

Abstract: Usually creative telescoping is used to derive recurrences for sums. In this article we show that the non-existence of a creative telescoping solution, and more generally, of a parameterized telescoping solution, proves algebraic independence of certain types of sums. Combining this fact with summation-theory shows transcendence of whole classes of sums.

Parameterized telescoping

Given $f_{i}(k), \ldots, f_{i}(k)$ over a field ${ }^{\text {a }}$ K;
find constants $c_{1}, \ldots, c_{d} \in \mathbb{K}$ and $g(k)$ such that
$g(k+1)-g(k)=c_{1} f_{i}(k)+\cdots+c_{d} f_{d}(k) . \quad$ (1)
It one succeeds, one gets the sum-relation
$g(n+1)-g(0)=c_{1} \sum_{k=0}^{n} f_{1}(k)+\cdots+c_{d} \sum_{k=0}^{n} f_{d}(k)$.

Telescoping: Restrict to $d=1$.
Zeilberger's creative telescoping: Take a bivariate sequence $f(m, k)$ and set $f(k):=f(m+i-1, k)$ in (1). In the summation package Sigma [Sc h07b] parameter$f_{i}(k)$ can be indefinite nested sums and products.

Result 3: A criterion for algebraic independence of sums and products Combining the ideas from Result 1 and Result 2 gives the following main result
Let $\left(\mathbb{F}\left(t_{1}\right) \ldots\left(t_{c}\right), \sigma\right)$ be a generalized d'Alembertian-extension of (\mathbb{F}, σ) with $\mathbb{K}:=$ cons $_{\sigma}$.
Let: $f_{1}, F_{1}, \ldots, t_{c} \rightarrow S(\mathbb{K})$ be a \mathbb{K}-monomorphism.
There are $f_{i} \in \mathbb{P}\left\{_{1}, \ldots, t_{c} \cdot\right.$ with $\left\langle F_{i}(k)\right\rangle_{\geq 00}:=\tau\left(f_{i}\right)$. Then: Let $f_{1}, \ldots, f_{d} \in \mathbb{F}^{*}$ with $\left\langle F_{i}(k)\right\rangle_{\in 0}:=\tau\left(f_{i}\right)$. Then There are no $\left.\left.g \in \mathbb{F}\right|_{1}, \ldots, t_{d}\right), 0 \neq\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{K}^{d}$ with (2). There are no $g \in \mathbb{F}^{d}$ and $0 \neq\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{Z}^{d}$ with (3).

The sequences $\left\{\left(S_{1}(n)\right)_{n \geq 0}, \ldots,\left(S_{d}(n)\right)_{n \geq 0}\right\}$ given by \quad The sequences $\left\{\left(S_{1}(n)\right)_{n \geq 0}, \ldots,\left(S_{d}(n)\right)_{n \geq 0}\right\}$ given by
$S_{1}(n):=\sum_{k=1}^{n} F_{1}(k), \ldots, S_{d}(n):=\sum_{k=r}^{n} F_{d}(k) \quad$ (4) $\quad S_{1}(n):=\prod_{k=1}^{n} F_{1}(k), \ldots, S_{d}(n):=\prod_{k=r}^{n} F_{d}(k) \quad$ (5
are algebraically independent over $\tau\left(\mathbb{F}\left(t_{1}, \ldots, t_{\mathrm{e}}\right)\right.$. are algebraically independent over $\tau(\mathbb{F})$.

The ($q-$)hypergeometric case
Let $f(k)$ be hypergeometric, ie., for all r big enough,

$$
\alpha(r)=\frac{f(r+1)}{f(r)}
$$

or some $\alpha(k) \in \mathbb{K}(k)$.
We restrict to the case that there are no $v(k) \in \mathbb{K}(k)$ and no root of unity $\gamma \in \mathbb{K}$ with $f(k)=\gamma^{\gamma} v(k)$. Then there is a $\Pi \Sigma^{*}-$ field $(\mathbb{K}(k)(t), \sigma)$ over \mathbb{K} with

