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Abstract: Usually creative telescoping is used to derive re currences for sums. In this article
we show that the non-existence of a creative telescoping sol ution, and more generally, of a
parameterized telescoping solution, proves algebraic ind ependence of certain types of sums.
Combining this fact with summation-theory shows transcend ence of whole classes of sums.

Parameterized telescoping
Given f1(k), . . . , fd(k) over a fielda K;

find constants c1, . . . , cd ∈ K and g(k) such that

g(k + 1) − g(k) = c1 f1(k) + · · · + cd fd(k). (1)

If one succeeds, one gets the sum-relation

g(n + 1) − g(0) = c1

n

∑
k=0

f1(k) + · · · + cd

n

∑
k=0

fd(k).

Telescoping: Restrict to d = 1.

Zeilberger’s creative telescoping: Take a bivariate

sequence f (m, k) and set fi(k) := f (m + i − 1, k) in (1).

In the summation package Sigma [Sch07b] parameter-

ized telescoping can be solved in Karr’s ΠΣ∗-fields: the

fi(k) can be indefinite nested sums and products.

a All rings and fields contain Q.

ΠΣ∗-extensions and sequences
Example. Let F := Q(m)(k)(h)(b) be a rational func-

tion field and define the field automorphism σ by

σ(c) = c ∀c ∈ Q(m),

σ(k) = k + 1,

σ(h) = h +
1

k + 1
, Hk+1 = Hk +

1
k + 1

,

σ(b) =
m − k
k + 1

b,

(
m

k + 1

)

=
m − k
k + 1

(
m
k

)

.

(F, σ) is a difference field, more precisely, a ΠΣ∗-field.

Difference rings and fields: A difference field (F, σ)

is a ring (resp. field) F together with a ring (resp. field)

automorphism σ : F → F; the constant ring (resp. con-

stant field) is given by constσF := { f ∈ F|σ( f ) = f}.

ΠΣ∗-field: A difference field (F(t), σ′) is a Σ∗-extension

(resp. Π-extension) of a difference field (F, σ) :⇔

1 t is transcendental over F,

2 σ′( f ) = σ( f ) for all f ∈ F,

3 σ′(t) = t + f (resp. σ′(t) = f t) for some f ∈ F∗,

4 the constant field remains unchanged, i.e.,

constσ′F(t) = constσF.

A ΠΣ∗-extension is either a Π- or a Σ∗-extension.

(F(t1) . . . (te), σ) is a ΠΣ∗-extension (resp. Σ∗-extension

or Π-extension) if it is a tower of such extensions.

(F(t1) . . . (te), σ) is a ΠΣ∗-field over F, if F = constσF.

Example. Each of the extensions k, h, b forms a

ΠΣ∗-extension over the field below. In particular,

constσQ(m)(k)(h)(b) = Q(m).

Ring of sequences: The set of sequences over a field

K is denoted by

S(K) := {(an)n≥0|ai ∈ K};

we identity two sequences if they agree from a certain

point on. The difference ring (S(K), S) with the shift op-

eration (ring automorphism)

S : 〈a0, a1, a2, . . . 〉 7→ 〈a1, a2, a3, . . . 〉

is called the ring of sequences.

Goal: Embed, e.g., Q(m)(k)[h, b] into (S(Q(m)), S).

Embedding example
We construct step by an embedding (Q(m)(k)[h][b], σ)

into (S(Q(m)), S).

• Start with τ0 : Q(m) → S(Q(m)) where

τ0(c) = 〈c, c, c, . . . 〉 ∀c ∈ Q(m).

• Next, define the ring homomorphism τ1 : Q(m)(k) → S(Q(m))

with τ1(
p
q) = 〈F(k)〉k≥0 where

F(k) =







0 q(k) = 0

p(k)
q(k) q(k) 6= 0.

.

Note that

τ1(σ( f )) = S(τ1( f )), ∀ f ∈ Q(m)(k).

