊥|〉Gµ , where σ is the substitution [x1,...,k/s], to obtain

Γ ` 〈|P (s) ≡ Dσ|〉Gµ . Then G is equivalent to G[Dσ]µ, that is, we can apply the
definition D to P (s). Moreover, all the local properties of terms and subformulas
of D in D, instantiated with σ, hold in Dσ in G[Dσ]µ.

In a similar fashion, we define applicability for other forms of ForTheL defi-
nitions and signature extensions. Note that the substitution σ and the position
of the local instantiation in |D| are unambiguously determined by the form of
D. Using the method described above, we can test any logical predecessor of
A for applicability at a given position in |A|, but then we have to choose an
appropriate local instantiation ourselves.

Now, a section A is ontologically correct in view of Γ if and only if every
occurrence of a non-logical symbol in |A| either has an applicable definition or
signature extension in Γ or is the principal occurrence in a definition or signature
extension A (which means that A introduces that very symbol).

A ForTheL text is ontologically correct whenever each section in it is onto-
logically correct in view of its logical predecessors.

6 Conclusion

We have introduced the notion of a locally valid statement for the classical first-
order logic and showed how it can be used to reason about the interiors of a
formula. In particular, we proved that a locally true equivalence is a sufficient
condition for an equivalent transformation of a subformula. The local validity
of a statement is expressed with the help of local images which can be regarded
as a syntactical formalization of the notion of a logical context of the statement
occurrence. Since locally equivalent transformations may break local properties
of other occurrences, we introduced the notion of directed local validity which is
invariant w.r.t. directed locally equivalent transformations. Finally, we defined
the operation of local instantiation and showed that this transformation pre-
serves directed local properties. Using this theoretical background, we gave a
clear definition of an ontologically correct ForTheL text.

The proposed approach can be regarded as a way to handle partial relations
and functions in a mathematical text. Instead of introducing special individual
or truth values for undefinedness (as in Kleene’s strong logic [6]), ontological
correctness requires every term or atom to be well-defined a priori, by confor-
mance to the guards of corresponding definitions. Using directed images and
deductive techniques preserving local properties, we can guarantee that the text
under consideration always stays well-defined. In our opinion, this corresponds
well to the usual mathematical practice.

90

Of course, reasoning inside a formula is not a new idea. To our knowledge,
related concepts were first introduced by L.G. Monk in [7] and were further devel-
oped in [8]. P.J. Robinson and J. Staples proposed a full-fledged inference system
(so called “window inference”) [9] which operated on subexpressions taking the
surrounding context into account. This inference system has been generalized
and extended by J. Grundy [10].

A common trait of the mentioned approaches is that the local context of
an occurrence is represented by a set of formulas which are regarded as local
premises for the position in question. Special inference rules are then needed
to handle a local context and, what is worse, some “strong” transformations,
e.g. replacing A ∨ B with ¬A ⊃ B, are required. The notion of local image, as
described in this paper, seems to be lighter and less intrusive. In particular, the
results of Section 4 are valid in intuitionistic logic, while the local contexts of [7]
cannot be adapted for intuitionistic logic in any obvious way.

Moreover, the definition of a local image can be easily extended to a (uni)-
modal language: 〈U〉�F

0.π = �〈U〉Fπ and 〈U〉♦F
0.π = �〈U〉Fπ , and similarly for di-

rected images. Then the statements of Section 4 (local instantiation aside) can
be proved in the modal logic K, hence in any normal modal logic.

Acknowledgements. This work is supported by the INTAS project 05-1000008-
8144. Some parts were done within the scope of the project M/108-2007 in the
framework of the joint French-Ukrainian programme “Egide-Dnipro”.

References

1. Trybulec, A., Blair, H.: Computer assisted reasoning with Mizar. In: Proc. 9th
International Joint Conference on Artificial Intelligence. (1985) 26–28

2. Barendregt, H.: Towards an interactive mathematical proof language. In Ka-
mareddine, F., ed.: Thirty Five Years of Automating Mathematics, Heriot-Watt
University, Edinburgh, Scotland, Kluwer Academic Publishers (2003) 25–36

3. Kamareddine, F., Nederpelt, R.P.: A Refinement of de Bruijn’s Formal Language
of Mathematics. Journal of Logic, Language and Information 13(3) (2004) 287–340

4. Lyaletski, A., Paskevich, A., Verchinine, K.: SAD as a mathematical assistant —
how should we go from here to there? Journal of Applied Logic 4(4) (2006) 560–591

