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Preface

This proceedings, published as a RISC Technical Report, collects the papers pre-
sented at the Austrian-Japanese Workshop on Symbolic Computation in Soft-
ware Science (SCSS 2008), held in the Castle of Hagenberg, Austria, in July 12–
13, 2008. The workshop grew out of a couple of internal workshops of the The-
orema Group at RISC (Research Institute for Symbolic Computation, Austria),
the SCORE group (Symbolic Computation Research Group) at the University of
Tsukuba, Japan, and the SSFG (Software Science Foundation Group) at Kyoto
University, Japan, and is the first in the series which is open now for the inter-
national community. The authors of 14 contributed papers came from Austria,
Belgium, Japan, The Netherlands, Romania, and Switzerland. In addition to
the selected papers, the scientific program included two invited talks: Symbolic
Computation in Software Science by Hoon Hong from North Carolina State Uni-
versity, and Some Challenges for Automated Theorem Proving by Dana Scott
from Carnegie Mellon University.

We would like to thank the Program Committee members and all the referees
for their careful work in the review process. The submission and programme
committee work was organized through the EasyChair system. Special thanks go
to the Austrian Science Fund (FWF) and the Japan Society for the Promotion of
Science (JSPS) who have supported the event under the Japan-Austria Research
Cooperative Program, and to Software Competence Center Hagenberg (SCCH).

The workshop has been organized by the Research Institute for Symbolic
Computation (RISC) of the Johannes Kepler University Linz, in collaboration
with the Software Competence Center Hagenberg (SCCH). It has been a part of
the series of international scientific events RISC Summer 2008.

July 2008 Bruno Buchberger
Tetsuo Ida

Temur Kutsia





Conference Organization

General Chairs

Bruno Buchberger RISC, Johannes Kepler University Linz
Tetsuo Ida University of Tsukuba

Programme Chairs

Bruno Buchberger RISC, Johannes Kepler University Linz
Tetsuo Ida University of Tsukuba
Temur Kutsia RISC, Johannes Kepler University Linz

Programme Committee

Dirk Draheim Software Competence Center Hagenberg
Atsushi Igarashi Kyoto University
Tudor Jebelean RISC, Johannes Kepler University Linz
Yukiyoshi Kameyama University of Tsukuba
Franz Lichtenberger RISC, Johannes Kepler University Linz
Aart Middeldorp University of Innsbruck
Yasuhiko Minamide University of Tsukuba
Masahiko Sato Kyoto University
Wolfgang Schreiner RISC, Johannes Kepler University Linz
Gerhard Weiß Software Competence Center Hagenberg

Local Organization

Bruno Buchberger
Betina Curtis (administration)
Temur Kutsia
Alexander Zapletal (Webmaster)

Sponsors

Austrian Science Fund (FWF)
Japan Society for the Promotion of Science (JSPS)
Software Competence Center Hagenberg (SCCH)



VI

External Reviewers

Juergen Giesl
Florent Jacquemard
Georg Moser
Koji Nakazawa
Takafumi Sakurai



Table of Contents

Designing a Rewriting Induction Prover with an Increased Capability
of Non-Orientable Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Takahito Aoto

An Automated Tableau Theorem Prover for FO(ID) . . . . . . . . . . . . . . . . . . . 16
Stephen Bond, Marc Denecker
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Designing a Rewriting Induction Prover with an
Increased Capability of Non-Orientable

Theorems

Takahito Aoto

RIEC, Tohoku University, Japan
aoto@nue.riec.tohoku.ac.jp

Abstract. Rewriting induction (Reddy, 1990) is an automated proof
method for inductive theorems of term rewriting systems. Reasoning by
the rewriting induction is based on the noetherian induction on some
reduction order and the original rewriting induction is not capable of
proving theorems which are not orientable by that reduction order. To
deal with such theorems, Bouhoula (1995) as well as Dershowitz & Reddy
(1993) used the ordered rewriting. However, even using ordered rewriting,
the weak capability of non-orientable theorems is considered one of the
weakness of rewriting induction approach compared to other automated
methods for proving inductive theorems. We present a refined system of
rewriting induction with an increased capability of non-orientable theo-
rems and a capability of disproving incorrect conjectures. Soundness for
proving/disproving are shown and effectiveness of our system is demon-
strated through some examples.

1 Introduction

Properties of programs are often proved by induction on data structures such as
natural numbers or lists. Such properties are called inductive properties of pro-
grams. Inductive properties are indispensable in formal treatments of programs
such as program verification and program transformation. For such applications,
automated reasoning on inductive properties is crucial.

Comparing to the high degree of automation on automated proving of theo-
rems, automated proving of inductive theorems still is considered as a very chal-
lenging problem [15]. Currently best known successful approaches to automated
proving of inductive theorems are explicit induction methods with sophisticated
heuristics [12, 17, 23] or with powerful decision procedures [27]. On the other
hand, in the field of term rewriting, implicit induction methods for equational
theories that automatically perform inductive reasoning based on implicit in-
duction principles have been investigated for many years [5–10, 14, 16, 18, 20, 21,
24–26, 29, 31]. Although it is not among the best known successful approaches,
some extensions are known to be competitive [5, 7].
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Rewriting induction1 proposed by Reddy [26] is one of such inductive theo-
rem proving methods. Contrasted to inductionless induction [16, 18, 21, 25, 31],
in which some kind of Church-Rosser property is needed, the basis of rewriting
induction is a noetherian induction. The theorem prover SPIKE [6, 9, 10] is the
best known successful induction prover based on a variant of rewriting induction
test set induction.

Many refinements have been introduced for the rewriting induction to in-
crease its power and efficiency of automated theorem proving. The underlying
rewriting mechanism has been replaced by ordered rewriting in [13] so that
rewriting induction can also handle non-orientable equations; not only ordered
rewriting but also relaxed rewriting is used in the SPIKE theorem prover to get
more flexible expansion and simplification rules. Modulo rewriting is also used
to deal with non-orientable theorems [1]. Another refinement is to use simplifi-
cation by conjectures (i.e. equations to prove) [2, 6, 9–11, 13] and a mechanism
for disproving incorrect conjectures [6, 9]. A capability of theories with non-free
constructors is investigated in [7, 8, 19].

Another direction for extension is to make the framework more general. The
SPIKE theorem prover can handle not only equational theories but conditional
ones; moreover, inductive theorems can be given not only in equations but also in
clauses. Further generalization is given in [11] whose underlying logical theory is
replaced with an abstract first-order deductive relation. Stratulat [29] strength-
ens such an abstraction further by a general abstract inference system that can
be used to prove general inductive properties of any first-order deductive rela-
tion. Equations with regular constraints can be also treated in [7, 8]. Needless to
say, such extensions also benefit from the enhancement of the proving power on
the basic rewriting induction system.

It is well-known that an introduction of suitable lemmas often prevents au-
tomated inductive theorem proving from divergence. Thus the techniques to
introduce suitable lemmas automatically in the process of proving have been in-
vestigated [22, 28, 33, 34]. Divergence critic [34] is an automated lemma discovery
method for rewriting induction which finds lemmas from a divergent sequence
of proofs. The SPIKE theorem prover contains a lemma discovery tool based
on the divergence critic. Urso & Kounalis [33] gave a lemma discovery method
Sound Generalization for monomorphic term rewriting systems which is sound,
that is, does not generate incorrect lemmas from correct conjectures. A part of
divergence critic is extend to sound one by Shimazu et.al. [28].

In this paper, we present a refined inference system of rewriting induction
with an increased capability of non-orientable theorems. We also present how the
system is combined with rules for adding sound lemmas and disproving incorrect
conjectures. Soundness of the presented systems is shown and effectiveness is
demonstrated through examples. A part of our inference system is implemented
and we report a preliminary experiment.

1 Originally, it is called “term rewriting induction”. The terminology “rewriting in-
duction” is introduced in [24].
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The rest of the paper is organized as follows. After fixing basic notations
(Section 2), we review rewriting induction (Section 3). In Section 4, we present
our basic system of rewriting induction. Then, we incorporate a rule for adding
sound lemmas (Section 5) and rules for disproving incorrect conjectures (Section
6). Section 7 introduces a modification of systems which turns out to be useful
by our preliminary experiment. In Section 8, we compare our system with other
rewriting induction provers. Section 9 concludes.

2 Preliminaries

We introduce notations for term rewriting used in this paper. (For details, see
[3].) The sets of function symbols and variables are denoted by F and V , respec-
tively. The set of terms over F , V is denoted by T(F , V ). We use ≡ to denote
the syntactical equality. We write u £ t if u is a subterm of t. The root symbol
of a term t is denoted by root(t) and the set of variables in a term t by V (t).

Let ¤ be a constant not occurring in F . A context is an element in T(F ∪
{¤}, V ). The constant ¤ is called a hole. If a context C has n holes in it, we
denote by C[t1, . . . , tn] a term obtained by replacing holes with t1, . . . , tn from
left to right. A mapping σ from V to T(F , V ) is called a substitution; we identify
σ and its homomorphic extension. σ(t) is also written as tσ, which is called an
instance of the term t. The domain of σ is defined by dom(σ) = {x ∈ V | xσ 6≡
x}. We denote by mgu(s, t) the most general unifier of terms s, t.

A pair 〈l, r〉 of terms l, r satisfying conditions (1) root(l) ∈ F and (2) V (r) ⊆
V (l) is said to be a rewrite rule. A rewrite rule 〈l, r〉 is denoted by l → r. A
term rewriting system (TRS) is a set of rewrite rules. Let R be a TRS. If there
exist a context C, a substitution σ, and a rewrite rule l → r ∈ R such that
s ≡ C[lσ] and t ≡ C[rσ], we write s →R t. We call s →R t a rewrite step. →R
forms a relation on T(F , V ), called the rewrite relation of R. A term t is said
to be normal when there exists no s such that t →R s. An equation l

.= r is a
pair 〈l, r〉 of terms. When we write l

.= r, however, we do not distinguish 〈l, r〉
and 〈r, l〉. The rewrite relation of a set E of equations is defined as s ↔E t if
there exist a context C, a substitution σ and an equation l

.= r ∈ E satisfying
s ≡ C[lσ] and t ≡ C[rσ]. The reflexive closure and reflexive transitive closure of
→R (↔E) are denoted by =→R (resp. =↔E) and ∗→R (resp. ∗↔E). The symmetric
closure of →R is denoted by ↔R. The modulo rewriting relation is defined like
this: ↔R/E = ∗↔E ◦ →R ◦ ∗↔E , where ◦ denotes the composition of relations.
When s ≡ C[s1, . . . , sn], t ≡ C[t1, . . . , tn], and si →R ti for all i = 1, . . . , n, we
write s →‖Rt.

The set of defined function symbols is given by DR = {root(l) | l → r ∈ R}
and the set of constructor symbols by CR = F \DR. The set of defined symbols
appearing in a term t is denoted by DR(t). When R is obvious from its context,
we omit the subscript R fromDR, CR. Terms in T(C, V ) are said to be constructor
terms; a substitution σ such that xσ ∈ T(C, V ) for any x ∈ dom(σ) is called a
constructor substitution. A term of the form f(c1, . . . , cn) for some f ∈ D and
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c1, . . . , cn ∈ T(C, V ) is said to be basic. The set {u £ s | ∃f ∈ D. ∃c1, . . . , cn ∈
T(C, V ). u ≡ f(c1, . . . , cn)} of basic subterms of s is written as B(s).

A term t is said to be ground if V (t) = ∅. The set of ground terms is denoted
by T(F). If tσ ∈ T(F), tσ is called a ground instance of t. The ground instance
of a rewrite rule, an equation, etc. is defined similarly. A ground substitution
is a substitution σg such that xσg ∈ T(F) for any x ∈ dom(σg). A TRS R is
said to be quasi-reducible if no ground basic term is normal. Without loss of
generality, we assume that tσg is ground (i.e. V (t) ⊆ dom(σg)) when we speak
of an instance tσg of t by a ground substitution σg; and so for ground instances
of rewrite rules, equations, etc. An inductive theorem of a TRS R is an equation
that is valid on T(F), i.e. s

.= t is an inductive theorem if sσg
∗↔R tσg holds for

any ground instance sσg
.= tσg. We write R `ind E then all equations in E are

inductive theorems of R.
A relation R on T(F , V ) is said to be closed under substitutions if s R t

implies sσ R tσ for any substitution σ; closed under contexts if s R t implies
C[s] R C[t] for any context C. A reduction order (reduction quasi-order) is a
well-founded partial order (resp. quasi-order) on T(F , V ) that is closed under
substitutions and contexts. For a quasi-order %, we let ≈ = %∩- and Â = %\-.
A quasi-order % on T(F , V ) is said to be ground-total if sg % tg or sg - tg for
any sg, tg ∈ T(F).

3 Rewriting Induction

Rewriting induction proposed by Reddy [26] is a method to prove inductive
theorems automatically. This section reviews the rewriting induction.

Let R be a TRS and > a reduction order. We list inference rules of rewriting
induction in Fig.1. In the figure, the relation ] expresses the disjoint union and
the ternary operation Expd is defined as:

Expdu(s, t) = {C[r]σ .= tσ | s ≡ C[u], σ = mgu(u, l), l → r ∈ R, l:basic}

A rewriting induction procedure starts from a pair 〈E0, ∅〉 where E0 is the set of
conjectures to prove. It successively applies the inference rules to a pair 〈E, H〉.
Intuitively, E is a set of equations to be proved and H is a set of induction
hypotheses and theorems already proved. If a derivation eventually reaches the
form 〈∅, H ′〉 then R `ind E0. On the other hand, when none of the rules are
applicable for 〈E,H〉 with E 6= ∅, the procedure reports “failure” and the pro-
cedure may also run forever (“divergence”)—in these cases, rewriting induction
fails to proveR `ind E0. We use ; to denote one step application of an inference
rule possibly with a superscript indicating which inference rule is used. ∗

; is the
reflexive transitive closure of ;.

Example 1 (RI). Let

R =
{

plus(0, y) → y
plus(s(x), y) → s(plus(x, y))

}
,
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Expand
〈E ] {s .

= t}, H〉
〈E ∪ Expdu(s, t), H ∪ {s → t}〉 u ∈ B(s), s > t

Simplify
〈E ] {s .

= t}, H〉
〈E ∪ {s′ .

= t}, H〉 s →R∪H s′

Delete
〈E ] {s .

= s}, H〉
〈E, H〉

Fig. 1. Inference rules of RI

E = {plus(plus(x, y), z) .= plus(x, plus(y, z))}, > a lexicographic path order based
on the precedence plus > s > 0. The following is a successful derivation of RI:

〈{
plus(plus(x, y), z) .= plus(x, plus(y, z)) }, {}〉

;e
RI

〈{
plus(y0, z) .= plus(0, plus(y0, z))
plus(s(plus(x1, y1)), z) .= plus(s(x1), plus(y1, z))

}

{
plus(plus(x, y), z) → plus(x, plus(y, z))

}
〉

∗
;

s

RI

〈{
plus(y0, z) .= plus(y0, z)
s(plus(x1, plus(y1, z))) .= s(plus(x1, plus(y1, z)))

}

{
plus(plus(x, y), z) → plus(x, plus(y, z))

}
〉

∗
;

d

RI

〈{}
,
{

plus(plus(x, y), z) → plus(x, plus(y, z))
}〉

4 Proving Non-Orientable Theorems

In this section, we present the basic system BRI of our rewriting induction ex-
tended with a capability of proving non-orientable theorems.

The inference rules of BRI are presented in Fig.2. The system is based on a
TRS R and a reduction quasi-order %. Elements of H are rewriting rules, and
those of K are equations l

.= r such that l 6Â r nor r 6Â l. KÂ and K≈ are
instantiations of equations in K whose sides are orientable or equivalent (c.f.
[4]):

KÂ = {lσ → rσ | l .= r ∈ K, lσ Â rσ}
K≈ = {lσ = rσ | l .= r ∈ K, lσ ≈ rσ}

Expd2 is an operation introduced in [1] that expands not only the larger side of
an equation but both sides of the equation:

Expd2u,v(s, t) =
⋃ {

Expdvσ(tσ, s′) | s′ .= tσ ∈ Expdu(s, t)
}

Example 2 (Expd2). Let R be as in Example 1, s ≡ plus(x, plus(y, z)), and t ≡
plus(y, plus(x, z)). Then u ≡ plus(y, z) is the only basic subterm of s and v ≡
plus(x, z) is the only basic subterm of t. We have

Expd2u,v(s, t) =





plus(0, z) .= plus(0, z),
plus(s(x1), z) .= plus(0, s(plus(x1, z))),
plus(s(x2), s(plus(y2, z))) .= plus(s(y2), s(plus(x2, z)))



 .
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Expand
〈E ] {s .

= t}, H, K〉
〈E ∪ Expdu(s, t), H ∪ {s → t}, K〉 u ∈ B(s), s Â t

Expand2
〈E ] {s .

= t}, H, K〉
〈E ∪ Expd2u,v(s, t), H, K ∪ {s .

= t}〉 u ∈ B(s), v ∈ B(t), s 6Â t ∧ t 6Â s

Simplify
〈E ] {s .

= t}, H, K〉
〈E ∪ {s′ .

= t}, H, K〉 s →(R∪H∪KÂ)/K≈ s′

Simplify-C
〈E ] {s .

= t}, H, K〉
〈E ∪ {s′ .

= t}, H, K〉 s
∗↔K≈ ◦ ↔‖E ◦ ∗↔K≈ s′, s % s′ ∨ t % s′

Delete
〈E ] {s .