τ1 is injective: Since p(k), q(k) have only finitely many

roots, τ1(
p
q) = 0 if and only if p(k)

q(k) = 0. Hence τ1 is

injective.

• Define the ring homomorphism τ2 : Q(m)(k)[h] → S(Q(m))

with τ2(h) = 〈Hn〉n≥0 and

τ2(
d

∑
i=0

fih
i) =

d

∑
i=0

τ1( fi)τ2(h)i.

τ2 is injective: If not, take f = ∑d
i=0 fihi ∈ Q(m)(k)[h]∗

with deg( f ) = d minimal such that τ2( f ) = 0. Note that

f /∈ Q(m)(k) (otherwise, 0 = τ2( f ) = τ1( f ); since τ1 is

injective, f = 0). Define

g := σ( fd) f − fdσ( f ) ∈ Q(m)(k)[h].

Note: deg(g) < d by construction. Moreover,

τ2(g) = τ1(σ( fn)) τ2( f )
︸ ︷︷ ︸

=0

−τ1( fn) τ2(σ( f ))
︸ ︷︷ ︸

S(τ2( f ))=S(0)=0

= 0.

By the minimality of deg( f ), g = 0, i.e.,

σ( fd) f − fdσ( f ) = 0.

Equivalently,

σ( f )
f

=
σ( fd)

fd
∈ Q(m)(k).

With f /∈ Q(m)(k) this contradicts to [Kar81].

• To this end, take the ring homomorphism

τ3 : Q(m)(k)[h][b] → S(Q(m)) with τ3(b) = 〈
(m

n

)
〉n≥0 and

τ3(
d

∑
i=0

fib
i) =

d

∑
i=0

τ2( fi)τ3(b)i.

By similar arguments, τ3 is injective.

Result 1: The embedding into the ring of sequences
A generalized d’Alembertian extension (F(t1) . . . (te), σ)

of (F, σ) is a ΠΣ∗-extension such that for all 1 ≤ i ≤ e,

σ(ti) − ti ∈ F[t1, . . . , ti−1] or σ(ti)/ti ∈ F;

note that the ti are transcendental and K :=

constσF(t1) . . . (te) = constσF.

Embedding: Suppose that (F, σ) describes the ratio-

nal case (F = K(k) with σ(k) = k + 1), the q-rational

case or the mixed case.

Then there is an injective ring homomorphism

τ : F[t1 . . . , te] → S(K)

with
τ(c) = 〈c, c, c, . . . 〉 ∀c ∈ K

such that the following diagram commutes:

F[t1 . . . , te]
τ

//

σ
��

S(K)

S

��

F[t1 . . . , te]
τ

// S(K)

We call such an embedding a K-monomorphism.

Consequence:

F[t1, . . . , te] ∼= τ(F)[τ(t1), . . . , τ(te)].

In particular, the sequences τ(t1), . . . , τ(te) are alge-

braically independent over τ(F).

Result 2: Parameterized telescoping and ΠΣ∗-extension

Let (F, σ) be a difference field with constants K and f1, . . . , fd ∈ F∗. Then:

There are no 0 6= (c1, . . . , cd) ∈ Kd and g ∈ F with

σ(g) − g = c1 f1 + · · · + cd fd. (2)

m

There is a Σ∗-extension (F(t1) . . . (td), σ) of (F, σ) with

σ(ti) = ti + fi for 1 ≤ i ≤ d.

There are no 0 6= (c1, . . . , cd) ∈ Zd and g ∈ F∗ with

σ(g)

g
= f c1

1 . . . f cd

d . (3)

m

There is a Π-extension (F(t1, . . . , td), σ) of (F, σ) with

σ(ti) = fi ti for 1 ≤ i ≤ d.

Remark. The case d = 1 (telescoping) has been worked out in [Kar81].

As a consequence, one can check with telescoping that, e.g., the difference field (Q(m)(k)(h)(b), σ) is a ΠΣ∗-field.