5. Lyaletski, A., Paskevich, A., Verchinine, K.: Theorem proving and proof verifica-
tion in the system SAD. In Asperti, A., Bancerek, G., Trybulec, A., eds.: Math-
ematical Knowledge Management: Third International Conference, MKM 2004.
Volume 3119 of Lecture Notes in Computer Science., Springer (2004) 236–250

6. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand (1952)
7. Monk, L.G.: Inference rules using local contexts. Journal of Automated Reasoning

4(4) (1988) 445–462
8. Corella, F.: What holds in a context? Journal of Automated Reasoning 10(2)

(1993) 79–93
9. Robinson, P.J., Staples, J.: Formalising the hierarchical structure of practical

mathematical reasoning. Journal of Logic and Computation 3(1) (1993) 47–61
10. Grundy, J.: Transformational hierarchical reasoning. The Computer Journal 39(4)

(1996) 291–302

91

92

The Utility of OpenMath

James H. Davenport?

Department of Computer Science, University of Bath, Bath BA2 7AY England
J.H.Davenport@bath.ac.uk,

WWW home page: http://staff.bath.ac.uk/masjhd

Abstract. OpenMath [5] is a standard for representing the semantics

of mathematical objects. It differs from ‘Presentation’ MathML [7] in not
being directly concerned with the presentation of the object, and from
‘Content’ MathML in being extensible. How should these extensions be
performed so as to maximise the utility (which includes presentation) of
OpenMath?

1 What is OpenMath?

“OpenMath is an emerging standard for representing mathematical objects with
their semantics, allowing them to be exchanged between computer programs,
stored in databases, or published on the worldwide web.”1. In particular, Open-
Math is extensible, unlike MathML 2.02 [7]. It achieves this by having an exten-
sible collection of Content Dictionaries. “Content Dictionaries (CDs) are used to
assign informal and formal semantics to all symbols used in the OpenMath ob-
jects. They define the symbols used to represent concepts arising in a particular
area of mathematics” [5, section 1.3].

Notation 1 By an OpenMath CD we will mean any document conforming to
the formal syntax of [5].

The status of an OpenMath content dictionary is one of the following [5,
Section 4.2.1]:

– official: approved by the OpenMath society according to the procedure
defined in section 4.5 (of [5]);

? This paper owes much to some questions of Paul Libbrecht, when we were both at
the IMA Workshop “The Evolution of Mathematical Communication in the Age of
Digital Libraries” — December 8–9, 2006. Thanks are due to the IMA, and par-
ticularly Robert Miner, for organising this workshop. Further comments, notably
on section 6, are due to him [18] and Christian Gross [14]. Section 7 owes a lot to
discussion with Prof. Vorobjov. Drs Naylor and Padegt also made useful suggestions.

1 http://www.openmath.org/overview/index.html
2 After this paper was submitted, a draft [8] of MathML 3.0 was produced, which

bases content markup on OpenMath content dictionaries, and thus is extensible.

– experimental: under development, and thus liable to change;
– private: used by a private group of OpenMath users;
– obsolete: an obsolete Content Dictionary kept only for archival purposes3.

Definition 1. A Content Dictionary is said to be public if it is accessible from
http:// www.openmath/org and has one of the two status official or obsolete.
Similarly, a symbol is said to be public if it is in a public CD.

Note that this definition of public refers to the entire symbol, not just the name.
Thus

<OMS name="sin" cd="transc1"/>

is a public symbol, whereas

<OMS name="sin" cd="http://www.camalsoft.com/G/transc1"/>

is not.
An OpenMath object, all of whose symbols are public, has fixed, permanent,

semantics. Even if a CD changes status from official to obsolete, the seman-
tics do not change (though it is quite likely that new software systems will not
be able to interpret it, except in the name of compatibility4).

The OpenMath standard explicitly envisages that OpenMath applications
can declare and negotiate the CDs (or CD groups) that they understand [5,
Section 4.4.2]. In the absence of such negotiation5, it might seem that the only
OpenMath objects which can safely be exchanged are ones all of whose symbols
are public (which we can abbreviate to public OpenMath objects). If every appli-
cation had to convert from its semantics to those of the public CDs, there would
be great inefficiency involved, especially if the aim was ‘cut and paste’ from one
instance of an application to another instance of the same application (e.g. from
mine to yours, or from today’s to tomorrow’s, or from version x to version ++x
or . . .). Equally, two different applications may be “sufficiently similar” that each
can understand the other’s semantics directly.