= t}, H, K〉
〈E, H, K〉 s

∗↔K≈ ◦ ↔‖K ◦ ∗↔K≈ t

Fig. 2. Inference rules of BRI

The system BRI is an extension of eRI of [1] and cRI of [2]. Inference rules
Expand2 and Simplify-C are extended (instead, we will impose the ground-
totality of % as we will see) from the corresponding rules of eRI and cRI. The
biggest difference is that, the system includes not only a capability of conjectures
with equivalent sides but also that of conjectures with incomparable sides.

Theorem 1 (soundness of BRI). Let R be a quasi-reducible TRS, E a set of
equations, % a ground-total reduction quasi-order satisfying R ⊆ Â. If 〈E, ∅, ∅〉 ∗

;BRI

〈∅,H, K〉 for some H, K, then R `ind E.

Proof. Proved based on a method similar to the proofs of [1, 2]. Abstract princi-
ple is designed based on the ground-totality. One also needs the commutativity
of rewrite steps at parallel positions to show the property of sg ↔‖E tg. ut

Example 3 (BRI). Let R be as in Example 1 and

E =
{

plus(x, plus(y, z)) .= plus(y, plus(x, z))
}

Let % be a multiset path order based on the precedence plus Â s Â 0. The
following is a successful derivation of BRI:

〈{
plus(x, plus(y, z)) .= plus(y, plus(x, z))

}
,
{}

,
{}〉

;e2

〈




plus(0, z) .= plus(0, z),
plus(s(x1), z) .= plus(0, s(plus(x1, z))),
plus(s(x2), s(plus(y2, z))) .= plus(s(y2), s(plus(x2, z)))





{}
,
{

plus(x, plus(y, z)) .= plus(y, plus(x, z))
}

〉
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∗
;s ∗

;d

〈{
s(plus(x2, s(plus(y2, z)))) .= s(plus(y2, s(plus(x2, z))))

}
{}

,
{

plus(x, plus(y, z)) .= plus(y, plus(x, z))
}

〉

;e2

〈




s(plus(0, s(z))) .= s(plus(0, s(z)))
s(plus(s(x3), s(z))) .= s(plus(0, s(s(plus(x3, z)))))
s(plus(s(x3), s(s(plus(y3, z))))) .= s(plus(s(y3), s(s(plus(x3, z)))))





{}
,

{
s(plus(x2, s(plus(y2, z)))) .= s(plus(y2, s(plus(x2, z))))
plus(x, plus(y, z)) .= plus(y, plus(x, z))

}

〉

∗
;s ∗

;d

〈
{

s(s(plus(x3, s(z)))) .= s(s(s(plus(x3, z))))
s(s(plus(x3, s(s(plus(y3, z)))))) .= s(s(plus(y3, s(s(plus(x3, z))))))

}

{}
,

{
s(plus(x2, s(plus(y2, z)))) .= s(plus(y2, s(plus(x2, z))))
plus(x, plus(y, z)) .= plus(y, plus(x, z))

}
〉

;e1

〈





s(s(s(z))) .= s(s(s(plus(0, z))))
s(s(s(plus(x4, s(z))))) .= s(s(s(plus(s(x4), z))))
s(s(plus(x3, s(s(plus(y3, z)))))) .= s(s(plus(y3, s(s(plus(x3, z))))))





{
s(s(plus(x3, s(z)))) → s(s(s(plus(x3, z))))

}
{

s(plus(x2, s(plus(y2, z)))) .= s(plus(y2, s(plus(x2, z))))
plus(x, plus(y, z)) .= plus(y, plus(x, z))

}

〉

∗
;s ∗

;d

〈{}
,
{

s(s(plus(x3, s(z)))) → s(s(s(plus(x3, z))))
}

{
s(plus(x2, s(plus(y2, z)))) .= s(plus(y2, s(plus(x2, z))))
plus(x, plus(y, z)) .= plus(y, plus(x, z))

}
〉

We note that the system eRI [1] is not capable of this proof, because the conjec-
ture plus(x, plus(y, z)) .= plus(y, plus(x, z)) has incomparable sides.

5 Adding Sound Lemmas

It is well-known that an introduction of suitable lemmas often prevents auto-
mated inductive theorem proving from divergence. Thus it is very helpful for the
success of derivations to add a suitable lemma automatically in the process of
proving.

Divergence critic [34] is an automated lemma discovery method for rewriting
induction which finds lemmas from a divergent sequence of proofs. The SPIKE
theorem prover contains a lemma discovery tool based on the divergence critic.
However, the divergence critic may introduce a lemma that is not an inductive
theorem. This fact complicates the design of a rewriting induction prover with
an automated introduction of lemmas.

Another approach is to add only lemmas that are guaranteed to be induc-
tive theorems (when the initial conjectures are inductive theorems). Urso &
Kounalis [33] gave a lemma discovery method called Sound Generalization for
monomorphic TRSs which is sound, that is, does not generate incorrect lemmas
from inductive theorems. A part of divergence critic is extend to sound one by
Shimazu et.al. [28].

We incorporate an inference rule for adding sound lemmas (Fig.3). We de-
note by BRIL the obtained system.
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Lemma
〈E, H, K〉

〈E ∪ L, H, K〉 R `ind E =⇒R `ind L

Fig. 3. Additional inference rules of BRIL

Theorem 2 (soundness of BRIL). Let R be a quasi-reducible TRS, E a set of
equations, % a ground-total reduction quasi-order satisfying R ⊆ Â. If 〈E, ∅, ∅〉 ∗

;BRIL

〈∅,H, K〉 for some H, K, then R `ind E.

Proof. The case for the application of Lemma inference rule is safely incorpo-
rated into the proof of Theorem 1 without modifying the abstract principle.

ut
Example 4 (BRIL). Let R and E be as follows:

R =





plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))





E =
{

times(x, s(y)) .= plus(x, times(x, y))
}

ThenR is monomorphic. Let % be a multiset path order based on the precedence
plus Â s Â 0. The following is a successful derivation of BRIL using the Lemma
inference with the sound generalization [33].

〈{
times(x, s(y)) .= plus(x, times(x, y))

}
,
{}

,
{}〉

;e

〈{
0

.= plus(0, times(0, y))
plus(s(y), times(x1, s(y))) .= plus(s(x1), times(s(x1), y))

}

{
times(x, s(y)) → plus(x, times(x, y))

}
,
{}

〉

∗
;s ∗

;d

〈{
plus(y, plus(x1, times(x1, y))) .= plus(x1, plus(y, times(x1, y)))

}
{

times(x, s(y)) → plus(x, times(x, y))
}

,
{}

〉

;l;sc

〈{
plus(x1, plus(y, times(x1, y))) .= plus(x1, plus(y, times(x1, y)))
plus(y, plus(x1, z))) .= plus(x1, plus(y, z))

}

{
times(x, s(y)) → plus(x, times(x, y))

}
,
{}

〉

∗
;

〈{}
,

{
s(s(plus(x3, s(z)))) → s(s(s(plus(x3, z))))
times(x, s(y)) → plus(x, times(x, y))

}

{
s(plus(x2, s(plus(y2, z)))) .= s(plus(y2, s(plus(x2, z))))
plus(y, plus(x1, z)) .= plus(x1, plus(y, z))

}
〉

In the derivation, the generalization from the equation plus(y, plus(x1, times(x1, y)))
.= plus(x1, plus(y, times(x1, y))) to plus(y, plus(x1, z))) .= plus(x1, plus(y, z)) is ob-
tained by the sound generalization.
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6 Disproving Incorrect Conjectures

Rewriting induction with inference rules for disproving incorrect conjectures has
been introduced in [6, 9]. Usefulness of a mechanism for detecting incorrect con-
jectures is clear.

Our system BRIL is extended to the system BRILD with inference rules for
disproving incorrect conjectures as in Fig.4.

Decompose
〈E ] {f(s1, . . . , sn)

.
= f(t1, . . . , tn)}, H, K〉

〈E ∪ {si
.
= ti | 1 ≤ i ≤ n}, H, K〉 f ∈ C

Disproof1

〈E ] {s .
= x}, H, K〉
⊥ x ∈ V \ V (s)

Disproof2

〈E ] {f(s1, . . . , sn)
.
= x}, H, K〉

⊥ f ∈ C, x ∈ V

Disproof3

〈E ] {f(s1, . . . , sm)
.
= g(t1, . . . , tn)}, H, K〉
⊥ f 6= g, f, g ∈ C

Fig. 4. Additional inference rules of BRILD

The next lemma follows easily from the definition.

Lemma 1. Let R be a quasi-reducible TRS. Then (1) R `ind s
.= t implies

R `ind Expdu(s, t) for any u ∈ B(s). (2) R `ind s
.= t implies R `ind

Expd2u,v(s, t) for any u ∈ B(s) and v ∈ B(t).

Theorem 3 (soundness of BRILD). Let R be a quasi-reducible confluent TRS,
E a set of equations, % a ground-total reduction quasi-order satisfying R ⊆ Â.
(1) 〈E, ∅, ∅〉 ∗

;BRILD 〈∅,H,K〉 for some H, K, then R `ind E. (2) 〈E, ∅, ∅〉 ∗
;BRILD

⊥ then R 6`ind E.

Proof. (1) Since R is confluent, R `ind f(s1, . . . , sn) .= f(t1, . . . , tn) iff R `ind

si
.= ti for all 1 ≤ i ≤ n. Thus, any successful derivation can be modified in such

a way that all inferences of Decompose rule are replaced by those of Lemma rule
and Simplify-C rule. Then the claim follows from Theorem 2. (2) It can be
shown by induction on the length of 〈E, H, K〉 ∗

;BRILD ⊥ that R `ind H ∪ K
implies R 6`ind E, using Lemma 1. ut

7 Expanding Quasi-Basic Subterms

In this section, we present a small modification of our system which turned out
to be useful for proving some additional theorems in our preliminary experiment.
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Definition 1 (quasi-basic). A term u is quasi-basic w.r.t. a TRS R if (1)
root(u) ∈ D and (2) for any l → r ∈ R such that l is basic, cap(u) is unifiable
with l then there exists σ = mgu(cap(u), l) such that σ does not instantiate
any variable in V (cap(u)) \ V (u). Here, cap(f(u1, . . . , un)) (f ∈ D) is a term
f(ũ1, . . . , ũn) where ũi is obtained from ui by replacing maximal subterms with
defined root symbol by fresh variables. The set of quasi-basic subterms of s is
denoted by QB(s).

Example 5 (quasi-basic). Quasi-basic subterms of plus(x, plus(y, z)) (w.r.t. the
TRS R in Example 1) are plus(y, z) and plus(x, plus(y, z)).

We now extend the notions of Expdu(s, t) and Expd2u,v(s, t) for basic sub-
terms u, v to those for quasi-basic subterms u, v. For u ∈ QB(s) and v ∈ QB(t),
Expdu(s, t) and Expd2u,v(s, t) are defined like this:

Expdu(s, t) = {C[r]σ .= tσ | s ≡ C[u], σ = mgu(u, l), l → r ∈ R, l:basic}
Expd2u,v(s, t) =

⋃ {
Expdvσ(tσ, s′) | s′ .= tσ ∈ Expdu(s, t)

}
.

This definition generalizes those for basic terms. From the definition of quasi-
basic term it follows that if v is a quasi-basic term and l is a basic lhs of a
rewrite rule unifiable with v and σ = mgu(v, l) then xσ ∈ T(C, V ) for any
x ∈ dom(σ)∩V (v). Then the well-definedness of Expd2u,v(s, t) follows from the
next lemma.

Lemma 2. Let v ∈ QB(t) and σ a constructor substitution. Then vσ ∈ QB(tσ).

Since B(s) ⊆ QB(s) for any term s, the following rules are more flexible than
Expand and Expand2 rules and sometimes more useful to prove theorems.

Expand ′

〈E ] {s .= t}, H, K〉
〈E ∪ Expdu(s, t), H ∪ {s → t}, K〉 u ∈ QB(s), s Â t

Expand2 ′

〈E ] {s .= t}, H, K〉
〈E ∪ Expd2u,v(s, t), H, K ∪ {s .= t}〉

u ∈ QB(s), v ∈ QB(t),
s 6Â t ∧ t 6Â s

The systems obtain by replacing Expand and Expand2 rules in BRI/BRIL/BRILD
by Expand ′ and Expand2 ′ rules are denoted by BRI′/BRIL′/BRILD′. The sound-
ness of these systems are obtained by using the following lemma.

Lemma 3. Let R be a quasi-reducible TRS and u a quasi-basic term. For any
ground constructor substitution σg, uσg is reducible.

8 Related Works

In this section, we compare our inference system and other closely related rewrit-
ing induction provers SPIKE and NICE.
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SPIKE2 is a well-known rewriting induction (test set induction) prover. The
scope of SPIKE is much broader than ours—it can handle not only equational
theories but conditional ones, conjectures can be given not only in equations
but also in clauses. A disproving mechanism is also included in the system. The
mechanisms of SPIKE for proving non-orientable theorem includes the ordered
rewriting and relaxed rewriting [6, 9, 10]. Apart from the original version, recently
the new version3 has became available. The new version of SPIKE is based on
’Descente Infinie’ induction [5, 29] and an extended mechanism for dealing with
non-orientable theorems has been incorporated [30]. We denote by SPIKE/B and
SPIKE/S for the original version and new version of SPIKE respectively.

The most notable difference between SPIKE and BRILD′ is the capability of
non-orientable theorems by Expand2 rule. The inference rule of simplification by
conjecture (Simplify-C ) is essentially from [2] and we refer [2] for the compari-
son to simplification rules of SPIKE. The inference rule for disproving incorrect
conjectures of SPIKE is as follows ([9, 10]):

〈E ∪ {C},H〉
⊥ C : quasi-inconsistent

We refer [10] for the definition of quasi-inconsistency (which is too complex to
present here). The Decompose inference rule is from [10] and the Disproof1-3
inference rules are from [28]. Our inference rules for disproving incorrect con-
jectures are simplified by making use of the fact that the underlying TRSs are
limited to quasi-reducible TRSs.

NICE4 is a rewriting induction prover that incorporates two extensions for
monomorphic TRSs—namely, term partition techniques [32] and a sound gener-
alization technique [33]. The proofs by rewriting induction with these two new
mechanisms run independently. We denote by NICEP and NICEG the proof with
the term partition and the proof with the sound generalization. We also note that
NICE is capable of conditional theories. NICE does not have a special mechanism
for proving non-orientable theorems but the underlying rewriting is performed
by the ordered rewriting. It does not incorpolates mechanisms for disproving
incorrect conjectures nor simplification by conjectures.

In Tab.1 we list the result of an experiment performed by SPIKE, NICE, and
our preliminary implementation of BRILD′. Our implementation incorporates the
sound generalization same as NICEG to add lemmas automatically. A check in
each column indicates the success of proof; all successful proofs of BRILD′ are per-
formed at most 7 (expansion) steps. Some additional conjectures needed to prove
times(x, y) .= times(y, x) and sum(app(xs, ys)) .= sum(app(ys, xs)) in the system
iRI [1] turn out to be unnecessary in BRILD′. The system BRILD′ can prove non-
orientable inductive theorems which have not been capable in other rewriting
induction provers. We have also tested equational examples from Dream Cor-

2 http://www.loria.fr/equipes/cassis/softwares/spike/
3 http://lita.sciences.univ-metz.fr/~stratula/
4 http://www-sop.inria.fr/coprin/urso/
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(many-sorted) conjectures SPIKE/B NICEP NICEG SPIKE/S BRILD′

plus(x, y)
.
= plus(y, x)

√ × √ √ √
plus(x, plus(y, z))

.
= plus(y, plus(x, z))

√ × √ √ √
times(x, s(y))

.
= plus(x, times(x, y)) × × × × √

times(x, plus(y, z))
.
= plus(times(x, y), times(x, z))

× × × × ×




plus(x, y)
.
= plus(y, x)

times(x, plus(y, z))
.
= plus(times(x, y), times(x, z))



 × × × × √

times(x, y)
.
= times(y, x) × × × × √

sum(app(xs, ys))
.
= sum(app(ys, xs)) × × × × √

Table 1. Comparison of BRILD′ and rewriting induction provers

pus5; our implementation proves 51 out of 69 examples with 1 sec. timeout for
each, while the RI proves 33 examples. In the Appendix, we present a proof
of {plus(x, y) .= plus(y, x), times(x, plus(y, z)) .= plus(times(x, y), times(x, z))}
scripted from the output of our preliminary implementation. It can be seen
that the proof uses the Expand2 rule many times.