$$
\sigma(k)=k+1 \quad \text { and } \quad \sigma(t)=\alpha t,
$$

and a \mathbb{K}-monomorphism $\tau: \mathbb{K}(k)[f] \rightarrow S(\mathbb{K})$
Theorem. For $1 \leq i \leq d$, let $v_{i} \in \mathbb{K}(k)$ and $f_{i}:=v_{i}$. there are no $c_{i} \in \mathbb{K}$ and $w \in \mathbb{K}(k)$ with $g:=w t$ such that (2), then the sequences
$f(n), S_{1}(n)=\sum_{k=1}^{n} v_{1}(k) f(k), \ldots, S_{d}(n)=\sum_{k=1}^{b} v_{d}(k) f(k)$
(rbig enough) are algebraically independent over $\mathbb{K}(n)$; ie., $\nexists\left(x_{0}, x_{1}, \ldots, x_{d}\right) \in \mathrm{K}(n)\left[x_{0}, x_{1}, \ldots, x_{d}\right]$ with $P\left(f(n), S_{l}(n), \ldots, S_{d}(n)\right)=0 \quad \forall n>0$. Corollary Let $f(m, k)$ be hypergeometric in m, k where $\neq \gamma_{v}$ for all $v \in \mathbb{K}(m, k)$ and all roots of unity $\gamma \in \mathbb{K} \backslash\{1\}$. It \mathbf{Z} 's algorithm [Zei91] fails to solve (1) with $f_{i}:=f(m+i-1, k)$, then $S_{0}(n)=f(m, n)$ and
$S_{1}(n)=\sum_{k=1}^{n} f(m, k), \ldots, S_{d}(n)=\sum_{k=1}^{b} f(m+d-1, k)$
$(r$ big enough) are transcendental over $\mathbb{K}(m)(n)$.

[^0]
The nested sum case

Consider the following sum from [PSO3]:
$S(m, n):=\sum_{k=0}^{n} f(m, k)=\sum_{k=0}^{n}\left(1+5 H_{k}(m-2 k)\binom{m}{k}\right.$
Then the package Sigma shows that the sequences
are algebraically independent over $\mathbb{K}(m)$ (n).
Proof. Sigma constructs the $\Pi \Sigma^{-}-$field $(\mathbb{Q}(m)(k)(h)(b)$, and designs the $\mathbb{Q}(m)$-monomorphism from above
$f_{1}=b^{5}(1+5 h(m-2 k)$,
$f_{2}=\frac{\left.b^{5}(m+1)^{3}(5 h n-2 k+m+1)+1\right)}{(-k+m+1)^{s}}$,
$=\frac{\left.b^{5}(m+1)^{5}(m+2)^{5}(5)(-2 k+m+2)+1\right)}{(-k+m+1)^{5}(-k+m+2)^{5}}$,

A $\Pi \Sigma^{*}$-extension is either a Π - or a Σ^{*}-extension. $\left(\mathbb{F}(t) \ldots(t)\right.$) is a $\mathbb{T E}^{*}$-extension (resp \mathbb{F}^{*} extension or Π-extension) if it is a tower of such extensions. $\left(\mathbb{E}\left(t_{1}\right) \ldots\left(t_{c}\right), \sigma\right)$ is a $\Pi \Sigma^{-}$-field over F , it $\mathbb{F}=$ cost \mathbb{F}.

Example. Each of the extensions k, h, b forms a HL' -extension over the field below. In particular, constr $^{Q}(m)(k)(h)(b)=\mathbb{Q}(m)$.

Tina K is denoted by
$s(\mathbb{K}):=\left\{\left(a_{n}\right) \geq \geq 0 \mid a_{i} \in \mathbb{K}\right\} ;$
we identity two sequences if they agree from a cert a point on. The difference ring $(S(\mathbb{K}), S)$ with the shift op ration (ring automorphism)

$$
s:\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle \mapsto\left\langle a_{1}, a_{2}, a_{3}, \ldots\right\rangle
$$

is called the ring of sequences.
Goal: Embed, egg., $\mathbb{Q}(m)(k) \mid h, b]$ into $(S(\mathbb{Q}(m)), S)$.