2 A Pragmatic Interpretation

Definition 2. A Content Dictionary is said to be semi-public if it is accessible
from http:// www.openmath/org or from an URI which resolves to a globally
accessible URL, and the CD has one of the two status official or obsolete.
Similarly, a symbol is said to be semi-public if it is in a semi-public CD.

3 This is the wording of [5]: the present author would be inclined to write “archival
and compatibility purposes”.

4 “Compatibility is the last excuse for not fixing something that you have already
admitted to be a bug” [25]. For OpenMath, declaring a CD obsolete and writing a
new one with the ‘bug’ fixed removes even this excuse: see section 6.

5 Which may well be impossible in a “cut and paste” scenario.

94

Thus

<OMS name="sin" cd="http://www.camalsoft.com/G/transc1"/>

appears to be a semi-public symbol, whereas

<OMS name="sin" cd="file://C:/camaljpff/G/transc1"/>

is not.
We said above that it appeared to be a semi-public symbol. That is because

the definition is neither effective (we can try to look the symbol up, but who
knows if the failure is transient or permanent) nor time-invariant: camalsoft
may go bankrupt, or its managers may not comply with the OpenMath rules,
and delete symbols or change the semantics of them. Hence the concept that
can be effective is that of apparently semi-public, as applied to a CD or a sym-
bol. However, an apparently semi-public symbol might not have any discernable
semantics.

Definition 3. A symbol is said to be transitively public if:

1. it is apparently semi-public;
2. its semantics can be deduced in terms of public symbols by (possibly many)

applications of Formal Mathematical Properties (FMPs) contained in appar-
ently semi-public CDs.

Again, the definition is not time-invariant, for the same reasons as before. Also,
it is not application-independent, since one application might be able to make
deductions from FMPs that another could not. However , it is the semantics and
utility of transitively public symbols that we are concerned with here, since these
are ones that applications might reasonably encounter. This is what, effectively,
is implied by the cdbase in the OMOBJ constructs quoted.

3 An example — arctan

One hypothetical example would be the following, for the system Derive6, whose
arctan function differs from the definition in [1]. As pointed out in [9], the two
definitions could be related by the followingFMP.

<FMP>

<OMOBJ cdbase="http://www.openmath.org/cd">

<OMA>

<OMS name="eq" cd="relation1"/>

<OMA>

6 As already stated in [9], this is not an issue of some algebra systems, such as Maple,
being “right” and others, such as Derive, “wrong”: merely that Derive has chosen
a different set of branch cut behaviours from OpenMath. Provided the definitions
are correct, the choice is one of taste, fortified with the occasional dash of Occam’s
razor.

95

<OMS name="arctan" cd="http://www.softwarehouse.com/Derive/transc1"/>

<OMVAR name="z"/>

</OMA>

<OMA>

<OMS name="conjugate" cd="complex1"/>

<OMA>

<OMS name="arctan" cd="transc1"/>

<OMA>

<OMS name="conjugate" cd="complex1"/>

<OMVAR name="z"/>

</OMA>

</OMA>

</OMA>

</OMA>

</OMOBJ>

</FMP>

With this definition, a “sufficiently intelligent” (in fact it need not be that in-
telligent in this case) system would be able to understand OpenMath emitted
from Derive containing Derive arctangents, encoded as follows:

<OMS name="arctan" cd="http://www.softwarehouse.com/Derive/transc1"/>

occurrences.
The designer of the Derive→OpenMath phrasebook is then faced with a set

of alternatives.

1. Emit in terms of the public OpenMath symbol from transc1. This has the
advantage that no Derive CD needs to be written, or, more importantly,
maintained and kept available. Assuming that Derive can cancel double con-
jugation, it means that cutting and pasting from one Derive to another is not

significantly more expensive. Some-one who is doing DeriveOpenMath
−→

LATEX
would be distinctly surprised by the results, since the arctan emitted by
LATEX would be (invisibly) one with OpenMath semantics, i.e. complex con-
jugation might appear in the LATEX where there was none in the Derive.