Result 3: A criterion for algebraic independence of sums and products
Combining the ideas from Result 1 and Result 2 gives the following main result:

Let (F(t1) . . . (te), σ) be a generalized d’Alembertian-extension of (F, σ) with K := constσF.

Let τ : F[t1, . . . , te] → S(K) be a K-monomorphism.

Let f1, . . . , fd ∈ F[t1, . . . , te]∗ with 〈Fi(k)〉k≥0 := τ( fi). Then: Let f1, . . . , fd ∈ F∗ with 〈Fi(k)〉k≥0 := τ( fi). Then:

There are no g ∈ F[t1, . . . , te], 0 6= (c1, . . . , cd) ∈ Kd with (2).

m

The sequences {(S1(n))n≥0, . . . , (Sd(n))n≥0} given bya

S1(n) :=
n

∑
k=r

F1(k), . . . , Sd(n) :=
n

∑
k=r

Fd(k) (4)

are algebraically independent over τ(F[t1, . . . , te]).

There are no g ∈ F∗ and 0 6= (c1, . . . , cd) ∈ Zd with (3).

m

The sequences {(S1(n))n≥0, . . . , (Sd(n))n≥0} given by

S1(n) :=
n

∏
k=r

F1(k), . . . , Sd(n) :=
n

∏
k=r

Fd(k) (5)

are algebraically independent over τ(F).

a The lower bound r is chosen big enough.

The (q–)rational case

Theorem. Let f1(k), . . . , fd(k) ∈ K(k). If there are no

g(k) ∈ K(k) and c1, . . . , cd ∈ K with (1), then the se-

quences (4) are algebraically independent over K(n);

i.e., ∄P(x1, . . . , xd) ∈ K(n)[x1, . . . , xd]
∗ with

P(S1(n), . . . , Sd(n)) = 0 ∀n ≥ 0.

Corollary. Let p1(k), p2(k), . . . ∈ K[k]∗, u1(k), u2(k), . . . ∈

K[k]∗ and v ∈ K[k] with deg(v) > 0 where

gcd(pi, v) = gcd(ui, v) = 1 ∀i ≥ 1,

gcd(v(k), v(k + r)) = 1 ∀r ∈ N∗,

v(r) 6= 0 ∀r ∈ N∗.
Then the sums

S1(n) :=
n

∑
k=1

u1(k)

(
p1(k)
v(k)

)

, S2(n) :=
n

∑
k=1

u2(k)

(
p2(k)
v(k)

)2

, . . .

are algebraically independent over K(n).

Proof. Denote fi(k) := ui

( pi

v

)i
. Suppose there are

g(k) ∈ K(k) and ci ∈ K with (1) where d ≥ 1 is mini-

mal. Then

g(k + 1) − g(k)

=
c1u1p1vd−1 + c2u2p2

2vd−2 + · · · + cdud pd
d

vd
=:

w
vd

.

Since cd 6= 0, gcd(v, cdud pd
d) = 1. Hence gcd(w, v) = 1,

and thus gcd(w, vd) = 1. By [Abr71, Pau95] such a

g(k) ∈ K(k) cannot exist; a contradiction.

Example. Choosing pi = ui = 1, v = k in the Corol-

lary proves that the generalized harmonic numbers

{H(i)
n |i ≥ 1} are algebraically independent over K(n).

Example. Similarly, the q-harmonic numbers

{∑n
k=1

1
(1−qk)i |i ≥ 1} (or {∑n

k=1

( qk

1−qk

)i
|i ≥ 1}) are alge-

braically independent over K(qk).

The (q–)hypergeometric case

Let f (k) be hypergeometric, i.e., for all r big enough,

α(r) =
f (r + 1)

f (r)

for some α(k) ∈ K(k).

We restrict to the case that there are no v(k) ∈ K(k)

and no root of unity γ ∈ K with f (k) = γkv(k). Then

there is a ΠΣ∗-field (K(k)(t), σ) over K with

σ(k) = k + 1 and σ(t) = α t,

and a K-monomorphism τ : K(k)[t] → S(K).

