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Abstract: Usually creative telescoping is used to derive re currences for sums. In this article
we show that the non-existence of a creative telescoping sol ution, and more generally, of a
parameterized telescoping solution, proves algebraic ind ependence of certain types of sums.

Combining this fact with summation-theory shows transcend

Parameterized telescoping

Given fi(k), ... fa(K) over a field® &;
find constants cy,....cs € K and g(k) such that

9(k+1) = g(k) = cafa(k) + - + cafa(k) @
If one succeeds, one gets the sum-relation

9(n+1)-g(0) = E1kzuf|(k) ot

a Alrings and fields contain Q.

nz*-extensions and sequences
Example. Let F := Q(m)(k)(h)(b) be a rational func-
tion field and define the field automorphism o by

o(c) = ¢ Ve Q(m),

o(k) =k+1,

o(h)=h+ %1 Hira = He+

a(b) = ':T’fn.

A
(3
m\ _m-k/m
k+1) T kT1\k/)®
(.0) is a difference field, more precisely, a Nz"-field.

Difference rings and fields: A difference field (I, o)
is a ring (resp. field) ¥ together with a ring (resp. field)
automorphism o : F — F; the constant ring (resp. con-
stant field) is given by consto := {f € Flo(f) = ).

nz*field: A difference field (F(t). o') is a =*-extension
(resp. M-extension) of a difference field (¥, o) <
tis transcendental over F,
o(f)=o(f)forall f € F,
o(t) = t+ f (resp. o'(t) = 1) for some f € ",
the constant field remains unchanged, ie.,
constyF(t) = constoF.

ence of whole classes of sums.

Telescoping: Restricttod = 1.
Zeilberger's creative telescoping:  Take a bivariate
sequence f(m, k) and set fi(k) == f(m+i— 1,k in (1)
In the summation package Sigma [Sch07b] parameter-
ized telescoping can be solved in Karr's Nz"fields: the
(k) can be indefinite nested sums and products.

A NZ'-extension is either a M- or a Z'-extension
(F(t) ... (te), 0) is a NZ'-extension (resp. Z*-extension
or M-extension) if it is a tower of such extensions.
(F(ty) ... (t), 0) is a NZ*-field over F, if F = constF.

Example. Each of the extensions k.h.b forms a
MNZ'-extension over the field below. In particular,
constQ(m) (k) (h) (b) = Q(m).

Ring of sequences:  The set of sequences over a field
K is denoted by

S(K) = {(@n)nzola € K};

we identity two sequences if they agree from a certain
point on. The difference ring (S(K), S) with the shift op-
eration (ing automorphism)

S:(ao,ay @ ...) — (an,8,a,...)

is called the ring of sequences.

Goal: Embed, e.g., Q(m)(K)[h. b into (SQ(m)). S).

Result 3: A criterion for algebraic independence of sums and products
Combining the ideas from Result 1 and Result 2 gives the following main result:

Let (F(ty) ... (te), 0) be a generalized d'Alembertian-extension of (F, a) with K := constgF.

LetT: Flty,....tJ — S(K) be a K-monomorphism

Let fy,..., fa € Flty,....,t" with (F(K))x. (f;). Then: Let fy,...., fa € F* with (F(K))izo

Thereare nog € Flty,....t, 0# (C1.....ca) € K with (2). Therearenog e F* and 0 # (cy. ..., ¢q) € Z9 with (3).

$ 3
The sequences {(Si(n))r-o, - (Sa(n))n=0} given by* -+ (Su(n))n=0} given by

The sequences {(Si(n))n-
n 0 n n
Si(n) - g Fuk). o Sy(n) g Fa(k) @) Si(n) D Fa(k). o Sy(n) D Fa(k) ®)

are algebraically independent over t(Fty. ... t). are algebraically independent over 1(F).

a The lower bound r is chosen big enough

Embedding example

We construct step by an embedding (@(m)(K)[h[b]. )
into (SQ(m)). S)

* Start with 1o : Q(m) — S(Q(m)) where

o)) = (6Cc...) VeeQm)

« Next, define the ring homomorphism 1, : Q@(m)(k) — S(@(m))

with 3(£) = (F (K)) -0 where

N LI CR
“
Note that % k) #o.

u(o(f)) = Su(f), vfeamik)
Tyis injective: - Since p(k),q(k) have only finitely many
roots, (8) = 0if and only if %;J = 0. Hence 1, is
injective.