2. Emit in terms of the Derive symbol defined above. This has the disadvan-
tage that the CD7 needs to be written and kept available. If the recipient
is another Derive, it would presumably understand this. If the recipient is a
“sufficiently clever” other algebra system conforming to OpenMath’s seman-
tics of arctan, the correct result will be achieved. If it has Derive’s semantics,
it will either notice this directly, or cancel the double conjugations. If it has
different semantics, it will presumably know what to do.
The interesting question is what an OpenMath−→LATEX phrasebook with
no explicit Derive knowledge will do. It is unlikely to have the semantic pro-
cessing capability to handle the FMP, though in this case it might. However,

7 And the associated STS [11] file.

96

a plausible action by such a phrasebook would be to check the STS [11] file,
observe that this function was unary from a set to itself (it might notice
that the set was C, but this is irrelevant) and just print the name as a unary
prefix function. Indeed, one could just observe that it was being used as a
unary function, as is done in LeActiveMath [18, 24].

3. Ignore the problem, and emit <OMS name="arctan" cd="transc1"/>. Alas,
this would be a very human reaction. Such a phrasebook would (if it met
the other criteria) be entitled to describe itself as OpenMath-compliant, but
it would certainly not meet the goal [5, Chapter 5] that “It is expected that
the application’s phrasebooks for the supported Content Dictionaries will be
constructed such that the properties of the symbol expressed in the Content
Dictionary are respected as far as possible for the given application domain”.

4. Refuse to emit arctans, on the grounds that Derive’s is different from Open-
Math’s. In view of the plausible solutions in the first two choices, this seems
unnecessarily “dog-in-the-manger”.

We should observe that the mathematically equivalent FMP

<FMP>

<OMOBJ cdbase="http://www.openmath.org/cd">

<OMA>

<OMS name="eq" cd="relation1"/>

<OMA>

<OMS name="arctan" cd="transc1"/>

<OMVAR name="z"/>

</OMA>

<OMA>

<OMS name="conjugate" cd="complex1"/>

<OMA>

<OMS name="arctan" cd="http://www.softwarehouse.com/Derive/transc1"/>

<OMA>

<OMS name="conjugate" cd="complex1"/>

<OMVAR name="z"/>

</OMA>

</OMA>

</OMA>

</OMA>

</OMOBJ>

</FMP>

is less useful, as it expresses the ‘known’ <OMS name="arctan" cd="transc1"/>

in terms of the ’unknown’, rather than the other way round, and therefore re-
quires more logical power to use In particular, the interpreting phrasebook would
need to know that the inverse of conjugation is itself conjugation.

Note also that there is no need to define Derive’s arctan in terms of the
OpenMath one: we could define it directly (see Figure 1) in terms of log, as
OpenMath’s arctan is in transc1.

97

Fig. 1. Definition of an alternative arctan

<FMP>

<OMOBJ cdbase="http://www.openmath.org/cd">

<OMA>

<OMS name="eq" cd="relation1"/>

<OMA>

<OMS name="arctan" cd="http://www.softwarehouse.com/Derive/transc1"/>

<OMV name="z"/>

</OMA>

<OMA>

<OMS name="times" cd="arith1"/>

<OMA>

<OMS name="divide" cd="arith1"/>

<OMS name="one" cd="alg1"/>

<OMA>

<OMS name="times" cd="arith1"/>

<OMI> 2 </OMI>

<OMS name="i" cd="nums1"/>

</OMA>

</OMA>

<OMA>

<OMS name="ln" cd="transc1"/>

<OMA>

<OMS name="divide" cd="arith1"/>

<OMA>

<OMS name="plus" cd="arith1"/>

<OMS name="one" cd="alg1"/>

<OMA>

<OMS name="times" cd="arith1"/>

<OMS name="i" cd="nums1"/>

<OMV name="z"/>

</OMA>

</OMA>

<OMA>

<OMS name="minus" cd="arith1"/>

<OMS name="one" cd="alg1"/>

<OMA>

<OMS name="times" cd="arith1"/>

<OMS name="i" cd="nums1"/>

<OMV name="z"/>

</OMA>

</OMA>

</OMA>

</OMA>

</OMA>

</OMA>

</OMOBJ>

</FMP>

98

4 Another example

Let us imagine a theorem prover specialised in results over the natural numbers:
let us call it Euclid. Euclid’s natural domain of reasoning is the positive integers
1, 2, . . ., which it refers to as N. How should Euclid exports results such as “if
the successor of a equals the successor of b, then a = b”, i.e.

∀a, b ∈ N succ(a) = succ(b) ⇒ a = b? (1)

Again, the designer of the Euclid→OpenMath phrasebook has various op-
tions.