Theorem. For 1 ≤ i ≤ d, let vi ∈ K(k) and fi := vi t.

If there are no ci ∈ K and w ∈ K(k) with g := w t such

that (2), then the sequences

f (n), S1(n) =
n

∑
k=r

v1(k) f (k), . . . , Sd(n) =
b

∑
k=r

vd(k) f (k)

(r big enough) are algebraically independent over K(n);

i.e., ∄P(x0, x1, . . . , xd) ∈ K(n)[x0, x1, . . . , xd]
∗ with

P( f (n), S1(n), . . . , Sd(n)) = 0 ∀n ≥ 0.

Corollary Let f (m, k) be hypergeometric in m, k where

f 6= γkv for all v ∈ K(m, k) and all roots of unity

γ ∈ K \ {1}. If Z’s algorithm [Zei91] fails to solve (1)

with fi := f (m + i − 1, k), then S0(n) = f (m, n) and

S1(n) =
n

∑
k=r

f (m, k), . . . , Sd(n) =
b

∑
k=r

f (m + d − 1, k)

(r big enough) are transcendental over K(m)(n).

Example. For the Apéry-sum

A(m) =
m

∑
k=0

(
m
k

)2(m + k
k

)

Zeilberger’s algorithm finds a recurrence of order 2,

but not a smaller one. Hence, the sequences

S0(n) =

(
m
n

)2(m + n
n

)

,

S1(n) =
n

∑
k=0

(
m
k

)2(m + k
k

)

,

S2(n) =
n

∑
k=0

(
m + 1

k

)2(m + k + 1
k

)

are algebraically independent over Q(m)(n).

Example. In [Abr03] a criterion is given when Zeil-

berger’s algorithm fails to find a creative telescoping

solution for a hypergeometric input summand f (m, k).

If f (m, k) satisfies this criterion, then all the sequences

{ f (m, n)} ∪ {
n

∑
k=r

f (m + i, k)|i ≥ 0}

in n (r big enough) are algebraically independent over

K(m). A typical example [Abr03, Exp. 2] is

f (m, k) =
1

mk + 1
(−1)k

(
m + 1

k

)(
2m − 2k − 1

m − 1

)

.

Remark. Analogously, all ideas can be carried over to

the q–hypergeometric case.

The nested sum case

Consider the following sum from [PS03]:

S(m, n) :=
n

∑
k=0

f (m, k) =
n

∑
k=0

(1 + 5 Hk(m − 2k))

(
m
k

)5

.

Then the package Sigma shows that the sequences
(

m
n

)

, Hn, S(m, n), S(m + 1, n), S(m + 2, n), S(m + 3, n)

in n are algebraically independent over K(m)(n).

Proof. Sigma constructs the ΠΣ∗-field (Q(m)(k)(h)(b), σ)

and designs the Q(m)-monomorphism from above.

Then it sets

f1 = b5(1 + 5h(m − 2k)),

f2 =
b5(m + 1)5(5h(−2k + m + 1) + 1)

(−k + m + 1)5
,

f3 =
b5(m + 1)5(m + 2)5(5h(−2k + m + 2) + 1)

(−k + m + 1)5(−k + m + 2)5
,

f4 =
b5(m + 1)5(m + 2)5(m + 3)5(5h(−2k + m + 3) + 1)

(−k + m + 1)5(−k + m + 2)5(−k + m + 3)5
;

this is motivated by
(m+1

k

)
= m+1

m+1−k

(m
k

)
which shows that

τ( fi) = 〈 f (m + i − 1, k)〉k≥0.

Finally, Sigma proves algorithmically that there are no

g ∈ Q(m)(k)(h)(h) and ci ∈ Q(m) with (2). Hence the

transcendence of the sequences follows by Result 3.

Remark. Note that the situation m = n for the sum

S(m, n) is completely different. We get

S(m, m) =
m

∑
k=0

(
m
k

)2(m + k
k

)

.

In particular, S(m, m) satisfies a recurrence relation of

minimal order 2.

Some references
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