« Define the ring homomorphism 1 : Q@(m) (k)[h| — S(Q(m))

with T5(h) =

H)

] d
rz(f‘3 fih) = fnn( fi)ta(h)"

~oand

T2 is injective: If not, take f = % fihi € Q(m)(K)[h]*
with deg(f) = d minimal such that ,(f) = 0. Note that
1 ¢ Q(m)(K) (otherwise, 0 = To(f) = Ta(f); since T is
injective, f = 0). Define

9:=0(fo)f — fao(f) € Q(m) (k)]

Note: deg(g) < d by construction. Moreover,

T(9) = Ta(0(f) T2(f) —Ta(fo)  To(0(h)) =
5 Su(1)80/=0

By the minimality of deg(f), g = 0, i.e.,

o(fa)f — fao(f) =0
Equivalenty,

Y e am K
With f ¢ Q(m)(K) this contradicts to [Kar81]

o(f) _ o(fy)
o
e To this end, take the ring homomorphism
T3 : Q(m)(K)[h][b] — S(@(m)) with T5(b) = {(7))n-0 and

f .
(3 )= 3 i)

By similar arguments, T is injective.

Result 1: The embedding into the ring of sequences

A generalized d'Alembertian extension (E(ty) ... (te). 0)
of (F,0) is a ME*-extension such that for all 1 < i < e,

oft) —t €Flty,....tq] or oft)/t €F;
note that the t are transcendental and K =
CONSLGF(ty)... (te) = CONSLF.
Embedding: Suppose that (I, o) describes the ratio-
nal case (F = K(k) with (k) = k + 1), the c-rational
case or the mixed case.
Then there is an injective ring homomorphism

TiFlh... td = SK)

with

Q) ={c.cc veeK

such that the following diagram commutes:
Flty... .t ———S(K)
o E
Flti... td———S(K)
We call such an embedding a K-monomorphism
Consequence:
Flty ot =TE)[T(), - 1(te)]

In particular, the sequences t(ty).....T(t) are alge-
braically independent over t(F).

The (g-)rational case

Theorem. Let fy(k), ..., fq(k) € K(K). If there are no
g(k) € K(k) and cy.....¢ € K with (1), then the se-
quences (4) are algebraically independent over K(n);
ie, BP(x, ... Xg) € K(N)[Xy, ..., Xg]* with

P(S(N).....S(n) =0 ¥n>0.
Corollary. Let py(K), pz(k). ... € K[K]', uy(K), ta(k). ... €
K[K* and v € K[K] with deg(v) > 0 where
ged(pv) = ged(u,v) =1 Vi > 1,
ged(v(k), vk +1)) =1 vr e N"

V() #0 Vel
Then the sums

Si(n) = é}m(k) (%ﬁ;) Sin) = é}m(k) (%kk)))z

are algebraically independent over K(n).

The (g—)hypergeometric case

Let f (k) be hypergeometric, i.e., for all r big enough,

_fr+y

0 ="t

for some a(k) € K(K)

We restrict to the case that there are no v(k) € K(k)

and no root of unity y € K with f(k) = yv(k). Then

there is a NZ*-field (K (k)(t), 6) over K with
o(k)=k+1 and oft)=at

and a K-monomorphism T : K(K)t] — S(K)

Theorem. For1<i<d,lety € K(k) and f:= yt

If there are no € K and w € K(k) with g := wt such
that (2), then the sequences

n b
), Sun) = 5 vk f(K),.... SN = 5 va(k) (k)
=} =}

(r big enough) are algebraically independent over (n);
i.e., BP(X0.X1. . ... Xg) € K(N)[Xo. Xi..... X" with
P(f(n),Si(n), ..., S(m) =0 vn>0.
Corollary Let f(m,) be hypergeometric in m, k where
f # yvforallv e K(mk) and all roots of unity

y e K\ {1}. If Z's algorithm [Zei91] fails to solve (1)
with f, == f(m+i - 1,), then Sy(n) = f(m.n) and

" b
Si(n) g f(mKk),...,Si(n) :kz f(m+d—1,k)

(r big enough) are transcendental over K (m)(n).