1. Emit in terms of the OpenMath symbol, i.e. encode Euclid’s N as

<OMA>

<OMS name="setdiff" cd="set1"/>

<OMS name="N" cd="setname1"/>

<OMA>

<OMS name="set" cd="set1"/>

<OMS name="zero" cd="alg1"/>

</OMA>

</OMA>

This is certainly accurate, but would cause some grief on re-importing into
Euclid, since:
– N (in the OpenMath sense) has no direct equivalent in Euclid, but has

to be encoded as N ∪ {0};
– while expecting an algebra system to cancel double conjugations is rea-

sonable, expecting a proof system to simplify (N\{0})∪{0} is expecting
rather more.

2. Emit in Euclid’s own CD, e.g. with a definition as in figure 2. This has
advantages as well as disadvantages.
– Clearly it requires the CD to be written and maintained.
– An OpenMath→LATEX converter would probably render this as P . This

might look well, but could be confused with
<OMS name="P" cd="setname1"/>

which is the set of primes8, normally rendered as P . A configurable
OpenMath→LATEX converter9 would be able to get this right, and print
P.

3. Ignore the difficulty. This is clearly sub-human, rather than merely human,
since a theorem-prover that emits incorrect statements could well be argued
to be worse than useless.

We return to this issue in section 6.

8 This is another example of the fact that an OpenMath symbol is the name and the
CD.

9 Such as the Notation Selection Tool [21, 22].

99

Fig. 2. Euclid’s definition of P in terms of N

<FMP>

<OMOBJ cdbase="http://www.openmath.org/cd">

<OMA>

<OMS name="eq" cd="relation1"/>

<OMS name="P" cd="http://www.euclid.gr/CD"/>

<OMA>

<OMS name="setdiff" cd="set1"/>

<OMS name="N" cd="setname1"/>

<OMA>

<OMS name="set" cd="set1"/>

<OMS name="zero" cd="alg1"/>

</OMA>

</OMA>

</OMA>

</OMOBJ>

</FMP>

5 OpenMath and Notation

What use is OpenMath if one can’t “see”10 the results? Probably not much.
How does one do it? One solution would be to make OpenMath do it.

[. . .] was indicated as an expectation of Robert Miner at the W3C-Math
f2f: if you find a CD, you should also have the notations with it . . . so
that you can present all the symbols in this CD. [18]

However, this begs the question: what is “the notation” [12]. A simple example
is that of half-open intervals: the “anglo-saxon” (0, 1] and the “french”]0, 1].
More subtly, there is the “anglo-saxon” use of Arcsin to denote a multi-valued
function and arcsin to denote the corresponding11 one-valued function, compared
with the “french” notation which is the converse. It should be noted that, in this
case, the OpenMath notation is even-handed: one is

<OMS name="arctan" cd="transc1"/>

the other is

<OMS name="arctan" cd="transc3"/>

and in both the “anglo-saxon” and “french” cases, one (or one’s renderer) has
to decide which to capitalise.

10 Used as shorthand for “convert into a presentation”, which may be displayed in
various means, e.g. audio [23].

11 But almost always with the branch cuts locally implicit, and often never stated at
all, or changing silently from one printing to the next [1].

100

To avoid the charge of antigallicanism being levied against the author, let
us also point out that there are differences due to subject:

√
−1 is i everywhere

except in electrical engineering, where it is j, and so on.

Hence it is impossible for an OpenMath object to know, in a context-free way,
how it should be rendered10. The best one could hope for is that, associated with
an OpenMath CD, there could be a “default rendering” file, which would give a
rendering for objects using this system, probably by translation into Presentation
MathML as in David Carlisle’s excellent style sheets [6]. This would have the
advantage of allowing technologies such as those described in [16, 23] to process
it.

6 Is even-handedness possible?

So far we have tried to be even-handed between various notations: OpenMath
makes no choice between (0, 1] and]0, 1], nor says whether the mathematical
Arcsin is a single-valued or multi-valued function, i.e. whether it corresponds to
the arcsin from transc1 or transc3. Even in the case of the branch cuts for
arctan, where OpenMath has chosen one definition, it is possible to state the
other definition, and do so on an even footing with OpenMath’s own definition
in transc1. Indeed it is possible that, as a result of the great branch cut riots
of 203612, transc1 is declared obsolete, transc4 is promulgated with an FMP
for arctan as in figure 1, and the authors of the softwarehouse CD change the
FMP for arctan to be

<FMP>

<OMOBJ cdbase="http://www.openmath.org/cd">

<OMA>

<OMS name="eq" cd="relation1"/>

<OMS name="arctan" cd="http://www.softwarehouse.com/Derive/transc1"/>

<OMS name="arctan" cd="transc4"/>

</OMA>

</OMOBJ>

</FMP>

and probably also mark that CD as obsolete. None of this would change the
semantics of any OpenMath object.