9 Conclusion

We have presented a rewriting induction system BRILD′ with an increased ca-
pability of proving non-orientable theorems and that of disproving incorrect
theorems. The system is intended to amenable for automation and a part of the
system is implemented. Soundness of the system for proving and disproving are
shown. It was demonstrated through some examples that our inference system
enables simple rewriting induction proofs for some theorems which have not been
provable in known rewriting induction provers. A comparison with other rewrit-
ing induction provers shows that our approach is useful to enlarge the scope
of inductive theorems which can be proved automatically based on rewriting
induction. Further implementation and experiments remain as our future work.
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A A Proof for {+(x, y)
.
= +(y, x), ∗(x, +(y, z))

.
=

+(∗(x, y), ∗(x, z))}
SPECIFICATION:

[ Nat ]
[ * : Nat*Nat=>Nat,

+ : Nat*Nat=>Nat,
s : Nat=>Nat,
0 : Nat ]

[ +(0,y) -> y,
+(s(x),y) -> s(+(x,y)),
*(0,j) -> 0,
*(s(i),j) -> +(j,*(i,j)) ]

(Monomorphic)
reflective positions: s/1
downward positions: +/2
upward positions: +/1
down-contextual positions:
up-contextual positions: */1

[ +(y,x) = +(x,y),
*(x,+(y,z)) = +(*(x,y),*(x,z)) ]

Start the rewriting induction with
[ +(y,x) = +(x,y),

*(x,+(y,z)) = +(*(x,y),*(x,z)) ]
[ +(0,y) -> y,

+(s(x),y) -> s(+(x,y)),
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*(0,j) -> 0,
*(s(i),j) -> +(j,*(i,j)) ]

Expand2 the equation +(y,x) = +(x,y) at e(L) and e(R).
[ 0 = 0,

s(+(x2,0)) = s(x2),
s(x) = s(+(x,0)),
s(+(x2,s(x))) = s(+(x,s(x2))) ]

Simplify & Delete.
es:

[ *(x,+(y,z)) = +(*(x,y),*(x,z)) ]
hs:

[ ]
ks:

[ +(y,x) = +(x,y) ]
Expand the L of the equation *(x,+(y,z)) = +(*(x,y),*(x,z)) at e

[ 0 = +(*(0,y),*(0,z)),
+(+(y,z),*(i4,+(y,z))) = +(*(s(i4),y),*(s(i4),z)) ]

Try SG to +(+(y,z),+(*(i4,y),*(i4,z))) = +(+(y,*(i4,y)),+(z,*(i4,z)))
Adding New Lemma (SG): +(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6))
Simplify & Delete.
es:

[ +(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6)) ]
hs:

[ *(x,+(y,z)) -> +(*(x,y),*(x,z)) ]
ks:

[ +(y,x) = +(x,y) ]
Expand2 the equation +(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6)) at 1(L) and 1(R).

[ +(y7,+(*(i4,y),x6)) = +(*(i4,y),+(y7,x6)),
+(s(+(x10,y10)),+(*(i4,y),x6)) = +(s(+(x10,*(i4,y))),+(y10,x6)) ]

Simplify & Delete.
es:

[ +(y7,+(*(i4,y),x6)) = +(*(i4,y),+(y7,x6)) ]
hs:

[ *(x,+(y,z)) -> +(*(x,y),*(x,z)) ]
ks:

[ +(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6)),
+(y,x) = +(x,y) ]

Expand2 the equation +(y7,+(*(i4,y),x6)) = +(*(i4,y),+(y7,x6)) at e(L) and 1(R).
[ +(*(0,j4),x) = +(0,+(0,x)),

s(+(x6,+(*(0,j4),x))) = +(0,+(s(x6),x)),
+(*(s(i5),j5),x) = +(+(j5,*(i5,j5)),+(0,x)),
s(+(x7,+(*(s(i5),j5),x))) = +(+(j5,*(i5,j5)),+(s(x7),x)) ]

Simplify & Delete.
es:

[ +(x7,+(+(j5,*(i5,j5)),x)) = +(+(x,x7),+(j5,*(i5,j5))) ]
hs:

[ *(x,+(y,z)) -> +(*(x,y),*(x,z)) ]
ks:

[ +(y7,+(*(i4,y),x6)) = +(*(i4,y),+(y7,x6)),
+(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6)),
+(y,x) = +(x,y) ]

Expand2 the equation +(x7,+(+(j5,*(i5,j5)),x)) = +(+(x,x7),+(j5,*(i5,j5)))
at e(L) and 1(R).
[ +(+(j,*(i,j)),0) = +(0,+(j,*(i,j))),

s(+(x5,+(+(j,*(i,j)),0))) = +(s(x5),+(j,*(i,j))),
+(+(j,*(i,j)),s(x4)) = +(s(+(x4,0)),+(j,*(i,j))),
s(+(x6,+(+(j,*(i,j)),s(x4)))) = +(s(+(x4,s(x6))),+(j,*(i,j))) ]

Simplify & Delete.
es:

[ ]
hs:

[ *(x,+(y,z)) -> +(*(x,y),*(x,z)) ]
ks:

[ +(x7,+(+(j5,*(i5,j5)),x)) = +(+(x,x7),+(j5,*(i5,j5))),
+(y7,+(*(i4,y),x6)) = +(*(i4,y),+(y7,x6)),
+(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6)),
+(y,x) = +(x,y) ]

Success
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Abstract. Inductive definitions are frequently encountered in software,
underlying many common program and algorithm components, such as
recursive functions and loops. Therefore, in disciplines such as program
verification or specification extraction, it is important to be able to rep-
resent and reason with inductive definitions in a formal way. Ideally our
formal representation language would extend classical logic and take ad-
vantage of the powerful symbolic proof systems that exist for it. FO(ID) is
a language that extends classical logic with inductive definitions, which
are captured by the well-founded semantics of logic programming. In
this paper we present an automated tableau theorem prover for FO(ID),
which has the potential to be of much use in the application of symbolic
proof techniques to software science. We describe the tableau rules and
their implementation, and discuss some possible extensions and applica-
tions of the system.

1 Introduction

Inductive definitions (also known as recursive definitions) are a fundamental con-
struct in software science. It is well known, for example, that all iterative loops
may be expressed as inductive definitions, and many functional and logical pro-
gramming languages eschew explicit iteration altogether in favour of recursive
calls. To this end, a formal means of representing and reasoning with inductive
definitions is highly desirable in any discipline that concerns the formal treat-
ment of computer programs and algorithms, such as verification or specification
extraction.

The most well-established and extensively studied formal language for knowl-
edge representation and reasoning is classical first-order logic; the maturity and
power of the many proof techniques and solvers developed for this language make
it a desirable choice for use in formal software methods. However, first-order logic
lacks the ability to represent inductive definitions.

Example 1. As a running example, consider the transitive closure of a graph,
defined by the following simple induction

– if the edge (x, y) is in the graph, then it is in the transitive closure of the
graph;
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– if for a pair of vertices (x, y), there is a vertex z such that (x, z) and (z, y) are
in the transitive closure of the graph, then (x, y) is in the transitive closure
of the graph.

It is well known that this definition is impossible to express in first-order
logic.

It was shown in [1] that the notion of ‘inductive definition’ is formally cap-
tured by the well-founded semantics of logic programming [10]. The language
FO(ID), the first-order variant of ID-logic ([2]) uses the well-founded semantics
to extend classical first-order logic with inductive definitions. It allows various
inductive definitions (such as the one above) to be represented uniformly, and
in a more intuitive manner than, say, fixpoint logics. It has also been shown to
be a useful language for general knowledge representation, allowing a concise
expression of classic KR formalisms such as the situation calculus ([3]).

Example 2. The following is the transitive closure relation from Example 1 as
expressed in FO(ID). Here the predicate T denotes the set of pairs of vertices
in the transitive closure of the graph, while G denotes the set of edges. The
correspondence between the FO(ID) rules and the natural languages rules above
should be intuitive and straightforward.

{
∀x, y T (x, y) ← G(x, y).
∀x, y T (x, y) ← ∃z T (x, z) ∧ T (z, y).

}

Automated symbolic reasoning is an important research topic for any for-
mal language. Reasoning on a symbolic level brings greater flexibility to an
automated solver: a problem can be isolated from its particular instances, and
inconsistency and other properties of a theory can be detected independently of
a domain. In the software verification setting, automated symbolic reasoning is
particularly important: when exhaustive model checking is not feasible, symbolic
inference needs to be applied.

Existing reasoning systems for FO(ID) are either not automatable ([7]) or
domain dependent ([8]), the former requiring guesswork on the part of a human
reasoner, and the latter dependent on knowing the precise domain of a given
problem. In this paper we present an incomplete automated symbolic reasoning
system for a useful subset of FO(ID), based on the Tableau method ([5]). While
incomplete, this system has proved successful in reasoning with many standard
example problems, and provides a useful first step towards an automated sym-
bolic reasoning system for FO(ID), which could be used in verification problems.

The outline of this paper is as follows. In the next section we introduce
FO(ID) and define its syntax and semantics. Following that, we define a Tableau
Calculus for FO(ID). Then we describe the implementation of this Tableau Cal-
culus and prove the soundness of our implementation of the FO(ID)-specific
rules. Finally we offer some concluding remarks.
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2 Preliminaries

In this section we introduce FO(ID), define its syntax and semantics and give
some examples.

ID-logic ([2]) is the name of a family of formal representation languages
that consist of classical logic extended with inductive definitions. The particular
branch of ID-logic we are concerned with in this paper is FO(ID): first-order
logic extended with inductive definitions. In FO(ID), an inductive definition ∆
(which from now on we refer to simply as a ‘definition’) is a set of rules of the
form

∀x p(x) ← φ

where φ is a first-order formula and ← is a symbol denoting definitional implica-
tion, which we distinguish from the material implication ⇒ of first-order logic 1.
We refer to p(x) as the head of the rule r, denoted head(r), and to the formula
φ as its body, denoted body(r). We call the set of predicates that appear in the
heads of the rules of ∆ the defined predicates of ∆, which we denote by Def(∆).
All other symbols in the definition are called open; the set of open symbols is
denoted by Op(∆). The purpose of ∆ is to define the predicates Def(∆) in terms
of the symbols Op(∆).

Example 3. The FO(ID) definition ∆ from Example 2 defines the transitive clo-
sure relation of a graph in terms of its edge relation.

{
∀x, y T (x, y) ← G(x, y).
∀x, y T (x, y) ← ∃z T (x, z) ∧ T (z, y).

}

Here, Def(∆) = {T/2}, where T/2 is a predicate denoting the set of pairs of
vertices of the graph that are in its transitive closure relation. Op(∆) = {G/2},
where G/2 is a predicate denoting the set of pairs of vertices that have a directed
edge between them. The definition states that vertex y is reachable from vertex
x if there is a directed edge from x to y, or if there is a vertex z such that z is
reachable from x and y is reachable from z.

A theory in FO(ID) consists of a set of definitions and a set of assertions.
Assertions are ordinary sentences of first-order logic, defined in the usual way.
The meaning of these first-order sentences is standard; to define the semantics
of FO(ID), we therefore only need to define the semantics of a definition.

We first introduce some semantical concepts. A two-valued interpretation I
of a vocabulary Σ consists of a domain D, a mapping from function symbols
f/n to n-ary functions on D, and a mapping of pairs (P, d) of predicate symbols
P/n and n-tuples d ⊆ D to the truth-values {t, f}. We also denote such a pair
(P, d) as P (d) and refer to it as a domain atom. A three-valued interpretation ν
is the same as a two-valued one, except that it maps domain atoms P (d) to the

1 A definitional rule can be seen as a general logic program clause.
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truth values {t, f ,u}. Such a ν assigns a truth value to each logical atom P (c),
namely ν(P (cν

1 , . . . , cν
n)). Using the standard Kleene truth tables for the logical

connectives, this assignment can be extended to an assignment ν(φ) of a truth
value to each formula φ.

Let H(∆,D) be the set of all defined domain atoms of the definition ∆ in
D, i.e. the set of all domain atoms of the predicates in Def(∆) in D. We define
U(∆, ν) ⊆ H(∆,D) to be the unfounded set of ∆ with respect to a three-valued
interpretation ν if each atom P (d) ∈ U(∆, ν) satisfies the following: For each
instantiated rule r[d] in ∆ such that P (d) = head(r[d]), either:

– ν(body(r[d])) = f
– an element of U(∆, ν) positively occurs in body(r[d]).

If A is a set of domain atoms and v a truth-value, we will denote by ν[A/v]
the three-valued interpretation that assigns v to each domain atom in A and
coincides with ν on all other atoms.

We now define when an interpretation I is a model of a definition ∆. Since
∆ defines the predicates Def(∆) in terms of the symbols Op(∆), we should
assume the interpretation of Op(∆) as given and try to construct a corresponding
interpretation for Def(∆). Let O be the restriction R(I,Op(∆)) of I to the open
symbols.

We are now going to construct a sequence of three-valued interpretations
(να)0≤α≤β , each of which extends O; the limit of this sequence will tell us how
to interpret Def(∆).

– ν0 assigns O(P (d)) to P (d) if P ∈ Op(∆) and u if P ∈ Def(∆);
– νi+1 is related to νi in one of two ways:

1. νi+1 = νi[P (d)/t], such that ∆ contains a rule ∀x P (x) ← φ(x) with
νi(φ[d]) = t

2. νi+1 = νi[U(∆, νi)/f ], where U(∆, νi) is an unfounded set of ∆ with
respect to νi as defined above.

– For each limit ordinal λ, νλ is the lub w.r.t. ≤p of all νδ for which δ < λ.

We call such a sequence a well-founded induction of ∆ in O. Each such sequence
eventually reaches a limit νβ . It was shown in [4] that all sequences reach the
same limit. It is now this νβ that tell us how to interpret the defined predicates.
To be more precise, we define that:

I |= ∆ if and only if R(I, Def(∆)) = R(νβ , Def(∆)),

where R(νβ , Def(∆)) is the restriction of νβ to the symbols Def(∆). Note that
if some domain atom is still assigned u by νβ , the definition has no models
extending O. Intuitively, this means that, for this particular interpretation of its
open symbols, ∆ does not manage to unambiguously define its defined predicates,
due to some non well-founded use of negation.
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Example 4. Consider the following FO(ID) theory containing the definition ∆:
{
∀x, y T (x, y) ← G(x, y).
∀x, y T (x, y) ← ∃z T (x, z) ∧ T (z, y).

}

¬T (a, c).

Given D = {a, b, c} and an interpretation I mapping G(a, b) and G(b, c) to t
and all other open atoms to f , and T (a, b) to f and all other defined atoms to u,
then O is the interpretation mapping G(a, b) and G(b, c) to t and all other open
atoms to f . Then the calculation of νβ proceeds as follows:

– ν0 assigns G(a, b) and G(b, c) to t, all other open atoms to f , and all defined
atoms to u.

– ν1 assigns T (a, b) and T (b, c) to t, since the bodies of these atoms in the first
rule of the definition are true in ν0. It can be verified that the unfounded
set U = {T (a, a), T (b, a), T (b, b), T (c, a), T (c, b), T (c, c)}; all these atoms are
assigned to f .

– ν2 assigns T (a, c) to t, since the body of this atom in the second rule is true
in ν1. We have now reached a fixed point.

Since T (a, c) is true in the model extending O, but false in I, there is no
model extending I. (In fact, since T (a, c) must be false in any model satisfying
the constraint ¬T (a, c), this theory is unsatisfiable in the given domain and
interpretation of the open predicates.)

3 A Tableau Calculus for FO(ID)

In this section we introduce the tableau calculus and describe a tableau calculus
for FO(ID).

3.1 The Tableau Calculus

The tableau calculus [5] is a proof procedure for logical languages, in which a
binary tree known as a tableau is constructed. The nodes of the tableau are sets
of formulas. Tableau expansion rules describe the ways in which branches of the
tableau may be extended. Given a tableau rule and a branch containing formulas
that match the rule prerequisities, the branch can be extended according to the
tableau rule.

A branch is closed if it contains a contradiction, and open otherwise. Tableaux
are often used to prove by refutation. Given a theory T and a formula φ, to
show that T |= φ, we apply the tableau rules on the theory T ∪ ¬φ and show
that every branch in the tableau so constructed can be closed. Tableau can also
be used in symbolic model generation. For theories in languages for which the
tableau method is a complete proof system (such as propositional logic), once
all possible tableau rules have been applied, each open branch contains a model
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of the theory – in the propositional case, the model is simply the set of literals
in the branch. This property holds because the tableau method is essentially an
algorithm for converting a theory to disjunctive normal form. At each stage of
the tableau procedure, each branch is a conjunction of formulas entailed by the
theory, which is equivalent to a disjunction of the branches.

For compactness, we will state our tableau rules using Smullyan’s classifica-
tion of first-order formulas [9]. Under this classification, first-order formulas are
of type α, β, γ or δ. Types α and β are conjunctive and disjunctive formulas, re-
spectively. Formulas of these types each have two components, defined as follows
(where φ and ψ are arbitary formulas):

α α1 α2 β β1 β2

φ ∧ ψ φ ψ φ ∨ ψ φ ψ
¬(φ ∨ ψ) ¬φ ¬ψ ¬(φ ∧ ψ) ¬φ ¬ψ
¬(φ ⇒ ψ) φ ¬ψ φ ⇒ ψ ¬φ ψ

Quantified formulas are of type γ or δ. γ formulas are universally quantified;
δ formulas are existentially quantified. γ and δ formulas have instances γi and
δi, defined as follows:

γ γi

∀xφ(x) φ(c) (where c is any constant symbol in the language)
¬∃xφ(x) ¬φ(c) (where c is any constant symbol in the language)
δ δi

∃xφ(x) φ(k) (where k is a new skolem constant)
¬∀xφ(x) ¬φ(k) (where k is a new skolem constant)

Note that these rules are independent of the domain.

3.2 Tableau Rules for FO(ID)

The Tableau Calculus has proven useful for defining proof systems for expressive
knowledge representation languages; we base our tableau expansion rules on a
subset of those defined for ASP in ([6]). The list of rules is given in figure 1.
Each rule states that if the branch contains the formulas that occur above the
line, it may be extended with the formulas that occur below the line. For the
β-rule, this involves splitting the tableau into two new branches.

Note that rules (f) and (h) are sound under the well-founded induction se-
quence defined in the previous section, and that rule (g) is simply the contrapo-
sition of rule (h). Rule (f) would also be sound if we concluded that a member
p of any unfounded set of the definition were false, but specifying the greatest
unfounded set improves the completeness of the expansion rule.
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Fig. 1. Tableau Expansion rules for FO(ID)

a) Z-rule:
¬¬Z

Z

¬t

f

¬f

t

b) α-rule:
α

α1

α2

c) β-rule:
β

β1 | β2

d) γ-rule:
γ

γi

e) δ-rule:
δ

δi

f) “Well-founded negation” rule:
∆

¬p
where p is a member of the greatest
unfounded set of definition ∆ in the
branch.

g) “Backward false” rule:
∀x p(x) ← φ
¬p(c)

¬φ[x : c]
where φ[x : c] is the formula φ with
all occurrences of the variables in x
replaced by the constants in c.

h) “Forward true” rule:
∀x p(x) ← φ(x)
φ(c)

p([x : c])
where p([x : c]) is the domain atom
p(x) with all occurrences of the vari-
ables in x replaced by the constants
in c.