Proof. Denote fi(k) := u(2). Suppose there are
g(k) € K(k) and ¢ & K with (1) where d > 1 is mini-
mal. Then

alk+1) - g(k)
_ PV 4 CuUppAV - catp]
= v

Since ¢ # 0, god(v. cauapg) = 1. Hence ged(wv) = 1,
and thus ged(w,!) = 1. By [Abr71, Pau9s] such a
g(k) € K(K) cannot exist; a contradiction. o
Example. Choosing p = u = 1,v = kin the Corol-
lary proves that the generalized harmonic numbers.
{H\"fi > 1} are algebraically independent over K (n)

Example.  Similarly, the gharmonic numbers

{Shammll = 1 Cr {58 (59)'li = 1)) are alge-
braically independent over K(q).

Example. For the Apéry-sum

2
o m\2(m+k
=50 (<)
& \k k
Zeilberger's algorithm finds a recurrence of order 2,
but not a smaller one. Hence, the sequences

- (3777,
-5 (01
S0 Z’ (m; 1) (m+:+ 1)

are algebraically independent over Q(m)(n).

Example. In [Abr03] a criterion is given when Zeil-
berger's algorithm fails to find a creative telescoping
solution for a hypergeometric input summand f (m k).
If f(m.k) satisfies this criterion, then all the sequences

('(mn))u(i f(m+i, k)i > 0}
&

inn (r big enough) are algebraically independent over
K(m). A typical example [Abr03, Exp. 2] is

1M1\ 2m-2k-1
fim o = 1)( K )( m-1 )

Remark. Analogously, all ideas can be carried over to
the g-hypergeometric case.

Result 2: Parameterized telescoping and Nx*-extension

Let (F. 0) be a difference field with constants K and fi,
There are no 0 # (cy,....Cq) € K? and g € F with

o(9) ~g=cifi+ - +Cafo.

$
There is a 5*-extension (E(t) ... (ta), 0) of (F., o) with
oft)=t+fifori<i<d.

. fa € F*. Then:

There are no 0 # (cy. ... cq) € Z9 and g € F* with
ol o
%:fl...ff. @
$

There is a M-extension (F(ty,....t).0) of (F.0) with
oft) = fitfori<i<d.

Remark. The case d = 1 (telescoping) has been worked out in [Kar81].

Asa one can check with

that, e.g., the difference field (Q(m)(k)(h)(b). o) is a NZ*-field.

The nested sum case

Consider the following sum from [PS03]:

s
m
f(mk) = gb(usm(m— 2k))(k) .

Then the package Sigma shows that the sequences
(':) Ho, S(M.1), S+ 1,1), S+ 2,1), Sm+3,n)
in n are algebraically independent over X (m)(n).

Proof. Sigma constructs the M=*-field (Q(m)(K)(h)(b), o)
and designs the Q(m)-monomorphism from above.
Then it sets

1= b(1+ 5h(m— 2k)),

b(m 4 1)°(5h(—2k+ m+ 1) + 1)

T (keme1p

_ b(m+ 1)(m+ 2)3(5h(—2k+ m+2) + 1)
T (kami(-kimi2s

=

fs

Some references

£, BFm+ D¥(m+ 2)%(m + JH(Sh(-K+ m+3) +1),
T ke m 13—kt m+2)5(—k+mt3p

this is motivated by (") = 25 (T) which shows that

() = (m+ - 1K)

Finally, Sigma proves algorithmically that there are no
g € Q(m)(K)(h)(h) and ¢ € Q(m) with (2). Hence the
transcendence of the sequences follows by Result 3.

o
Remark. Note that the situation m = n for the sum
S(m.n) is completely different. We get

2
2 (m m+ K’
Smm) - ( ) ( )
&) U
In particular, S(m. m) satisfies a recurrence refation of
minimal order 2
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