However, the problem raised in section 4 is not so easily resolved: the question
of whether N contains zero can, and indeed has [13], generate much debate.
Many books, especially in German, suppose that N does not contain zero, e.g.
the following.

12 Caused by the requirement to move the branch cut in Network Time Protocol [20]
and associated data formats. Rioters marched under the slogan “give us our two
thousand one hundred and forty seven million, four hundred and eighty three thou-
sand, six hundred and forty eight seconds back”.

101

Natürliche Zahlen sind die Zahlen, mit denen wir zählen: 1, 2, 3, 4, 5,. . ..
Auf der Zahlengeraden bilden sie eine Abfolge von Punkten im Abstand
1, von 1 aus nach rechts gehend. Die Menge aller natürlichen Zahlen wird
mit N bezeichnet. Weiters verwenden wir die Bezeichnung N0 = {0}∪N

für die natürlichen Zahlen zusammen mit der Zahl 0. [2, N]

Other sources are less definitive.

Die natürlichen Zahlen sind die beim Zählen verwendeten Zahlen 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, usw. Oft wird auch die 0 (Null) zu den natürlichen
Zahlen gerechnet. [3, Natürliche Zahl].

Indeed, the question is apparently as context-dependent as the rendering of
√
−1,

but the impact of getting it wrong is much more misleading.

Even German school books differ here. It depends on whom you ask. If
you ask someone from number theory, he’d usually say that N is without
0. But if you ask someone from set theory, he’d say that N is with 0. It’s
just what is more convenient (i.e. shorter) for their usual work. [14]

It is clear that we have two different concepts, and several notations, as shown
in Table 1.

Table 1. Natürliche Zahl

Concept English German German OpenMath
(number) (set)

0, 1, 2 . . . N N0 N name="N" cd="setname1"

1, 2, 3 . . . N+ or N∗ N ? ??

What should replace ??. Following our earlier policies, that different concepts
(like one-valued/multi-valued arcsin) have different OpenMath, it clearly has to
be a new symbol. With hindsight, the German number-theory notation might
have been the best to inspire OpenMath, but we cannot change the semantics
of <OMS name="N" cd="setname1"/>. We could introduce a new N in a different
CD, and declare setname1 obsolete, but that would probably be worse than the
Branch Cut riots.

Hence we need another symbol. This could be in setname1, or in some other
CD. If in setname1, it would need another name: if in another CD, it could also
be called N, but this would probably cause more chaos. So, let us propose that
we add

<OMS name="Nstar" cd="setname1"/>

to OpenMath. We then have a choice: we can define it in terms of the standard
N, as we suggested in figure 2, or we can define it in a free-standing way, by
saying that it is 1 and its successors: formally

102

<OMOBJ cdbase="http://www.openmath.org/cd">

<OMBIND>

<OMS name="forall" cd="quant1"/>

<OMBVAR>

<OMV name="n"/>

</OMBVAR>

<OMA>

<OMS name="implies" cd="logic1"/>

<OMA>

<OMS name="in" cd="set1"/>

<OMV name="n"/>

<OMS name="Nstar" cd="setname1"/>

</OMA>

<OMA>

<OMS name="or" cd="logic1"/>

<OMA>

<OMS name="eq" cd="relation1"/>

<OMV name="n"/>

<OMS name="one" cd="alg1"/>

</OMA>

<OMA>

<OMS name="in" cd="set1"/>

<OMA>

<OMS name="minus" cd="arith1"/>

<OMV name="n"/>

<OMS name="one" cd="alg1"/>

</OMA>

<OMS name="Nstar" cd="setname1"/>

</OMA>

</OMA>

</OMA>

</OMBIND>

</OMOBJ>

(it being assumed here, as in the case of the existing definition of N, that this
definition is minimal, i.e. Peano’s axioms).

Provided we have at least the second definition (having both is not excluded),
we are being as even-handed as possible: both concepts exist in OpenMath, as in
the case of single-valued/multi-valued arcsin. Admittedly, the default rendering
might be of 0. . . as N, and 1. . . as Nstar or N∗, but this is merely another
reason for renderers to be configurable.