3.3 Example

Consider the theory T :

{
∀x, y T (x, y) ← G(x, y).
∀x, y T (x, y) ← ∃z T (x, z) ∧ T (z, y).

}

¬T (a, b).

The following is a possible partial tableau for T :
{
∀x, y T (x, y) ← G(x, y).
∀x, y T (x, y) ← ∃z T (x, z) ∧ T (z, y).

}

¬T (a, b)
¬∃z T (a, z) ∧ T (z, b)
¬(T (a, a) ∧ T (a, b))

¬T (a, a) ¬T (a, b)
The root node of the tree contains the theory T . The formula ¬∃z T (a, z) ∧

T (z, b) is then added to the node by applying tableau expansion rule (g) on
the second rule of the definition and ¬T (a, b). Rule (d) is then applied on this
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formula to extend the node with ¬(T (a, a)∧ T (a, b)). Finally, rule (c) is applied
on this formula to produce two branches with ¬T (a, a) and ¬T (a, b).

4 Implementation: A Domain-Independent Tableau
Theorem Prover for FO(ID)

It is clear from the rules above that the most difficult part of the implementation
of a domain-independent theorem prover for FO(ID) is the automated calculation
of the greatest unfounded set of a definition. Unfounded sets was defined in
section 2 with respect to a given interpretation in a given domain. In this section
we give an alternative definition in terms of a given tableau branch. We then
describe an automated procedure for calculating an unfounded set, as the fixed
point of a monotone operator.

4.1 A fixed point algorithm for an unfounded set

In this subsection we describe a subset of FO(ID) for which we can define an
algorithm for computing an unfounded set of a definition in a given tableau
branch, and then describe the algorithm itself in terms of calculating the fixed
point of a monotone operator. Since a branch can be extended by application of
tableau rules, we need to prove that the algorithm is monotone with respect to
branch extensions: any member of the calculated unfounded set of a definition
in a branch will also be in the unfounded set of the definition in an extension of
the branch.

In the subset of FO(ID) with which we are concerned in this subsection, a
definition ∆ is a set of rules of the form ∀x p(x1) ← φ(x2), x1 ⊆ x, x2 ⊆
x, where p is a defined predicate, and each φ(x2) is a conjunction of literals
l1 ∧ · · · ∧ ln with free variables in x2. At times we will abuse notation and treat
φ(x2) as a multiset of literals {l1, . . . , ln}.

A tableau branch B is a set of formulas and definitions; we denote by C(B)
the set of all ground terms in branch B.

Informally speaking, our algorithm will begin with a set H(∆,B) of “ground”
atoms of the defined predicates in ∆ in B, and will then iteratively remove
members of this set until we reach a fixed point, which will be a representation of
an unfounded set. We now concern ourselves with defining a useful set H(∆,B).

We could ground the defined predicates of ∆ with the Herbrand universe of
B, but if there are function symbols in B then this set will be infinitely large,
which is obviously not desirable. We must therefore place limits on the function
terms we include. In addition, to give us a measure of domain independence, we
would like to include variables in H(∆,B), so as to enable us to conclude, for
example, that p(a, x) is in an unfounded set for any x. With this in mind, we
now define the set of grounding terms for a definition ∆ in a branch B.

Definition 1. The set G(∆,B) of grounding terms of definition ∆ in B is de-
fined as follows.
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– Each member of the set V ′ of new variables {x1, . . . xm}, where m is the
greatest arity of the predicates in ∆, is a grounding term.

– A member of C(B) is a grounding term.
– If f is a function symbol of arity n in B, and t1, . . . , tn are elements of C(B)

or V ′, then f(t1, . . . , tn) is a grounding term.

We denote by F (∆,B) the set of all ground atoms of the defined predicates
in ∆, ground with the symbols in G(∆,B). It is not necessarily the case that
F (∆,B) = H(∆,B). Care should be taken when grounding defined predicates
with the terms that contain variables: it could be the case that the newly ground
atom has no rule body in the definition. We allow in H(∆,B) only those members
of F (∆,B) for which there is a valid substitution from one of the rule heads in
∆. We define a substitution [a : b] as valid if for each ai and bi, either ai and bi

are both variables, or ai is a variable and bi is a constant symbol.

Definition 2. Let A be the set of rule heads in a definition ∆.
We define H(∆,B) as the set {h | h ∈ F (∆,B) and either h contains no

variables, or there is an a ∈ A and a valid substitution θ such that aθ = h}
Example 5. Given a definition {∀x, y p(x, y) ← φ(x, y)}, and C(B) = {a}, then
H(∆,B) = {p(a, a), p(x1, a), p(a, x2), p(x1, x2), p(x1, x1)}.
Example 6. Given the definition

{
Even(0) ←

∀x Even(s(x)) ← ¬Even(x)

}

and C(B) = {0, s(0)}, then G(∆, B) = {x1, 0, s(0), s(x1), s(s(0))} and H(∆,B) =
{Even(0), Even(s(0)), Even(s(x1), Even(s(s(0)))}. Note that Even(x1) /∈ H(∆,B),
since neither [0 : x1] nor [s(x) : x1] is a valid substitution.

We can think of the free variables in H(∆,B) as being implicitly universally
quantified. If, for example, p(x1) is a member of H(∆,B), we consider this as a
claim that p(x1) is unfounded for all x1. If our algorithm fails to remove p(x1)
from our representation of an unfounded set, we can conclude that ∃xp(x) is
false.

For each atom p(a) of H(∆,B), we define body(p(a)) as the set of all conjunc-
tive formulas φi(b), where ∀x p(x1) ← φi(x2) is a rule in ∆, and b is the result
of applying the substitution [x1 : a] on x2, if the substitution is valid. Note that
the definition of H(∆,B) ensures that body(p(a)) is nonempty if a contains a
variable. We assume all free variables in body(p(a)) are implicitly existentially
quantified. Note that body(p(a)) is independent of and therefore constant in the
size of the branch. This fact will be important in proving that our algorithm
behaves monotonically with respect to repeated tableau rule applications.

We now define the notion of an unfounded set of a definition in a branch.
An unfounded set for a definition ∆ in branch B is a set U of ground defined
atoms p in ∆ for which, for all φ ∈ body(p), either φ is false in B or φ contains
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a member of U . To refine this notion for our set H(∆,B) of defined atoms h
that may include free variables, we must define what it means for a member of
body(h) to be false in B, or to contain a member of U .

The former in general involves determining whether a universally quantified
disjunctive formula (i.e. the negation of the existentially quantified conjunctive
body) is entailed by the branch, which is a nontrivial problem that would require
multi-branch tableau reasoning in itself. The latter involves determining whether
an existentially quantified conjunctive formula is entailed by the unfounded set,
which is also a nontrivial problem that would require some auxiliary tableau
reasoning.

However, for efficient computation, we can identify some simple cases in
which these conditions are satisfied. We will not identify any case in which the
conditions are satisfied. Thus, it is possible that some atoms may not be members
of the greatest fixed point of our operator, even though these atoms are in the
greatest unfounded set. However, the fixed point algorithm will still compute an
unfounded set. Thus, our inference rule will be sound, but not complete.

Definition 3. A substitution θ = [x : y] is a variable substitution if for each xi

and yi, both xi and yi are variables.
Let φ be a formula p1(a1) ∧ · · · ∧ pn(an), where each pi(ai) is a literal with

free variables xi ⊆ ai. Then, assuming all free variables in φ are existentially
quantified, φ is false in a branch B if (but not only if) ¬∃y pi(b) (or an equiv-
alent formula, where y consists of the free variables in pi(b)) is a member of B
and there is a variable substitution θ such that pi(ai)θ = pi(b). We define the
function falseformula(φ,B) to be true if and only if this condition holds.

Similarly, let φ be a formula p1(a1) ∧ · · · ∧ pn(an), where each pi(ai) is a
literal with free variables xi. Then φ intersects with a set Hk ⊆ H(∆,B) (for
some definition ∆ and some branch B) if (but not only if) there is a pi(b) with
free variables y in Hk, and a variable substitution θ such that pi(ai)θ = pi(b).
(In other words, if we assume pi(b) is unfounded for all y, then ∃x p1(a1) ∧
· · · ∧ pi(ai) ∧ . . . ∧ pn(an) is false.) We define the function intersects(φ,Hk) to
be true if and only if this condition holds.

Note that the function falseformula(φ,B) is not true if and only if formula
φ is false in branch B. However, if falseformula(φ,B) is true, then φ is false in
B (assuming all free variables in φ are existentially quantified). The same holds
for intersects(φ, S) as defined above.

We now define the operator we will use in our algorithm.

Definition 4. Assume S is an element of P(H(∆,B)), the powerset of H(∆,B).
We define an operator Φ on P(H(∆,B)) 7→ P(H(∆,B)) as follows:

Φ =def {h ∈ S | for each φ ∈ body(h), falseformula(φ,B) or intersects(φ, S)}
Proposition 1. Φ is a monotonic operator on the subset relation, i.e. if S1 ⊆ S2

then Φ(S1) ⊆ Φ(S2).

Proof. Assume S1 ⊆ S2 but Φ(S1) ⊃ Φ(S2). Then, since falseformula(f, B) is
independent of S1 and S2, some h ∈ S1 has a body that contains an element of
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S1, but not S2. This is a contradiction, since body(h) is independent of S1 and
S2, and S1 ⊆ S2.

Therefore, since Φ is a monotone operator on a complete lattice, it has a
greatest and least fixed point. We denote by US (∆,B) the greatest fixed point
of Φ(S), S ∈ P(H(∆,B)).

We will now show that US (∆,B) is monotonic with respect to iterated
tableau rule applications on a branch B.

Since tableau rules never delete anything from a branch, to prove mono-
tonicity of our unfounded set estimate with respect to iterated tableau rule
applications it is sufficient to prove monotonicity over the subset relation on the
branch, i.e. to show that if B ⊆ B′, then US (∆,B) ⊆ US (∆,B′).

The following proposition is trivially true:

Proposition 2. Given B ⊆ B′, if falseformula(φ,B) is true for some conjunc-
tion of ground literals φ, then falseformula(φ, B′) is true.

Theorem 1. Given some definition ∆, if B ⊆ B′, then
US (∆,B) ⊆ US (∆,B′).

Proof. The proof is by induction on k, where k is the number of iterated appli-
cations of Φ(S) beginning with S = H(∆,B). We denote by SB

k the value of the
argument to Φ (in the domain P(H(∆,B)) at application k.

For k = 0, SB
0 = H(∆, B), and SB′

0 = H(∆,B′). It is trivial to show that
H(∆,B) ⊆ H(∆, B′), and so SB

0 ⊆ SB′
0 .

We assume indictively that SB
k ⊆ SB′

k .
Then some h is an element of SB

k+1 if, for all φ ∈ body(h), either
falseformula(φ,B) is true, or intersects(φ, SB

k ) is true.
If falseformula(φ,B) is true, then from proposition 2 it is the case that

falseformula(φ,B′) is true.
By the induction hypothesis, if intersects(φ, SB

k ) is true, then
intersects(φ, SB′

k ) is true.
(It is important to note here that body(h) is independent of B, i.e. the num-

ber of instantiated bodies for a defined atom does not increase as the branch
increases. So it is sufficient to check the same φ ∈ body(h) in B and B′.)

Therefore, SB
k+1 ⊆ SB′

k+1.

We now show that any instance of US (∆, B) is a member of an unfounded
set.

Theorem 2. Given a branch B and an interpretation ν over a domain D,
which satisfies the first-order formulas in B, then for a definition ∆ ∈ B,
ground(US (∆,B), D), the grounding of US (∆,B) over D, is an unfounded set
of ∆ with respect to ν.

Proof. By definition, for every h ∈ US (∆,B), for each φ ∈ body(h), either
falseformula(φ,B) is true, or intersects(φ,B) is true.
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Since ν satisfies the first-order formulas in B, then for each such formula
ψ ∈ B, ν(ψ) = t. Then it can be shown that for any φ ∈ body(h) with free
variables x, if falseformula(φ,B) is true then ν(∃xφ) = f , and, by extension, for
any ground instance φ′ in ground(φ,D), ν(φ′) = f .

If intersects(φ,B) is true, then an element of φ positively occurs in US (∆,B).
Then it can be shown that any ground instance φ′ in ground(φ, D) has an element
which positively occurs in ground(US (∆,B), D).

Therefore, ground(US (∆,B), D) is a set of atoms h for which, for each φ ∈
body(h), either ν(φ) = f or an element of φ positively occurs in ground(US (∆,B), D).
In other words ground(US (∆,B), D) is an unfounded set of ∆ with respect to ν.

Because of this result, we can use the algorithm to compute unfounded sets
for tableau rule (f).

4.2 Examples

In this section we present two examples of the use of our algorithm. The first is
our running example of transitive closure, and the second an inductive definition
of the even numbers.

Example 7. Consider the branch B:
{
∀x, y T (x, y) ← G(x, y).
∀x, y T (x, y) ← ∃z T (x, z) ∧ T (z, y).

}
(1)

T (a, a). (2)

∀x ¬G(x, a). (3)

¬G(a, a). (4)

(Note that line 4 is the result of applying tableau expansion rule (d) to line
3.)

We denote by ∆ the definition in line 1. Then
H(∆,B) = {T (a, a), T (x1, a), T (a, x2), T (x1, x2), T (x1, x1)}.

Then the following are the values of body(h) for each h ∈ H(∆,B) (recall
that each variable in body(h) is implicitly existentially quantified):

body(T (a, a)) = {G(a, a), T (a, z) ∧ T (z, a)}
body(T (x1, a)) = {G(x1, a), T (x1, z) ∧ T (z, a)}
body(T (a, x2)) = {G(a, x2), T (a, z) ∧ T (z, x2)}
body(T (x1, x2)) = {G(x1, x2), T (x1, z) ∧ T (z, x2)}
body(T (x1, x1)) = {G(x1, x1), T (x1, z) ∧ T (z, x1)}

The calculation of US (∆,B) proceeds as follows. The initial estimate S0

of the unfounded set is H(∆,B). Then we compute Φ(S0). (For brevity, if
intersects(φ, S) is true, we say “φ contains a member of S”).
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– T (a, a) is a member of Φ(S0), since one of its body elements (G(a, a)) is
negated in the branch by line 4, and the other contains two members of S0.

– T (x1, a) is a member of Φ(S0), since one of its body elements (G(x1, a)) is
negated in the branch by line 3, and the other contains two members of S0.

– T (a, x2) is not a member of Φ(S0), since its body element G(a, x2) is neither
a member of S0 nor negated in the branch.

– T (x1, x2) is not a member of Φ(S0), since its body element G(x1, x2) is
neither a member of S0 nor negated in the branch.

– T (x1, x2) is not a member of Φ(S0), since its body element G(x1, x1) is
neither a member of S0 nor negated in the branch.

Then Φ(S0) = {T (a, a), T (x1, a)}. We now compute Φ(Φ(S0)).

– T (a, a) is a member of Φ(Φ(S0)), since one of its body elements (G(a, a)) is
negated in the branch by line 4, and the other contains T (z, a), a member
of Φ(Φ(S0)).

– ∃x T (x1, a) is a member of Φ(Φ(S0)), since one of its body elements (G(x1, a))
is negated in the branch by line 3, and the other contains T (z, a), a member
of Φ(Φ(S0)).

Then Φ(Φ(S0)) = {T (a, a), T (x1, a)} = Φ(S0), and we have reached a fixed
point.

It can easily be verified that {T (a, a), T (x1, a)} describes an unfounded set
for ∆ in B, and we can use the tableau expansion rule (f) to conclude that both
T (a, a) and ∃xT (x, a) are false.

Example 8. Consider the branch B, which includes a definition of the even num-
bers:

{
Even(0) ←

∀x Even(s(x)) ← ¬Even(x)

}
(5)

Even(0). (6)

(Note that line 6 is the result of applying tableau expansion rule (h) to the
first rule in the definition ∆ in line 5.)

Similarly to example 6, H(∆,B) = {Even(0), Even(s(0)), Even(s(x1))}.
The values of body(h) for each h ∈ H(∆,B) are trivial to determine and will
not be printed here. To calculate US (∆,B), we make an estimate S0 of the un-
founded set to be H(∆,B). Then we compute Φ(S0). It should be clear that
the only member of Φ(S0) is Even(s(0)), and that this is the fixed point of the
calculation. Therefore US (∆,B) = {Even(s(0))} and we can use the tableau
expansion rule (f) to add ¬Even(s(0)) to the branch.

Let B′ = B ∪ ¬Even(s(0)). Then H(∆, B′) = {Even(0), Even(s(0)),
Even(s(x1), Even(s(s(0)))}. However, US (∆,B′) = US (∆,B) since the body of
the new atom Even(s(s(0))) is true in the branch, and no new atoms appear in
the unfounded set.
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Let B′′ = B′ ∪ Even(s(s(0))), the result of applying tableau expansion rule
(h) to the second rule of ∆ and the element ¬Even(s(0)) of B′. Now H(∆,B′′) =
{Even(0), Even(s(0)), Even(s(x1), Even(s(s(0))), Even(s(s(s(0))))}, and, it can
be verified, US (∆,B′′) = {Even(s(0)), Even(s(s(s(0))))}. Now we can use the
tableau expansion rule (f) to add ¬Even(s(s(s(0)))) to the branch.