Embedding example

We construct step by an embedding $(\mathbb{Q}(m))(k)[h] \mid b], \sigma$

- Start with $\tau_{0}: \mathbb{Q}(m) \rightarrow S(\mathbb{Q}(m))$ where
$\tau_{0}(c)=\langle c, c, c, \ldots\rangle \quad \forall c \in \mathbb{Q}(m)$.
- Next, define the ring homomorphism $\tau_{1}: \mathbb{Q}(m)(k) \rightarrow S(\mathbb{Q}(m)$
with $\tau_{1}\left(\frac{p}{q}\right)=\langle F(k)\rangle_{\langle\geq 0}$ where
Note that $\quad F(k)= \begin{cases}0 & q(k)=0 \\ \frac{\square}{q(k)} & q(k) \neq 0 .\end{cases}$

$$
\tau_{1}(\sigma(f))=S\left(\tau_{1}(f)\right), \quad \forall f \in \mathbb{Q}(m)(k) .
$$

τ_{1} is infective: Since $p(k), q(k)$ have only finitely many roots, $\tau_{1}\left(\frac{2}{q}\right)=0$ if and only if $\frac{\rho^{\frac{p}{q(x)}}}{q(\pi)}=0$. Hence τ_{1} is - Define the ring homomorphism $\tau_{2}: \mathbb{Q}(m)(k)[h] \rightarrow S(\mathbb{Q}(m)$ with $\tau_{2}(h)=\left\langle H_{n}\right)_{\geq \geq 0}$ and

$$
\tau_{2}\left(\sum_{i=0}^{d} f\left(h^{\prime}\right)=\sum_{i=0}^{d} \tau_{1}(f) \tau_{2}(h)^{i} .\right.
$$

s_{2} is infective: II not, take $f=\sum_{i=0}^{i=0} f h^{\prime} \in \mathbb{Q}(m)(k) \mid h h^{*}$ deg (f) $=d$ minimal such that $\tau_{2}(f)=0$. Note that f\& Qm) ((otherwise, $0=\tau_{2}(f)=\tau_{1}(f)$; since τ_{1} is infective, $f=0$). Define

By the minim

Equivalently,
$\frac{\sigma(f)}{f}=\frac{\sigma\left(f_{f}\right)}{f_{d}} \in \mathbb{Q}(m)(k)$.
With $f \notin \mathbb{Q}(m)(k)$ this contradicts to [Kar81].
$\tau_{3}: \mathbb{Q}(m)(k)[h][b] \rightarrow S(\mathbb{Q}(m))$ with $\tau_{3}(b)=\left\langle\binom{\left(C_{n}^{\prime}\right)}{)} \geq 0\right.$ a and $\mathrm{\tau}_{3} \sum_{i=1}^{d} f_{i}\left(b^{i}\right)=\sum_{i=1}^{d} \tau_{2}(f) \tau_{i}(b)$
By similar arguments, τ_{3} is infective.

Result 1: The embedding into the ring of sequences

A generalized d'Alembertian extension $\left(\mathbb{P}\left(t_{1}\right) \ldots\left(\tau_{t}\right), \sigma\right)$
of (\mathbb{F}, σ) is a $\Pi \Sigma^{*}$.extension such that
note that the t_{i} are transcendental and \mathbb{K}
constr $\left(t_{1}\right) \ldots\left(t_{t}\right)=$ cons $_{t_{a} \mathbb{F}}$
Embedding: Suppose that (\mathbb{F}, σ) describes the rationat case $(\mathbb{F}=\mathbb{K}(k)$ with $\sigma(k)=k+1)$, the q-ration case or the mixed case.
Then there is an infective ring homomorphism
$\tau: \mathbb{F}\left[t_{1} \ldots, t_{\varepsilon} \rightarrow S(\mathbb{K})\right.$
with
$\left.(t)=\left(c, c_{1},\right)^{2}\right)$ allowing diagram commutes:

call
Consequence:
$\mathbb{F}\left[t_{1}, \ldots, t_{c}\right] \cong \tau(\mathbb{F})\left\{\tau\left(t_{1}\right), \ldots, \tau\left(t_{c}\right)\right\}$
in particular, the sequences $\tau\left(t_{1}\right), \ldots, \tau\left(t_{t}\right)$ are agebraically independent over $\tau(\mathbb{F})$.

Result 2: Parameterized telescoping and $\Pi \Sigma^{*}$-extension
Let (\mathbb{F}, σ) be a difference field with constants \mathbb{K} and $f_{1}, \ldots, f_{d} \in \mathbb{F}^{*}$. Then

[^0]: Some references