7 Semantics drives Notation?

So far, this paper has argued that semantics is all that matters, and that notation
should follow. This is essentially the OpenMath premise (and the author’s). But

103

life has a habit of not being so simple: take ‘O’. Every student is taught that
O(f(n)) is really a set, and that when we write “g(n) = O(f(n))”, we really
mean “g(n) ∈ O(f(n))”. Almost all13 textbooks then use ‘=’, having apparently
placated the god of Bourbaki14. However, actual uses of O as a set are rare:
the author has never15 seen “O(f)∩O(g)”, and, while a textbook might16 write
“O(n2) ⊂ O(n3)”, this would only be for pedagogy of the O-notation. So ‘O’
abuses notation, but OpenMath is, or ought to be, of sterner stuff. It certainly
would be an abuse of <OMS name="eq" cd="relation1"/> to use it here, as the
relation it implies is none of reflexive, symmetric and transitive17.

The set-theoretic view is the one taken by OpenMath CD18 asymp1, except
that only limiting behaviour at +∞ is considered19, and there is some type
confusion in it: it claims to represent these as sets of functions R → R, but in
fact the expressions are assuming N → R.

Hence it is possible to write λn.n2 ∈ O(n3) in OpenMath. This poses two
problems for renderers:

a) how to kill the λ;

b) how to print ‘=’ rather than ‘∈’.

The first problem is common across much of mathematics: note that λm.m2 ∈
O(n3) is equally valid, but one cannot say m2 = O(n3). The second problem
could be solved in several ways.

1. By resolutely using ∈, as [17].

2. By attributing to each appropriate use of <OMS name="in" cd="set1"/> its
print representation (at the moment there seems to be no standard way of
doing this, though).

3. By fixing the rendering of <OMS name="in" cd="set1"/> to print it as ’=’,
either:

(a) for all symbols in asymp1 (thus getting it “wrong”) for symbols such as
<OMS name="softO" cd="asymp2"/>;

(b) or for all usages of the (STS or other) type “function in set”, thus printing
sin = RR.

13 [17] is an honourable exception.
14 “the abuses of language without which any mathematical text threatens to become

pedantic and even unreadable”.
15 Not even in the one context where it would be useful: Θ(f) = O(f) ∩ Ω(f), which

is stated in words as [10, Theorem 3.1].
16 [10, p. 41] write Θ(n) ⊂ O(n).
17 Curiously enough, the FMPs currently only state transitivity: this probably ought

to be fixed.
18 Currently experimental.
19 The CD author presumably considered that the level of abstraction needed for a more

general definition was unwarranted. The current author would agree, especially as
the context of O is generally only implicit in the wider context of the paper.

104

4. (the current author’s favourite) By adding a symbol20 <OMS name="Landauin"

cd="asymp1"/>, which would, by default, print as ‘=’, but have the seman-
tics of ‘∈’.

How is this last to be achieved? One possibility would be to say that it is the
same as ‘∈’:

<FMP>

<OMOBJ cdbase="http://www.openmath.org/cd">

<OMA>

<OMS cd = "relation1" name="eq"/>

<OMS cd = "set1" name="in"/>

<OMS cd = "asymp1" name="Landauin"/>

</OMA>

</OMOBJ>

</FMP>

but this runs the risk of saying that any ‘∈’ can become Landauin. A better way
might be

<FMP>

<OMOBJ cdbase="http://www.openmath.org/cd">

<OMA>

<OMS cd = "logic1" name="implies"/>

<OMA>

<OMS cd = "asymp1" name="Landauin"/>

<OMV name="A"/>

<OMV name="B"/>

</OMA>

<OMA>

<OMS cd = "set1" name="in"/>

<OMV name="A"/>

<OMV name="B"/>

</OMA>

</OMA>

</OMOBJ>

</FMP>

8 Conclusions

OpenMath can represent a variety of concepts, not just those “chosen by the
designers”. Alternative choices of branch cuts, single-valued/multi-valued func-
tions, starting point for the natural numbers etc. are all supportable. Whether
these are rendered in a manner appropriate to the user clearly depends on the

20 It might be more appropriate to call it Bachmannin, since [4] is apparently the source
of O. [15]

105

user, which means that OpenMath renderers need to be configurable, and at a
variety of levels [19, section 4.2].