This sequence can be repeated to infinity to calculate the set of all even
numbers.

4.3 Implementation Details

The tableau expansion rules, and the algorithm for computing the greatest un-
founded set described above, were implemented in Prolog as a tableau theorem
prover for FO(ID). Our initial implementation was not designed with perfor-
mance in mind, but we nevertheless we found it necessary to adopt a more
optimised rule selection strategy in order to help the prover derive certain re-
sults. Since the GUS computation algorithm is more useful when there are a
large number of literals in the branch (and the backward false rule requires a
negated literal as ‘input’), our strategy was to apply the first-order tableau rules
first as far as possible. When applying first-order rules, we follow the standard
tableau strategy of delaying application of the β-rule to prevent unnecessary
branching, and removing non-universally-quantified formulas once a first-order
rule has been applied upon them. To limit infinite looping we imposed a hard
limit on the number of times the γ-rule could be applied; this limit could be
specified by the user.

5 Conclusion

In this paper, we described an automated tableau theorem prover for FO(ID),
a language that extends first-order logic with inductive definitions, which we
claim is a useful language for representing and reasoning with problems in formal
software methods. We gave an overview of the syntax and semantics of FO(ID),
and described a tableau calculus for the language. We described an incomplete
algorithm for implementing the most difficult expansion rule in this calculus: a
rule which deduces the negation of an atom that is in the greatest unfounded
set of a given definition, and briefly described how the rules and algorithm were
implemented in a tableau theorem prover for FO(ID).

This research offers much opportunity for further work. Many optimisations
are yet to be done on the prover itself, for example on its memory management
and arithmetic performance. We are investigating the possibility of extending
the tableau rules with other proving techniques for FO(ID) that are currently
being researched, and looking at the feasibility of improving the ‘completeness’
of the unfounded set algorithm. We are also investigating applications for this
theorem prover. One intended application is program verification, and the use
of this theorem prover for verification has been proposed as a master thesis.
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A formal investigation of the soundness and completeness of this proof system
is yet to be done. Since entailment in FO(ID) is undecidable, a proof system for
FO(ID) is necessarily incomplete. In particular, since our algorithm for the larger
subset of FO(ID) does not calculate the greatest unfounded set of a definition
in a branch, there will be atoms in unfounded sets that are not derived to be
false by the system. In our example problems, we believe the algorithm struck
an acceptable compromise between incompleteness and complexity; it remains
to be seen how well this compromise will hold for practical problems.

The main contribution of this research is a domain-independent algorithm
for calculating unfounded sets. This algorithm is not strongly bound to a tableau
proof system. Further work involves investigating state-of-the-art theorem provers
and proof systems for classical logic, to determine how or whether the algorithm
can be adapted for and integrated into similar systems for FO(ID).
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Abstract. We present a nontrivial case study in program synthesis (and
more general, theory exploration), carried out in the Theorema system:
the synthesis of a Gröbner bases algorithm.
We describe lazy thinking, a scheme based algorithm synthesis method,
in the context of a theory exploration model (both of which were first
proposed by the second author) then give an overview of the implemen-
tation in Theorema.
We then use this implementation to synthesize an algorithm for Gröbner
bases, starting from a “critical-pair/completion” idea (algorithm scheme).
The case study illustrates several exploration steps, besides applications
of lazy thinking: adding new inference rules to the theory, preprocessing
algorithm schemes, retrieval of knowledge. By applying lazy thinking we
are able to re-invent the essential notion of S-polynomials.

1 Introduction

Recent developments in computer-supported reasoning, computer algebra, rep-
resentation of knowledge, web technology, etc., have created a “critical mass” for
addressing the issue of using computer technology to do mathematics (organize,
produce, retrieve, write, calculate, reason, solve) in a way that is transparent to
“working” mathematicians. Mathematical Knowledge Management (MKM), is
a relatively new research field at the intersection of mathematics and computer
science, see [8], that is concerned with achieving this.

One of the more (most) important aspects of MKM is the computer supported
development (exploration) of mathematical theories. A theory exploration model
based on knowledge schemes was recently proposed by the second author in [6]:
use the mathematical knowledge (experience) developed over the centuries of
doing mathematics in the form of mathematical schemes (ideas) to develop a
mathematical theory. Part of this theory exploration model is lazy thinking, a
scheme-based algorithm synthesis method, see [5],.

The exploration model was tried out and proved useful in several case studies,
such as the exploration of natural numbers, see [17, 14], synthesis of sorting
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algorithms, see [9, 10]. Moreover, the second author gave a “pen and paper”
outline of using lazy thinking to solve the problem of Gröbner bases, i.e. how to
synthesize an algorithm for the computation of Gröbner bases, see [7].

In this paper we describe how an implementation of lazy thinking in the
Theorema system was used to solve the problem of Gröbner bases, following the
general outline from [7]. The implementation work was carried out by the first
author, under the guidance of the second author.

We first give an overview of the scheme based exploration model, place the
method of lazy thinking in the context of that model and describe the imple-
mentation of the method in Theorema, in Section 2. In Section 3 we describe the
problem of Gröbner bases, as formulated in Theorema, then describe the explo-
ration rounds (including applications of lazy thinking) that lead to the synthesis
of an algorithm that solves the problem. We compare our approach to related
work in synthesis and formal Gröbner bases theory in Section 4 and present our
conclusions and future work in Section 5.

2 Lazy Thinking

For the rest of the paper we use the notation conventions of the Theorema
language, a version of (untyped) predicate logic close to the natural (textbook)
style, see for example [11].

2.1 Scheme Based Theory Exploration

Let us first see how lazy thinking, a method for the synthesis of algorithms fits
in the broader picture of (scheme-based) theory exploration.

Mathematical Theories. A mathematical theory is described by its:
– Language: the collection of symbols denoting the functions, predicates and

constants of the theory (i.e. the notions of the theory).
– Knowledge base: the collection of formulae over the language that are true.

These are either axioms or theorems.
– Inference mechanism: the collection of inference mechanisms available to

reason in the theory. This will include rules for predicate logic, rewriting and
domain dependent inference rules (such as induction).

Knowledge Schemes. Conceptually, the accumulated mathematical experi-
ence of centuries of mathematics, is available in form of higher order knowledge
schemes that capture mathematical ideas.

For example the idea of a binary preorder relation r over some domain de-
scribed by the unary predicate p is captured by:

∀
p,r

(is-preorder[p, r] ⇔ ∀
p[x],p[y],p[z]

{
r[x, x]
(r[x, y] ∧ r[y, z]) ⇒ r[x, z] ),
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while

∀
f,g,h

(is-rec-nat-binary-fct-1r[f, g, h] ⇔ ∀
is-nat[x],is-nat[y]

{
f [x, 0] = g[x]
f [x, y+] = h[f [x, y]] )

represents the idea of a binary function f defined recursively in terms of unary
g, h over the natural numbers (described here by is-nat), see [17] for details.

As the examples above show, some knowledge schemes are completely ab-
stract, while others may depend on some domain. Moreover, other information
can be seen as part of the scheme (e.g. to reason about is-rec-nat-binary-fct-1r
one uses structural induction over naturals).

Theory Exploration. Given an exploration situation (a theory and a collec-
tion of knowledge schemes), an exploration step in the scheme based model is
represented by one of the following exploration rounds:

Introduce new notions (functions, predicates) using definition schemes. For
instance, using is-rec-nat-binary-fct-1r with g being the identity function and h
the successor, one can introduce a new binary function in the theory of natural
numbers.

Introduce and prove (or disprove) propositions about a notion in the theory
using proposition schemes. For instance, once a binary predicate has been in-
troduced in a theory, one could use is-preorder to ask whether the introduced
predicate is a preorder. The aim of this stage of exploration is to “saturate”
the knowledge base, so other potential properties can be investigated, such as
alternative definitions, interactions with other notions.

Introduce problems involving a notion using problem schemes and solve them
(by lazy thinking) using algorithm schemes. Problems are situations where a
solution is desired. For instance one could use is-preorder instantiated with a
new symbol (not present in the language of the theory) to ask for a binary
relation that should be a preorder. Algorithm schemes capture algorithmic ideas,
providing the structure of potential algorithmic solutions in terms of (unknown)
subalgorithms. A nontrivial example the application of lazy thinking is the main
subject of this paper and is discussed in the next Section.

Introduce new inference rules (e.g. by lifting knowledge or using inference
schemes). For instance, once a binary well founded ordering is introduced in a
theory, well-founded induction can be introduced as a new inference rule.

Note that the same knowledge scheme can play different roles in the explo-
ration (e.g. is-preorder can be both a proposition and a problem scheme).

2.2 Solving Problems by Lazy Thinking

Lazy thinking is a method for solving problems in the scheme based exploration
model:
− Start with a synthesis situation, i.e.:
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• a problem (specification) ∀
d[x]

P [x,A[x]] (A is a new symbol, the desired algo-

rithmic solution of P , a predicate describing the relation between the input
and the output of the desired algorithmic solution),

• the theory corresponding to the problem (the problem is well-understood, i.e.
all relevant concepts and properties are known),

• a collection of algorithm schemes, containing algorithm ideas (potential struc-
ture of algorithmic solutions).

− Select one of the algorithm schemes available, instantiate it with A, and new
symbols for the subalgorithms, and add this instantiation to the knowledge base.
− Set up the correctness proof, i.e. a proof of ∀

d[x]
P [x,A[x]], using the knowledge

available. The proof method to be applied is suggested by the selected algorithm
scheme. Note that the proof is likely to fail, due to the fact that we reason
about concepts about which we have no knowledge (the subalgorithms from the
algorithm scheme).
While the proof fails do:
– Analyze the failed proof, and
– Generate a conjecture from the failure, that will allow the proof to get over

the failing situation. Add the conjecture to the knowledge base and try the
proof again.

When the proof is completed, the result of the lazy thinking exploration round is
a proof of the correctness theorem (i.e. the instantiation of the selected scheme
solves the problem) provided that notions that satisfy the list of generated con-
jectures (if these contain symbols for the unknown algorithms) can be retrieved
from the knowledge base or can be invented (synthesized, again by lazy think-
ing), and the conjectures that do not contain unknown symbols can be proved.

The main ingredients of the lazy thinking method are the exploration cas-
cade that organizes the successive prove-analyze-conjecture exploration rounds
(outlined above), the proof failure analyzer and the conjecture generator. In the
following we discuss these last two.

2.3 Proof Failure Analysis

Before discussing the analysis of failed proofs, we make some remarks concerning
the proof system which can be used with lazy thinking.

We use a Gentzen style proof system. Proof situations consist of a goal and
available knowledge base. A proof consists of the application of a finite number of
inference rules that transforms an initial proof situation into one or more proof
situations until trivial proof situations (where the goal appears in the knowledge)
are reached.

In Theorema proof objects are represented as AND-OR (deduction) tree
where nodes are proof situations and (directed) edges indicate the application
of an inference rule.

For the formal details of deduction trees and the implementation in Theo-
rema, see [27].
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A proof fails when a nontrivial proof situation cannot be transformed by
any of the available inference rules. This means that neither the goal, nor the
knowledge can be changed.

The failure analysis component of lazy thinking takes a failed proof objects
and returns a conjecture skeleton {T KB,G}, where:
– G is the failing goal,
– T KB is obtained by collecting the temporary knowledge generated along the

branch leading to the failing situation, then filtering it to eliminate certain
formulae that are considered irrelevant.

So far we considered two strategies to filter the temporary knowledge:
– Allow only ground formulae, relevant to the failing goal (i.e. that contain

notions that appear in the failed goal).
– Allow ground formulae and certain universally quantified formulae, namely

those that cannot be used in knowledge rewriting (i.e. no universally quan-
tified implications, equivalences). We assume that the proof was produced
using “generalized knowledge rewriting”, i.e. universally quantified equiv-
alences, implications and equalities are used as rewrite rules. This is the
PC component of the PCS method – a method for theorem proving that
combines proving, computing and solving steps, see [12].

2.4 Conjecture Generation

The idea behind the conjecture generator is to “force” the proof to get over the
failure when the conjecture generated from it is added to the knowledge base.

The conjecture generator takes a conjecture skeleton and produces a conjec-
ture by applying generalization substitutions to the temporary knowledge and
failing goals (which will become respectively the left hand side and right hand
side of an implication). So far we considered two strategies, based on the shape
of the conjecture skeleton.

Term and constant generalizations. Consider ground conjecture skeletons.
– Term generalization substitutions τ : consist of substitutions of the form

A[. . . , aux[. . .], . . .] → x, where A is the algorithm being synthesized, aux
is one of the (unknown) subalgorithms in the algorithm scheme, x is a new
variable. The intuition is that applying the (still unknown) algorithm A to
some term itself containing unknown operations, all we can say that the
result will be some object (of the appropriate type), but nothing more about
its structure.

– Constant generalization substitutions, σ: generalize constants to variables.
These substitutions will be applied after term generalizations.
Using the above substitutions, the conjecture skeleton is transformed into a

conjecture (in the last step we collect all the new variables in the range r):

{T KB,G} → (T KBτ,σ ⇒ Gτ,σ) → ∀
r
(T KBτ,σ ⇒ Gτ,σ).
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Semantic matching generalization. We consider conjecture skeletons that contain
universally quantified formulae, i.e. T KB : T KB′ ∪ {∀

s
F}, such that F matches

G, yielding a substitution ϕ for the variables in the range s with terms from
G. The conjecture is assembled by constructing ∃

s
F ′ from the substitution ϕ,

where F ′ is the conjunction of the “v = t”’s (transform the substitution rules
of ϕ in equalities), replace the failing goal G with this new existential formula,
and delete ∀

s
F from the temporary knowledge. Then apply term and constant

generalizations τ, σ:

{T KB,G} → (T KB′τ,σ ⇒ ∃
s
F ′τ,σ) → ∀

r
(T KB′τ,σ ⇒ ∃

s
F ′τ,σ).

2.5 Implementation in Theorema

The implementation of lazy thinking is organized in the following packages cor-
responding to the components of lazy thinking: CascadeLTCascadeLTCascadeLT, FailureAnalyzerFailureAnalyzerFailureAnalyzer,
ConjectureGeneratorConjectureGeneratorConjectureGenerator.

In order to start a lazy thinking exploration process, the user of our im-
plementation in Theorema: (a) specifies the problem P (correctness statement),
(b) provides the relevant knowledge base Kb, including an instantiation of the
algorithm scheme proposed for solving the problem, (c) indicates the prover Pr
to be used in this process.

Automated lazy thinking exploration is then set up by calling:

Prove[P, using → Kb,
by → CascadeLT [Pr, GenerateConjectures, . . .],
ProverOptions → {. . .}]

where CascadeLT is the function implementing the lazy thinking exploration
process, GenerateConjectures is the function that implements failure analysis
and conjecture generation. Arguments irrelevant to this presentation are omitted.

The above represents the usual way in which lazy thinking is set up and called
from Theorema. However, during the various case study it has become apparent
that direct access (of the user) to FailureAnalyzer and GenerateConjectures
can be helpful tools in mathematical exploration (in understanding the reason
of failure in proofs). The selection of the conjecture skeleton generation and
generalization strategies are implemented as options. A detailed description of
the implementation can be found in [13].

2.6 Using Lazy Thinking

Although using an algorithm scheme to provide some structure for the proposed
solution certainly helps with the synthesis process, this is optional. This implies
that there are other ways to use the lazy thinking:
– Provide no information on the structure of the solution (and this will make

the synthesis process quite difficult).
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– Instead of using an algorithm scheme directly, preprocess it, i.e. prove some
of its properties, and use these in the exploration, instead of the scheme.

The second approach will be illustrated in the next Section.

3 Gröbner Bases Synthesis

In the following, we describe the synthesis situation consisting of the problem
of Gröbner bases, the algorithm scheme that will be used for the synthesis and
the knowledge base corresponding to the problem. We then present an outline of
the exploration rounds that lead to the synthesis of the solution to the Gröbner
bases problem and describe each of the steps in some detail.

3.1 Synthesis Situation: The Problem of Gröbner Bases

Let F , G denote sets of polynomials from some polynomial ring. We want
to find an algorithm GB that satisfies the following correctness theorem (the
Gröbner bases problem, expressed in Theorema syntax):

Theorem[“Groebner bases specification”, any[F ], with[is-finite[F ]],
is-finite-Groebner-basis[F, GB[F ]]

]

where

Definition[“is finite Groebner basis”, any[F, G], with[is-finite[F ]],

is-finite-Groebner-basis[F, G] ⇔ ∧




is-finite[G]
is-Groebner-basis[G]
ideal[F ] = ideal[G]

]

The above definition allows us to split the case study into three subproblems:
“is-Gröbner-basis”, “ideal equality” and “termination”, each of which will be
handled in a separate exploration round.

The domain in which this problem is formulated is that of polynomial rings
together with the following notions (and corresponding definitions and proper-
ties):
– a well-founded ordering on polynomials, ≺,
– a reduction relation modulo a polynomial set F , →F , such that if f →F g,

then g ≺ f ,
– a reduction operation modulo a polynomial, rd, such that for g ∈ F ,

f →g rd[f, g],
– a total reduction operation modulo a polynomial set, trd, such that

f→?
F trd[f, F ], and trd[f, F ] is not reducible,

– is-Church-Rosser [→], i.e. the relation → has the Church Rosser property
(confluence).
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Due to lack of space, we refer the reader to [7, 13] for the full definitions and
properties (such as Newman’s lemma), which are standard for Gröbner bases
theory. Here we only mention the most relevant results for the synthesis process.