Even the Bourbaki school believe that notation exists to be abused, as well as
used: OpenMath exists purely to be used, and does not exist to be abused. How-
ever, in some cases such as ‘O’, it may need to make slight adjustments to per-
mit conventional notation, such as inserting symbols like <OMS cd = "asymp1"

name="Landauin"/>, which are mathematically redundant.

8.1 Detailed suggestions

1. Add <OMS cd = "asymp1" name="Landauin"/>.
2. Add reflexive and symmetric properties to <OMS cd = "relation1" name="eq"/>.
3. Add <OMS name="Nstar" cd="setname1"/>, possibly to setname1 or pos-

sibly to another CD.
4. Add a standard means of giving printing attributes (as required in 2 on page

104).

References

1. M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. US Government Printing Office, 1964.

2. Anonymous. Natürliche Zahlen. http://www.mathe-online.at/mathint/

lexikon/n.html, 2006.
3. Anonymous. Wikipedia, Deutsch. http://de.wikipedia.org, 2007.
4. P. Bachmann. Die analytische Zahlentheorie. Teubner, 1894.
5. S. Buswell, O. Caprotti, D.P. Carlisle, M.C. Dewar, M. Gaëtano, and M. Kohlhase.

The OpenMath Standard 2.0. http://www.openmath.org, 2004.
6. D.P. Carlisle. Openmath, MathML and XSLT. ACM SIGSAM Bulletin 2, 34:6–11,

2000.
7. World-Wide Web Consortium. Mathematical Markup Language (MathML) Ver-

sion 2.0 (Second Edition). W3C Recommendation 21 October 2003, 2003. http:
//www.w3.org/TR/MathML2/.

8. World-Wide Web Consortium. Mathematical Markup Language (MathML)
Version 3.0. W3C Working Draft, 2007. http://www.w3.org/TR/2007/

WD-MathML3-20070427.
9. R.M. Corless, J.H. Davenport, D.J. Jeffrey, and S.M. Watt. According to

Abramowitz and Stegun. SIGSAM Bulletin 2, 34:58–65, 2000.
10. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-

rithms, 2nd. ed.. M.I.T. Press, 2001.
11. J.H. Davenport. A Small OpenMath Type System. ACM SIGSAM Bulletin 2,

34:16–21, 2000.
12. J.H. Davenport. Nauseating Notation. http://staff.bath.ac.uk/masjhd/

Drafts/Notation.pdf, 2007.
13. E.W. Dijkstra. Why numbering should start at zero. http://www.cs.utexas.edu/

users/EWD/transcriptions/EWD08xx/EWD831.html, 1982.
14. C. Gross. Re: Utility of OpenMath. E-mail 64191.89.49.160.232.1172849601.

squirrel@webmail.uni-augsburg.de, 2007.

106

15. D.E. Knuth. Big Omicron and big Omega and big Theta. ACM SIGACT News 2,
8:18–24, 1974.

16. A. Lazrek. Multilingual Mathematical e-Document Processing. http:

//www.ima.umn.edu/2006-2007/SW12.8-9.06/activities/Lazrek-Azzeddine/

MathArabIMAe.pdf, 2006.
17. A. Levitin. Introduction to the design and analysis of algorithms. Pearson Addison-

Wesley, 2007.
18. P. Libbrecht. E-mails. 45B8875E.7000204@activemath.org, 2007.
19. S. Manzoor, P. Libbrecht, C. Ullrich, and E. Melis. Authoring Presentation for

OPENMATH. In M. Kohlhase, editor, Proceedings MKM 2005, pages 33–48, 2005.
20. D.L. Mills. Network Time Protocol, Version 3. http://rfc.net/rfc1305.html,

1992.
21. E. Smirnova and S.M. Watt. Interfaces for Mathematical Communi-

cation. http://www.ima.umn.edu/2006-2007/SW12.8-9.06/activities/

Smirnova-Elena/SmirnovaWatt.pdf, 2006.
22. E. Smirnova and S.M. Watt. Notation Selection in Mathematical Computing En-

vironments. In Proceedings Transgressive Computing 2006, pages 339–355, 2006.
23. N. Soiffer. Accessible Mathematics. http://www.ima.umn.edu/2006-2007/SW12.

8-9.06/activities/Soiffer-Neil/index.htm, 2006.
24. Various. LeActiveMath. http://www.activemath.org, 2007.
25. D.J. Wheeler. Private Communication to J.H. Davenport. June 1982, 1982.

107