As the inference mechanism, we use BasicProver, a Theorema user prover
implementing a combination of the PCS method (knowledge rewriting), rewrit-
ing, simplification.

To complete the description of the synthesis situation, the algorithm scheme
we will use, “critical-pair/completion” (CPC) (formulated for the polynomial
domain, in Theorema syntax) is:

Algorithm[“CPC scheme”, any[F, g1, g2, p],

GB[F ] = GB[F, pairs[F ]]

GB[F, 〈〉] = F

GB[F, 〈〈g1, g2〉, p〉] =
where[f = lc[g1, g2], h1 = trd[rd[f, g1], F ], h2 = trd[rd[f, g2], F ],





GB[F, 〈p〉] ⇐ h1 = h2

GB[F a df [h1, h2], 〈p〉 ³
〈
〈Fk, df [h1, h2]〉 |

k=1,...,|F |

〉
] ⇐ otherwise

]

]

The CPC idea was applied independently to solve problems in automated
theorem proving (resolution [23]), polynomial ideal theory (Gröbner bases), and
word problems in universal algebras (the Knuth-Bendix procedure [18]). A pre-
sentation of the common features of these algorithms (i.e. the CPC idea) is given
in [3].

The CPC idea can be applied in any setting where we have a “reduction”
relation →F , generated by a set F of finitely many objects where we want to
solve a “word problem” on the respective domain, i.e. for any objects s, t, is (s, t)
in the reflexive, symmetric, transitive closure of the reduction relation (↔?

F )?
Note that this is the case for our setting.

The CPC idea is: construct a set G such that ↔?
F ≡ ↔?

G and →G has the
Church-Rosser property (for these relations the word problem can be decided),
by starting from F and a set of “critical situations”, for which the Church-Rosser
property is checked. If the property holds, the next critical situation is checked,
otherwise, the set is “completed” with an element that makes the property hold.

In Algorithm[“CPC Scheme”], the new symbol GB is defined in terms of two
auxiliary symbols lc and df . To satisfy the conditions of CPC, we add to the
scheme the following specification:

∀
g1,g2

∧ {
rd[lc[g1, g2], g1] ≺ lc[g1, g2]
rd[lc[g1, g2], g2] ≺ lc[g1, g2]

,
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which immediately, from the definition of rd (see [7, 13]) implies

∀
g1,g2

∧ {
lp[g1]|lc[g1, g2]
lp[g2]|lc[g1, g2]

,

where lp is the leading power product of its argument.

3.2 Preprocessing CPC

A direct induction proof of properties of the Algorithm[”CPC scheme”], our
proposed solution for the Gröbner bases problem, is difficult to set up, due to
the complexity of the recursive calls. Rather, we derive consequences of the
schemes (we preprocess the scheme) and use this knowledge in the lazy thinking
synthesis process.

We first introduce an inference rule to reason about the CPC scheme. Note
that it is not at all clear that the algorithm terminates. In fact it is well known
that the resolution and Knuth-Bendix algorithms (both instances of CPC) do
not always terminate.

Informally, to prove P: ∀
F
P[F, GB[F ]] of GB, take some C a ternary property

and F0 (playing the role of the initial argument), G0 (playing the role of an
intermediary polynomial set generated during the execution), g1, g2, p0 arbitrary
but fixed, and prove:
– “base case”: C[F0, F0, pairs[F0]] (i.e. C holds for the initial call);
– “step”:

Case h1 = h2: C[F0, G0, 〈〈g1, g2〉, p0〉] ⇒ C[F0, G0, 〈p0〉],
Case h1 6= h2:

C[F0, G0, 〈〈g1, g2〉, p0〉] ⇒ C[F0, G0 a df [h1, h2], 〈p〉 ³
〈
〈Fk, df [h1, h2]〉 |

k=1,...,|F |

〉
]];

– “final step”: C[F0, G0, 〈〉] ⇒ P[F0, G0].
In the above h1, h2 are as in Algorithm[“CPC Scheme”].

The above rule works only if the algorithm terminates (i.e. “final step” is
reached). An extra difficulty in the use of this rule is the selection of an appropri-
ate C. As it turns out, a particular choice (C[F, G, B] ⇔ (P[F, G]∧B ⊆ G×G)),
greatly simplifies the inference rule, leaving only the “step” h1 6= h2 for verifica-
tion. This, however, limits the properties of GB that can be proved to those that
are invariant, i.e. that hold for all intermediary sets (including the final one).

We implemented the above inference rule in Theorema as the CPCInduction
user prover, that combines the invariant rule with BasicProver. In effect, we
enhanced the inference mechanism of the theory with this invariant proof rule
for the CPC scheme.

Using CPCInduction we proved invariant properties such as ∀
F
F ⊆ GB[F ].

Using this, it is easy to prove and then use in the exploration the following
property of the CPC scheme:

∀
g1,g2,F

∨ {
h1 = h2

df [h1, h2] ∈ GB[F ]
.
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3.3 Is-Gröbner-Basis

We now consider the subproblem “is-Gröbner-Basis”, which can immediately be
reduced to the proving that the reduction relation modulo the polynomial set
has the Church-Rosser property (Theorem[“Groebner basis specification:2”] in
our Theorema case study). The knowledge base corresponding to this synthe-
sis situation includes the CPC property mentioned in the previous subsection,
Newman’s lemma, which reduces the Church-Rosser property to local conflu-
ence, definitions and properties of the notions involved. All are collected in the
Theorema construct Theory[“GB knowledge”] (see [13] for details). Reasoning
is done through the BasicProver.

The following is the call of lazy thinking, and the output of the method (the
conjectures generated). Lazy thinking also produces the proof attempts, but due
to the limited space we refer the reader to [7] for the “pen and paper” proof, or
to [13] for the proof produced by Theorema (which is in fact close to textbook
mathematics).

Prove[Theorem[“Groebner basis specification:2”],
using → Theory[“GB knowledge”],
by → CascadeLT [BasicProver, GenerateConjectures, . . .],
P roverOptions → {GRWTarget → {”goal”, ”kb”},

RWExistentialGoal → True}]

LAZY THINKING::::: The proof fails.
After analysing the failing proof, the following conjecture is added to the knowledge base:
•lf[Lemma (specification 2): 1,

∀
g05g05g05,g06g06g06,p04p04p04

(
(lp[g05g05g05 ]|p04p04p04) ∧ (lp[g06g06g06 ]|p04p04p04) ∧ is−pp[p04p04p04 ] ⇒ ∃

aaa,qqq
(p04p04p04 = aaa ∗ qqq ∗ lc[g05g05g05 ,g06g06g06 ])

)
, •finfo[]

]

Now attempt the proof with the updated knowledge base.
LAZY THINKING::::: The proof fails.
After analysing the failing proof, the following conjecture is added to the knowledge base:
•lf[Lemma (specification 4): 1,

∀
F04F04F04,g09g09g09,g10g10g10

(df[trd[rd[lc[g09g09g09 ,g10g10g10 ],g09g09g09 ], GB[F04F04F04 ]], trd[rd[lc[g09g09g09 ,g10g10g10 ],g10g10g10 ], GB[F04F04F04 ]]] ∈ GB[F04F04F04 ] ∧
g09g09g09 ∈ GB[F04F04F04 ] ∧ g10g10g10 ∈ GB[F04F04F04 ] ⇒
(trd[rd[lc[g09g09g09 ,g10g10g10 ],g09g09g09 ], GB[F04F04F04 ]] = trd[rd[lc[g09g09g09 ,g10g10g10 ],g10g10g10 ], GB[F04F04F04 ]])), •finfo[]]
Now attempt the proof with the updated knowledge base.

LAZY THINKING ::::: The proof is completed!

After some variable renaming, and together with the immediate consequence
of the CPC scheme introduced in Subsection 3.1, Lemma (specification 2): 1,
generated automatically by the system really is:

∀
g1,g2,p

((is-pp[p] ∧ lp[g1]|p ∧ lp[g2]|p) ⇒ ∃
a,q

p = a ∗ q ∗ lc[g1, g2]),

∀
g1,g2

∧ {
lp[g1]|lc[g1, g2]
lp[g2]|lc[g1, g2]

,

The reader will recognize in this a definition of the least common multiple of
lp[g1] and lp[g2] (lp is the leading power product of its argument, is-pp is true if
its argument is a power product).
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Lemma (specification 4): 1 generated in the second round is not very useful:
the conjecture generator did not eliminate the GB symbol, so it is a conjecture
on all unknown symbols. It does not harm though: it states that if the term
df [. . . , . . .] stays in the final set, the problem can be solved.

In the call to the lazy thinking method above, ConjectureGenerator used
the semantic matching generalization strategy. In [13] we show that the weaker
strategy (term generalization) is not sufficient to solve this problem.

3.4 Ideal Membership

For the ideal membership problem, one of the directions is immediate
(∀
F
ideal[F ] ⊆ ideal[GB[F ]]), due to the fact that the initial set is a subset of

the final result.
The other direction (∀

F
ideal[GB[F ]] ⊆ ideal[F ], Theorem[“Groebner basis

specification: 3 ⊆”]) is proved using the CPCInduction prover. The property is
invariant. The intermediary sets generated by the execution of
Algorithm[“CPC Scheme”] all generate the same ideal. We collect the relevant
knowledge in Theory[“GB knowledge: ideals”], see [13], and then we call lazy
thinking (again referring the reader to [13] for the generated proofs):

Prove[Theorem[“Groebner basis specification: 3 ⊆ ”],
using → Theory[“GB knowledge: ideals”],
by → CascadeLT [CPCInduction, GenerateConjectures, . . .],
P roverOptions → {GRWTarget → {”goal”, ”kb”}}]

LAZY THINKING::::: The proof fails.
After analysing the failing proof, the following conjecture is added to the knowledge base:
•lf[Lemma (specification 2): 1,

∀
F02F02F02,G102G102G102,g302g302g302,g402g402g402

(g302g302g302 ∈ G102G102G102 ∧ g402g402g402 ∈ G102G102G102 ∧ trd[rd[lc[g302g302g302 ,g402g402g402 ],g302g302g302 ],G102G102G102 ] 6=
trd[rd[lc[g302g302g302 ,g402g402g402 ],g402g402g402 ],G102G102G102 ] ∧ ideal[G102G102G102 ] ⊆ ideal[F02F02F02 ] ⇒
ideal[G102G102G102 _ df[trd[rd[lc[g302g302g302 ,g402g402g402 ],g302g302g302 ],G102G102G102 ], trd[rd[lc[g302g302g302 ,g402g402g402 ],g402g402g402 ],G102G102G102 ]]] ⊆
ideal[F02F02F02 ]), •finfo[]]
Now attempt the proof with the updated knowledge base.

LAZY THINKING ::::: The proof is completed!!!!

After one lazy thinking exploration round the proof succeeds. Although the
generated Lemma (specification 2): 1 (no conflict with the conjecture from the
previous Subsection, as these are separate sessions) looks potentially intimidat-
ing, what it really says is that for an intermediary set G, and the initial F ,
ideal[G a df [h1, h2]] ⊆ ideal[F ] (with h1, h2 as in Algorithm[“CPC Scheme”]).

This is as far as lazy thinking will take us. But can we find any function that
satisfies this specification? From the definitions of reduction and total reduction,
see [7], both h1 and h2 can be written as (linear) combinations of elements from
G (and by application of induction, essentially F ) plus lc[g1, g2]. We want to
show that df [h1, h2] is a (linear) combination of elements form F . It is clear that
if we reduce the common lc[g1, g2] by substraction, we are left with a (linear)
combination of elements from F . Therefore, with some simple exploration steps,
we identified the substraction operation on polynomials as satisfying df .
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Now both lc and df are known (least common multiple of the leading power
products and substraction, respectively). Together, these reconstruct the essen-
tial notion of S-polynomials in Gröbner bases theory, see [4]. With these lc and
df we can prove termination and complete the synthesis.

3.5 Termination

Showing termination amounts to showing that we can find a well-founded order-
ing on the arguments in the recursive call of GB. We look for a lexicographic
ordering: we first compare the first argument (polynomial set), w.r.t. a well-
founded ordering. If we have equality, we move to comparing the second argu-
ment (set of pairs of polynomials):
– In the case h1 = h2, the lexicographic ordering clearly holds. The first argu-

ment does not change in the recursive call. The second argument decreases
w.r.t the length of the tuples (which is well-founded).

– In the other case, however, it is not clear that the argument decreases. In
fact we add elements to the first argument in the recursive call (and also to
the second).
In the theory of Gröbner bases, it can be shown, for the lc (least common

multiple) and df (substraction) discovered in previous lazy thinking exploration
rounds, that if h1 6= h2, then the leading power product of h1 − h2 is not a
multiple of any of the leading power products already in the polynomial set.

Then, by Dickson’s lemma, see [15], there is no infinite such sequence of
power products. Since to every polynomial added to the polynomial set there is a
corresponding power product that verifies the condition in Dickson’s lemma, this
means that only finitely many new polynomials can be added to the polynomial
set. This ensures termination.

This is the usual way to prove termination in Gröbner bases theory, see,
for instance, [2] where Dickson’s lemma was reinvented. We included the ter-
mination argument for completeness purposes, as this part of the case study is
ongoing work in Theorema. We could also refer to previous work in Gröbner
bases such as [26, 22] where termination is proved, i.e. use those results. Nat-
urally, the formalisms are different and a complete Theorema exploration is
preferable. However, we want to emphasize that the essence of this case study
– algorithm synthesis – is described in the previous Subsections, and is carried
out in Theorema.

Now the synthesis process is complete: We have synthesized by lazy thinking
exploration the unknown subalgorithms in Algorithm[“CPC scheme”], essen-
tially reconstructing the crucial notion of S-polynomials and through the syn-
thesis process provided the proof of correctness. We also proved termination,
which, in turn, ensures that the inference rules we used to prove properties of
the algorithm scheme are correct.
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4 Related Work

Algorithm (program) synthesis is a well established research field, and an overview
of the various approaches can be found in [13], or the survey papers [20, 1]. Lazy
thinking is similar to existing approaches, such as deductive approaches [21, 19],
in that a proof of the correctness of the specification is set up, but different
in the method for obtaining the algorithm (specifications for subalgorithms vs.
instantiation of metavariables).

Also, our use of algorithm schemes has the same motivation with that of
scheme based synthesis in logic programming such as [16] or functional pro-
gramming like [25]. However, the focus of lazy thinking is different. Both the
scheme based approaches mentioned focus on synthesis by transformation, where
a framework and strategies for using algorithm schemes are available, and they
were proved offline to ensure correctness of transformations. Lazy thinking is
working on proving online correctness of programs (at various levels of abstrac-
tion). Failure analysis and conjecture generation are the identifying features of
lazy thinking, when compared to other approaches.

The method of lazy thinking was presented in our earlier work, [9]. In the
work presented in this paper we added new failure analysis and conjecture gen-
eration strategies and we integrate lazy thinking in the exploration model.

The synthesis of a Gröbner bases algorithm is, to our knowledge, unique.
Other approaches to formal Gröbner bases theory, such as [26, 22, 24] are for-
malizations of parts of the theory, and most focus on the proof of termination
(Dickson’s lemma). Some algorithms are extracted from constructive proofs, but
we feel there is no invention involved: all the relevant knowledge (like the defi-
nition of the S-polynomials) is provided.

5 Conclusions

In this paper we presented the lazy thinking algorithm synthesis method in the
context of a scheme-based theory exploration model and presented its imple-
mentation in the Theorema system.

We used our implementation to synthesize an algorithm for Gröbner bases
computation, following a “pen and paper” outline given in [7]. The development
in this paper is that the case study was explored with the Theorema implemen-
tation of lazy thinking, and we solved many of the things left implicit in the
outline: the preprocessing of CPC, the generalization strategies needed for the
synthesis of lc, the synthesis (retrieval) of df .

Lazy thinking (as part of the scheme based exploration model) has a great
pedagogical value, giving insight into how new notions can be invented as solu-
tions to problems. The case study we have successfully handled shows that the
method is suitable in nontrivial case studies.

Future directions for research include the integration of lazy thinking into
a framework to support the scheme-based theory exploration (based on func-
tors, allowing queries on theories and scheme libraries), carrying out other case
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studies, the investigation and development of libraries of schemes similar to the
hierarchy of schemes described in [25].

For the Gröbner bases case study, the development of the termination proof
in the scheme-based exploration model is ongoing. We develop a theory of well-
founded relations, and then apply this to establish the well-foundedness of the
ordering between the recursive calls of the GB algorithm. We also look into the
derivation by lazy thinking of improved algorithms (criteria, reduced Gröbner
bases).
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[4] B. Buchberger. Introduction to Gröbner Bases. In B. Buchberger and F. Winkler,
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Abstract. We present the theoretical aspects and a prototype imple-
mentation in the Theorema system of a method for the verification of re-
cursive imperative programs. The method is based on forward symbolic
execution and functional semantics and generates first order verification
conditions for the total correctness which use only the underlying theory
of the program. All verification conditions are generated automatically
by our prototype implementation in the frame of the Theorema system
based on Mathematica.
The termination property is expressed as an induction principle depend-
ing on the structure of the program with respect to recursion. It turns out
that part of the verification conditions (notably the termination condi-
tion) are crucial for the existence of the function defined by the program,
without which the total correctness formula is trivial due to inconsistency
of the assumptions.
The formal description of the method is the basis for the implementation
and also for the proof of its correctness.

1 Introduction

We present a formal verification method for imperative programs based on sym-
bolic execution [4, 1], forward reasoning [5, 3] and functional semantics [6]. The
distinctive features of our approach are:

– All verification conditions are formulated in the theory of the objects which
are manipulated by the program (the object theory – see below).

– The notions of program, semantics, verification condition, and termination
are precisely formalized in predicate logic.

– Termination is treated in a purely logical way, namely as existence and
uniqueness of the function implemented by the program.

Our approach is purely logical. We assume that the properties of the con-
stants, functions and predicates which are used in the program are specified in
an object theory Υ . (By a theory we understand a set of formulae in the language
of predicate logic with equality.) For the purpose of reasoning about imperative
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programs we construct a certain meta–theory containing the properties of the
meta–predicate Π (which checks a program for syntactical correctness) and the
meta–functions Σ (which defines the semantics of a program), Γ (which gen-
erates the verification conditions) and trm (which generates one termination
condition). The programming constructs (statements), the program itself, as
well as the terms and the formulae from the object theory are meta–terms from
the point of view of the meta-theory, and they behave like quoted (because the
meta–theory does not contain any equalities between programming constructs,
and also does not include the object theory).

The programming constructs are: abrupt statement (Return), assignments
(allowing recursive calls) and conditionals (If with one and two branches). Re-
cursive calls are indicated by the presence of the function symbol f , convention-
ally corresponding to the function realized by the program. A program is a list
of statements, it takes as formal arguments a certain number of variables (de-
noted conventionally by x) and it returns a single value (denoted conventionally
by y). The meta–predicate Π checks whether a program is syntactically correct,
and also that each branch terminates with Return and that each variable is
initialized before its usage. (We call these variables active.)

The semantics of a program is defined via Σ as being an implicit definition at
object level (that is, using only the signature of the object theory) of the function
(conventionally denoted as f) which is implemented by the program. Practically,
Σ works by forward symbolic execution on all branches of the program, using as
state the current substitution for the active variables. Σ produces a conjunction
of clauses – conditional definitions for f [x]. Each clause depends on the accu-
mulated [negated] conditions of the If statements leading to a certain Return
statement, whose argument (symbolically evaluated) represents the correspond-
ing value of f [x]. Note that Σ effectively translates the original program into
a functional program. From this point on, one could reason about the program
using the Scott fixpoint theory ([5], pag. 86), however we prefer a purely logical
approach.

The meta–function Γ produces the verification conditions as a conjunction
of formulae at object level. The verification of the program is performed with
respect to a given specification, composed of two predicates: the input condition
If [x] and the output condition Of [x, y], whose definitions are assumed to be
present in the object–theory.

Moreover, some of the functions present in the object theory also have a spec-
ification – we call these additional functions. These functions will not be present
in the verification conditions, but only their specifications. Typical examples of
additional functions are those implemented by other programs.

The other functions from the object theory (we call them basic) have only
input conditions, but no output conditions. These functions will occur in the
verification conditions, thus the proof of such conditions will use the properties
of the basic functions from the object theory. Typical examples of basic functions
are the arithmetic operations in various number domains.
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Γ operates similarly to Σ by using symbolic execution on all branches of the
program, but in addition generates formulae using the following principles:

– coherence (safety): the arguments of every function (including the currently
defined f) call must be satisfy the respective input condition;

– functional correctness: the return value on each branch must satisfy the
output condition;

All the verification conditions are first order formulae at object level. This
includes the termination condition, because the universally quantified predicate
present in the induction principle is represented by a new constant.

The meta-function Θ generates one termination condition: a certain induc-
tion principle corresponding to the structure of the recursive calls, which in fact
ensures the existence and uniqueness of the function f defined implicitly by Σ.

1.1 Related Work

Our approach follows the principles of the symbolic execution approach intro-
duced in [4], but gives formal definitions in a meta-theory for the for meta-level
functions and predicate which characterize the object computation.

These definitions give the possibility of reflective view of the system by de-
scribing how the data (the state, the program, the verification conditions) are
manipulated and by introducing a causal connection between the data and the
status of computation (a certain statement of the program determines a certain
computation of Σ[P ] and Γ to be performed).

We mention that our approach keeps the verification process very simple: the
verification conditions generated are first order logic formulae and the proofs of
correctness is kept at object-level without introducing a model of computation.

Approaches for solving the correctness of symbolic executed programs exists
due to [5, 8, 2]; for the imperative programs containing assignments, conditionals
and while loops bounded on the number of times they are executed, the proof
of correctness is given by analyzing the verification conditions on each branch
of the program. For the programs containing loops with unbounded number
of iterations, the branches of the program are infinite and have to be traversed
inductively in order to prove/disprove their correctness. In the inductive traversal
of the tree, additional assertions have to be provided, called inductive assertions.
But the inductive assertions method applies to partial correctness proofs [5],
while our approach concentrates in proving the total correctness of programs.

2 The Formal Meta–Theory

2.1 Program Syntax

The meta–level predicate Π checks whether a program is syntactically correct
and additionally that every variable (except the input variables) is used only
after being assigned, and that each branch contains Return.
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As states of the execution we use substitutions σ (set of replacements of the
form {var → expr}). We sometimes write {var → expr} for {var1 → expr1,
var2 → expr2, ...}. We denote by x̄ the sequence of input variables. The meta–
function Vars returns the variables which occur in a term.

The formulae composing the meta–definitions below are to be understood as
universally quantified over the meta–variables of various types as described in the
sequel: We denote by t ∈ T a term from the set of object level terms, by v ∈ V a
variable from the set of variables, by V ⊂ V the set of active variables and by ϕ
an object level formula. PT , PF , P are tuples of statements representing parts of
programs: PT is the tuple of statements executed if ϕ is evaluated to True, PF

in the case of False evaluation of ϕ, while P represents the rest of the program
to be executed. The tuple PF can be also empty, case which corresponds to the
one branch If statement.

Definition 1

1. Π[P ] ⇐⇒ Π[{x̄}, P ]

2. Π[V, 〈Return[t]〉 ^ P ] ⇐⇒ V ars[t] ⊆ V

3. Π[V, 〈v : = t〉 ^ P ] ⇐⇒ ∧ {
V ars[t] ⊆ V
Π[V ∪ {v}, P ]

4. Π[V, 〈If[ϕ,PT , PF ]〉 ^ P ] ⇐⇒ ∧




V ars[ϕ] ⊆ V
Π[V, PT ^ P ]
Π[V, PF ^ P ]

5. Π[V, P ] ⇐⇒ F, in all other cases

2.2 Program Semantics

The meta–level function Σ creates an object–level formula containing a new
function constant f . We consider this formula as being the semantics of the
program P in the following sense: the function implemented by the program
satisfies Σ[P ].

The formula Σ[P ] has the shape:

∀
x̄:If

∧{
pi[x̄] ⇒ (f [x̄] = gi[x̄])

}n

i=1

(We denoted by ,,x̄ : If” in the condition “x̄ satisfies If”.) Here f is a new
(second order) symbol – a name for the function defined by the program. In the
case of recursive programs, f may occur in some pi’s and gi’s.

Each of the n paths of the program has associated a object–level formula
pi[x] – the accumulated If–conditions on that path, and the object–level term
gi[x] – the symbolic expression of the return value obtained by composing all
the assignments (symbolic execution). Note that pi[x] and gi[x] do not contain
other free variables than x.
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Definition 2

1. Σ[P ] = ∀̄
x

(
Σ[{x̄ → x̄0}, P ]{x̄0→x̄}

)

2. Σ[σ, 〈Return[t]〉 ^ P ] = (f [x̄0] = tσ)

3. Σ[σ, 〈v := t〉 ^ P ] = Σ[σ ◦ {v → tσ}, P ]

4. Σ[σ, 〈If[ϕ,PT , PF ]〉 ^ P ] =
∧ {

ϕσ =⇒ Σ[σ, PT ^ P ]
¬ϕσ =⇒ Σ[σ, PF ^ P ]

Remark 1. The way Σ handles the If statement insures: ∀̄
x

∨
i

pi[x̄] = If [x̄] (all

branches are covered) and ∀
i 6=j
¬(∀̄

x
pi[x̄] ∧ pj [x̄]) (branches are mutually disjoint).

2.3 Partial Correctness

As we mentioned before, the meta–level function Γ generates two kinds of veri-
fication conditions: coherence (safety) conditions and functional conditions.

In this section we present the first two groups of conditions, which together
insure partial correctness. The termination condition is subject to next section.

The coherence conditions have the shape Φ ⇒ Ih[t1, t2, . . .], where Ih is the
input condition of h, and t1, t2, . . . are the symbolic values of the function call.
The formula Φ accumulates the conditions on the current branch, namely:

– the conditions from If statements;
– the input conditions and the output conditions for the previous function

calls.

We consider γ, γ - a variable or a constant and respectively a sequence of vari-
able and/or constants from the theory Υ , basic functions h, additional functions
g, arbitrary function u. The symbol y is a new constant name. An expression like
eτ←w denotes that τ is replaced by w in e, where w is a new variable name. The
function ,,OccursIn” returns True if the first argument appears in the second
argument, and False otherwise.

Definition 3

1. Γ [P ] = ∀̄
x

(
Γ [{x̄ → x̄0}, If [x̄0], P ]{x̄0→x̄}

)

2. Γ [σ, Φ, 〈Return[γ]〉 ^ P ] =
(
Φ ⇒ Of [x̄0, γσ]

)

3. Γ [σ, Φ, 〈Return[tτ←u[γ]]〉 ^ P ] = Γ [σ, Φ, 〈w := u[γ], Return[tτ←w]〉 ^ P ]

4. Γ [σ, Φ, 〈v := γ〉 ^ P ] = Γ [σ ◦ {v → γσ}, Φ, P ]

5. Γ [σ, Φ, 〈v := h[γ]〉 ^ P ] =
∧ {

Φ ⇒ Ih[γσ]
Γ [σ ◦ {v → h[γσ]}, Φ ∧ Ih[γσ], P ]
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6. Γ [σ, Φ, 〈v := g[γ]〉 ^ P ] =
∧ {

Φ ⇒ Ig[γσ]
Γ [σ ◦ {v → c}, Φ ∧ Ig[γσ] ∧Og[γσ, c], P ]

7. Γ [σ, Φ, 〈v := tτ←u[γ]〉 ^ P ] = Γ [σ, Φ, 〈w := u[γ], v := tτ←w〉 ^ P ]

8. Γ [σ, Φ, 〈If[ϕτ←u[γ], PT , PF ]〉 ^ P ] =
Γ [σ, Φ, 〈w := u[γ], If[ϕτ←w, PT , PF ]〉 ^ P ]

9. Γ [σ, Φ, 〈If[ϕ, PT , PF ]〉 ^ P ] =
∧ {

Γ [σ, Φ ∧ ϕσ, PT ^ P ]
Γ [σ, Φ ∧ ¬ϕσ, PF ^ P ]

The order of the above clauses of Γ has a semantic meaning. Namely, we use this
as an abbreviation for additional conditions which should be added to clauses of
the definition in order to specify that, for instance, the equality (3.9) is applied
only if no subterm of ϕ is of the form u[γ] – as specified in the clause (3.8).

2.4 Termination

We want to generate verification conditions which ensure that a program is
correct with respect to a specification composed of two object–level formulae:
the input condition If [x] and the output condition Of [x, y]. Apparently, the
correctness could be expressed as: “The formula ∀

x
If [x] ⇒ Of [x, P [x]] is a logical

consequence of the theory Υ augmented with Σ[P ] and with the verification
conditions.” However, this always holds in the case that Σ[P ] is contradictory to
Υ, which may happen when the program is recursive. Therefore, it is crucial that
the existence (and possibly the uniqueness) of an f satisfying Σ[P ] is a logical
consequence of the object theory augmented with the verification conditions. More
concretely, before using Σ[P ] as an assumption, one should prove ∃

f
Σ[P ]. The

later is ensured by the termination condition which is expressed as an induction
scheme developed from the structure of the recursion.

The meta–function Θ generates the termination condition (for simplicity of
presentation we assume that Return, assignments, and If conditions do not con-
tain composite terms – the elimination of these by introducing new assignments
can be done as in the definition of Γ ).

Definition 4

1. Θ[P ] =
( ∀
x̄:If

Θ[{x̄ → x̄0}, T, P ]{x̄0←x̄}
)

=⇒ ∀
x̄:If

π[x̄]

2. Θ[σ, Φ, 〈Return[γ]〉 ^ P ] =
(
Φ ⇒ π[x̄0]

)

3. Θ[σ, Φ, 〈v := γ〉 ^ P ] = Θ[σ ◦ {v → γσ}, Φ, P ]

4. Θ[σ, Φ, 〈v := h[γ]〉 ^ P ] = Θ[σ ◦ {v → h[γσ]}, Φ, P ]

5. Θ[σ, Φ, 〈v := f [γ]〉 ^ P ] = Θ[σ ◦ {v → y}, Φ ∧Of [γσ, y] ∧ π[γσ], P ]

6. Θ[σ, Φ, 〈v := g[γ]〉 ^ P ] = Θ[σ ◦ {v → y}, Φ ∧Og[γσ, y], P ]



Practical Program Verification by Forward Symbolic Execution 53

7. Θ[σ, Φ, 〈If[ϕ, PT , PF ]〉 ^ P ] =
∧ {

Θ[σ, Φ ∧ ϕσ, PT ^ P ]
Θ[σ, Φ ∧ ¬ϕσ, PF ^ P ]

One single formula is generated, which uses a new constant symbol π standing
for an arbitrary predicate. The function Θ operates similarly to Γ by inspecting
all possible branches and collecting the respective If conditions (in Φ). Moreover
it collects the characterizations by output conditions of the values produced by
calls to additional functions (4.6), including for the currently defined function
f . However, in the case of f (4.5) one also collects the condition π[γσ] – that is
the arbitrary predicate applied to the current symbolic values of the arguments
of the recursive call to f . On each branch, the collected conditions are used as
premise of π[x̄0], and then the conjunction of all these clauses (after reverting
to free variables x̄) is universally quantified over the input condition and is used
as a premise in the final formula.

Example 1 (Primitive recursive functions:). If Σ[P ] is

q[x] ⇒ f [x] = s[x], ¬q[x] ⇒ f [x] = c[x, f [r[x]]],

then the termination condition is:
( ∀
x:If

(q[x] ⇒ π[x]) ∧ ((¬q[x] ∧ π[r[x]]) ⇒ π[x])
) ⇒ ∀

x:If

π[x].

Note that in this formula π a new symbol standing for an arbitrary predicate.
As in illustration, when If [x] is “x natural”, q[x] is x = 0 and r[x] is decrement,
then this is the usual induction over natural numbers.

The termination condition is always an implication between two formulae quan-
tified over all x satisfying If , with the right-hand side being as above. The
left-hand side of the termination condition is a (quantified) conjunction of im-
plications having f [x] on the right-hand side, each implication corresponding to
one branch of the program. Namely, if the program branch is represented in Σ[P ]
by pi[x] ⇒ (f [x] = gi[x]), then the corresponding implication in the termination
condition is: (pi[x] ∧ Ri[x]) ⇒ π[x], where Ri[x] is the conjunction of a number
of atoms of the form π[t], one for each occurrence of f [t] in gi[x].

The rule above is applicable only for programs which do not contain nested
recursions (that is, terms of the form f [. . . , f [. . .], . . .]), and also no occurrences
of f in the If conditions. Otherwise, f would occur in the termination condition,
which we do not want to allow. In this case one can eliminate the un-wanted
occurrences of f by using new (universally quantified) variables pre-conditioned
by the output condition Of – as in the function Γ above.

We conjecture that (for terminating programs) the formula ∃
f
! ∀
x:If

Σ[P ] is a

logical consequence of the the above termination condition. To prove the exis-
tence of f appears to be a challenge, however we were able to develop the proof
for the general case of primitive recursive functions, as well as for some particular
examples with nested occurrences of P (the McCarthy 91 function, matching of
expressions).
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The uniqueness is a straightforward consequence of the termination condi-
tion, by considering π[x] as f1[x] = f2[x], where f1 and f2 are two functions.
The property π holds for q[x] and by using the termination condition we prove
that holds also in the case ¬q[x]. Therefore π holds for all x.

Furthermore, if we assume the existence of f , then, by setting π[x] to If [x] ⇒
Of [x, f [x]], one obtains in a straightforward way a proof of the total correctness
formula ∀

x
IP [x] ⇒ OP [x, P [x]] from the other verification conditions.

3 Implementation and Example

Our prototype implementation (FwdVCG) is based on the theoretical aspects pre-
sented in the previous sections. It is built on top of the computer algebra system
Mathematica and uses Theorema building blocks and procedural language for
writing imperative programs.

Example 2. We illustrate with the following code fragment:
Program[”GCD”, GCD[↓ a, ↓ b]],
Module[{}],
If[a = 0,
Return[b]];
If[b ! = 0,
If[a > b,
a := GCD[a - b, b],
a := GCD[a, b - a]]];

Return[a]],
Pre → a ≥ 0 ∧ b ≥ 0,
Post→ ∃

k1
∃
k2

((a = k1 ∗ y) ∧(a = k2 ∗ y))

The automatically generated verification conditions for the previous example
are the following:

(a ≥ 0 ∧ b ≥ 0) ∧ (a = 0) ⇒ ∃
k1
∃
k2

((a = k1 ∗ b) ∧ (b = k2 ∗ b)) (1)

(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a > b ⇒ a ≥ b (2)
(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a > b ∧ a ≥ b ⇒ a− b ≥ 0 ∧ b ≥ 0 (3)
(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a > b ∧ a ≥ b ∧ (a− b ≥ 0 ∧ b ≥ 0)∧
∃
k1
∃
k2

((a− b = k1 ∗ y1) ∧ (b = k2 ∗ y1)) ⇒ ∃
k1
∃
k2

((a = k1 ∗ y1) ∧ (b = k2 ∗ y1))

(4)

(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a ≯ b ⇒ a ≥ b (5)
(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a ≯ b ∧ a ≥ b ⇒ a ≥ 0 ∧ b− a ≥ 0 (6)
(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a ≯ b ∧ a ≥ b ∧ (a ≥ 0 ∧ b− a ≥ 0)∧
∃
k1
∃
k2

((a = k1 ∗ y2) ∧ (b− a = k2 ∗ y2)) ⇒ ∃
k1
∃
k2

((a = k1 ∗ y2) ∧ (b = k2 ∗ y2))

(7)

(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ ¬(b 6= 0) ⇒ ∃
k1
∃
k2

((a = k1 ∗ a) ∧ (b = k2 ∗ a)) (8)
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Remark 2. 1. Each verification condition is universally quantified; the bound
variables are: a, b, y1, y2 ;

2. The function GCD can not occur in the verification conditions thus their
occurrences are replaced by the variables y1 and y2 (e.g. (4), (7));

3. The input condition of the basic function ,,-”has to be fulfilled thus verifica-
tion conditions are generated at this aim (e.g. (2), (5)).

4. The program output has the expressions: b (in (1)), y1 (in (4)), y2 (in (7)),
a (in (8)).

The termination condition is:

(
∀

a,b
a≥0,b≥0

∧




a = 0 ⇒ π[a, b]
(a 6= 0 ∧ b 6= 0 ∧ a > b ∧ π[a− b, b]) ⇒ π[a, b]
(a 6= 0 ∧ b 6= 0 ∧ a 6= b ∧ π[a, b− a]) ⇒ π[a, b]
(a 6= 0 ∧ b = 0) ⇒ π[a, b]

)
=⇒

(
∀

a,b
a≥0,b≥0

π[a, b]
)

4 Conclusion and Future Work

The method presented in this paper combines forward symbolic execution and
functional semantics for generating the verification conditions necessary for check-
ing the imperative program correctness. We implemented it in the Theorema sys-
tem and we tested it on programs written in our mini-programming language.

For checking the validity of the verification conditions we built a prototype
of a simplifier that reduces the verification conditions to (systems of) equalities
and inequalities. The simplified formulae were obtained using first order logic
inference rules, truth constants and simple algebraic simplifications.

As future work we want to apply and automate advanced algebraic and com-
binatorial algorithms and methods in order to check their validity. A promising
approach seems to be the Fourier-Motzkin Elimination method ([7]), especially
for systems of inequalities with small number of constraints and variables be-
cause of the time complexity reasons.
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56 Mădălina Eraşcu and Tudor Jebelean

5. J. Loeckx, K. Sieber, and R. Stansifer, The foundations of program verification,
John Wiley & Sons, Inc., New York, NY, USA, 1984.

6. J. McCarthy, A Basis for a Mathematical Theory of Computation, Computer
Programming and Formal Systems (P. Braffort and D. Hirschberg, eds.), North-
Holland, Amsterdam, 1963, pp. 33–70.

7. A. Schrijver, Theory of linear and integer programming, John Wiley & Sons,
Inc., New York, NY, USA, 1986.

8. R. Topor, Interactive Program Verification using Virtual Programs, Ph.D. the-
sis, University of Edinburgh, Scotland, 1975.
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Abstract. Computational Origami is a branch of the science of shapes,
where we study computational and mathematical aspects of origami. One
of the foundational studies of the computational origami is the axiomatic
definition of origami foldability by Huzita in 1989. While Huzita’s ax-
ioms allow solving equations up to degree 4, it is possible to use other
techniques of origami to solve higher order equations. Multifold is a fold
operation that involves the creation of more than one crease. The di-
vision of an angle into five equal angles requires multifold operations
to solve a fifth degree equation known as quintisection. We discuss the
construction and the proof of an angle quintisection using a logical and
algebraic representation of the fold operation.

1 Introduction

Origami is a traditional Japanese art of paper fold. Starting from a square piece
of paper and using only hands, origamists can realize impressive paper works.
Origami is not only an art but also a geometric tool for constructing geometric
shapes. Now there is computational Origami, the computer assisted study of
origami geometry. The field of computational origami come up with further
analysis of folding patterns. Computational origami may answer questions such
as: “Given an origami paper, how can we fold it to obtain specific creases and
points?” or “Can we prove some properties of the origami object that we made?”.

One of the fundamental studies of the computational origami is the axiomatic
definition of origami foldability by Huzita in 1989 [1]. Huzita found out that
there is a finite number of basic folds, where a basic fold consists in making one
and only one crease with one fold operation. Given existing lines and points in
origami paper, each one of Huzita’s six basic folds realizes the creation of a new
line which is the fold line. These basic folds are known in literature as Huzita’s
axioms [2, 3]. Later, a seventh axiom was proposed by Hatori [2]. We call the set
of seven axioms Huzita’s axioms.

The advantage that origami has over compass and straightedge lies in the set
of points that can be constructed [4]. Compass and straightedge can construct
only numbers that are solutions of equations of degree of up to 2. On the other

? This research is supported by the JSPS Grants-in-Aid for Exploratory Research No.
19650001 and by Japan-Austria Research Cooperative Program of JSPS and FWF.
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hand, Huzita’s axioms define what is constructable by making sequential folds
along one and only one line at each fold step. It has been mathematically proven
that those folds permit the construction of solutions to arbitrary equations of up
to degree 4 [4]. This relevant result allows the construction of famous impossibil-
ities, namely doubling a cube, squaring a circle and trisecting an angle. However,
by other computational origami techniques such as multifold, it is possible to
solve equations of higher degree. Multifold is a fold operation that involves the
creation of more than one creases [5].

Symbolic COmputational REsearch Group (SCORE) has developed a com-
putational origami system called Eos [6]. In brief, Eos has capabilities of offering
a fold methodology, constructing and visualizing origami objects, algebraically
analyzing origami folds, and proving the correctness of origami constructions.
In this paper, we are mostly concerned with the practical aspect of computa-
tional origami, in particular the usage of computational origami results towards
constructing and proving geometric objects realized with origami as a branch
of geometry. We focus on the division of an angle into five equal angles. This
problem requires multifold operations to perform the construction.

The rest of the paper is organized as follows. In Sect. 2 we explain elements of
the logical specification of the axioms together with a translation into algebraic
form. In Sect. 3 we show an example of quintisecting an angle by multifolds
using Eos. In Sect. 4 we explain how Eos can be used to verify the correctness
of origami constructs based on Gröbner bases method. In Sect. 5 we summarize
our results and point out a direction of further research.

2 Formalization of Computational Origami Method

Huzita’s basic folds are considered as an axiomatization effort of origami con-
struction [1, 7]. In this paper we attempt to present the elements of our logical
and algebraic formalization of Huzita’s axioms.

2.1 Huzita’s Axioms Restated

Logical Representation of Huzita’s Axioms In an attempt to better un-
derstand the elements of Huzita axiom system and their semantics, we introduce
a formal language. We define a many sorted first-order language L over a signa-
ture (P,F) consisting of a set P of predicate symbols and a set F of function
symbols. We consider the set of sorts S = {Point, Line,A,B}. Point and Line
are the sorts of points and lines, respectively. B is the sort of Boolean values
and A is the sort of algebraic numbers over Q. By adding the set membership
P ∈ Point and l ∈ Line to our syntax, we can specify the types of variables.

We also define predicates and functions that constitute L. These symbols
have a meaning in algebraic geometry and rational trigonometry. Each axiom is
then described as a prenex normal form formula in L [8]. For instance (O3) the
third axiom asserts that given two lines m and n, we can find a line k such that



Computational Origami of Angle Quintisection 59

the fold along k brings m onto n. (O3) can be written as follows

∀m,n ∈ Line ∃k ∈ Line ∀P ∈ Point lineReflection[m, k] == n (1)

Formula (1) tells that we can find a line k such that the image of m with
respect to k is n. The function lineReflection computes the image of a line by
line symmetry.

Algebraic Interpretation of Huzita’s Axioms The language L is given an
algebraic interpretation. Huzita’s axioms are translated into algebraic forms. We
work in the Cartesian coordinate system. We study the origami construction in
the environment of plane geometry. Thus, we consider an environment ρ that
maps points to pairs of their coordinates, and lines to triples of their coefficients.
Furthermore, let A[[·]]ρ be the mapping from symbols of L to the interpretation
of L. A[[·]]ρ maps the formulas of prenex normal form of Huzita’s axioms into a
system of polynomial equalities with rational coefficients.

Suppose we apply (O3) to bring m onto n by folding along line k. Let ρ(m) =
〈a1, b1, c1〉, ρ(n) = 〈a2, b2, c2〉, and assume that ρ(k) = 〈a, b, c〉. Let φ be the
formula in (1). Then the algebraic interpretation of φ is

A[[φ]]ρ∪{k 7→(a,b,c)} = {−a2a1 + a1b2 − 2abb1− a2t = 0,

− 2aa1b + a2b1− b2b1− b2t = 0,−2aa1b + a2b1− b2b1− c2t = 0,

ξt− 1 = 0} (2)

The set (2) represents algebraic constraints on the coefficients of m, n and
k. When we apply A[[.]]ρ, the universal quantifiers over m and n are eliminated
since m and n are well defined on the origami paper. Unknown fold line k is
existentially quantified in φ. We eliminate the existential quantifier by adding
the unknown coefficients a, b and c of k to ρ. Line

(−a2a1 + a1b2 − 2abb1,−2aa1b + a2b1 − b2b1,−2aa1b + a2b1 − b2b1) (3)

is the image of m with respect to k [9]. Line n and the line defined in (3)
are equivalent which explains the introduction of new non zero variable t. The
equation ξt− 1 = 0 in (2) tells that t 6= 0 (Rabinovich trick).

The algebraic interpretation of L is useful for achieving the origami construc-
tion by a computer. That is, origami construction consists mainly in folding along
a line that satisfies some constraints. Having described the constraints in term
of polynomial equalities, our next task is to obtain fold line is constraint solving.
Specifically, we solve A[[φ]]ρ∪{k 7→〈a,b,c〉} which is a set of polynomial equalities
where a, b and c are the unknown variables. We need also to eliminate null lines.
Therefore, we add to the set of equations constraints on lines coefficients [8].
We designed a user interface HFold for origami construction. This interface is
an implementation of the language L and the interpretation mapping A[[.]]ρ.
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2.2 Multifold Origami Method

Multifold operation consists in making folds along more than one line. Alperin
and Lang proposed a definition of multifold operations [4]. They noticed that
Huzita’s axioms can be viewed as combination of three alignments: (i) Point-
point alignment specifies that two points are equal, (ii) Line-line alignment tells
that two lines are equivalent, and finally, (iii) Point-line alignment tells that
a given point is on a given line. The fold alignment is a fold operation which
is combination of (i), (ii) and (iii). For example, (O3) can be viewed as line-
line alignment. In the case of one fold operation, the fold line that satisfies the
alignments is the same. In the case of multifold, we can have more than one fold
lines to satisfies the alignments.

We extend the logical and algebraic formalism to describe multifold opera-
tions. We are able to call

HFold [ 〈handle〉, Constraint→ 〈formula〉, 〈options〉 ]

to specify a multifold. Multifold satisfies geometric properties specified by the
argument Constraint → 〈formula〉 of HFold. We explain the usage of HFold is
Sect. 3.2.

3 Quintisection of an Angle

Dividing an angle into n equal part is a relevant problem when n is an odd nat-
ural number. In this paper, we discuss the quintisection construction by compu-
tationally supported paper folds. First, we study the problem of quintisection in
Euclidean geometry.

3.1 Geometric Problem of Quintisection

Euclidean geometry is based on a set of axioms used to create geometric shapes.
Generating shapes involves the use of two tools: a straightedge and a compass.
Euclidian geometric construction problem is reduced to the problem of con-
structing numbers that represent lengths of line segments. A number α is said to
be constructible if given a segment of unity length, we can construct a segment
of length |α| using straightedge and compass. There is a well known theorem in
abstract geometry that asserts that if a number α is constructible by Euclidean
tools then α is algebraic over Q and the degree of the irreducible polynomial of
α over Q is a power of 2 [10].

Quintisection is the problem of dividing an arbitrary angle into five equal
parts. The problem of quintisection is not always possible using Euclidean clas-
sical tools straightedge and compass. We can find angles that cannot be quinti-
sected. For instance, we take an angle whose tangent is equal to T =

√
2

1+
√

5
. In

Fig. 1, T is the tangent of the angle θ. Moreover, we have T 4+T 2−1 = 0. Thus,
θ can be constructed since tan θ is a constructible number (zero of irreducible
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polynomial whose degree is power of 2). Now, if t = tan θ
5 is constructible

then the degree of its irreducible polynomial over Q is a power of 2. Thus, if
the irreducible polynomial of t is not of degree 2 than it follows that t is not
constructible. In trigonometry we have the following result

Fig. 1. tan θ = T =
√

2

1+
√

5

T = t
5− 10t2 + t4

1− 10t2 + 5t4
(4)

Equation (4) shows that t is a solution of polynomial of degree 5. If we substitute√
2

1+
√

5
for T and perform few mathematical manipulations, we obtain

(2(1− 10t2 + 5t4)∧2− t2(5− 10t2 + t4)2)2 − 5(t2(5− 10t2 + t4)2)2 = 0

After expanding and substituting t2 by x, we obtain the following polynomial

P (x) = −4(−1+65x−595x2+4460x3−16370x4+23126x5−15070x6+5260x7

− 605x8 − 15x9 + x10)

To prove that the monomial polynomial − 1
4P (x) is irreducible, we use Eisen-

stein’s irreducibility criterion [10]. First, we substitute x + 2 for x, we obtain

Q(x) = 58805 + 191525x + 259525x2 + 183500x3 + 58850x4 − 9090x5

− 15910x6 − 5620x7 − 695x8 + 5x9 + x10

Q(x) is irreducible since the prime number 5 is a factor of the coefficients of
x0, x, x2, x3, x5, x6, x7, x8 and x9 and is not a factor of the coefficient of
x10. Moreover, 52 is not a factor of the coefficient of x0. All the conditions of
Eisenstein’s irreducibility criterion are verified which make Q(x) an irreducible
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polynomial. Then, Q(t2) is the irreducible polynomial with tan θ
5 as zero and

whose degree is not a power of 2. Therefore, tan θ
5 is not constructible by compass

and straightedge.
On the other hand, quintisection can be realized by computationally sup-

ported paper folds. In the following subsection, we show a method of quintisect-
ing an angle using origami techniques.

3.2 Computational Origami of Quintisection

We first assume that the initial origami is a square paper ¤ABCD. Let E be an
arbitrary point on segment CD1. We will consider only the case where E ∈ CD
for the simplicity and clarity of explanation.

Fig. 2. Computational origami construction of ∠EAB

Next, is the crucial step of quintisection. We apply four simultaneous line-line
alignments (axioms (O3)). To quintisect ∠EAB, we need to find four fold lines
x, y, z and t. x is the bisector of the angle between lines AB and y. In other
words, x brings AB onto y. Line y is the bisector of the angle between lines x
and z. Line z is the bisector of the angle between lines y and t. Finally, t is the
bisector of the angle between lines AE and z. The fold operation should satisfy
the following formula in L

∃x, y, z, t ∈ Line BringLineQ[z, AE, t] ∧ BringLineQ[y, t, z]∧
BringLineQ[x, z, y] ∧ BringLineQ[AB, y, x]

BringLineQ[x, z, y] tells that y is the fold line that brings x onto z. Thus, we

1 XY refers to the line segment defined by the points X and Y . XY refers to the line
obtained by extending the line segment XY .
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Fig. 3. Five possible quintisections

have BringLineQ[x, z, y] = ( lineReflection[x, z] == y). These constraints on the
four fold lines are specified in the following call of HFold.

HFold[{B, F, B, F}, Constraint→ Exists[{x, y, z, t},
{x ∈ Line, y ∈ Line, z ∈ Line, t ∈ Line},
BringLineQ[z, AE, t] ∧ BringLineQ[y, t, z] ∧ BringLineQ[x, z, y]∧
BringLineQ[AB, y, x]]]

The algebraic interpretation of the constraints of the fold lines is shown in Fig. 4.

In Fig. 4, (a2, b2, c2) are the coefficients of x, (a3, b3, c3) are the coefficients
of y, (a4, b4, c4) are the coefficients of z and (a5, b5, c5) are the coefficients of t.
In Sect. 2.1, we have explained the algebraic interpretation of axiom (O3). If we
examine the polynomials appearing in Fig. 4, we can identify the constraints on
the fold lines x, y, z and t. For instance, the first three equations represent the
algebraic interpretation of BringLineQ[y, t, z] (see the algebraic interpretation
of (O3) in Sect. 2.1).

The first parameter of HFold is the list of handles. Points B, F , B and F
are handles of x, y, z and t, respectively. An origami paper is modeled as stack
of faces which are convex polygons created by folding [11]. The origami has a
complex structure so that it is crucial to identify the faces that are affected by
the fold. In our example, all the faces containing point B are to be moved when
we fold along x and z. Besides, all the faces containing point F are to be moved
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1.42857a52 − 2a5b5− 1.42857b52 − a4κ1 == 0&&a5
2 + 2.85714a5b5− b5

2 − b4κ1 == 0&&

0.a52 + 0.b52 + 2.85714a5c5− 2b5c5− c4κ1 == 0&&− 1 + κ1ξ1 == 0&&

− a4
2
a5 + a5b4

2 − 2a4b4b5− a3κ2 == 0&&− 2a4a5b4 + a4
2
b5− b4

2
b5− b3κ2 == 0&&

− 2a4a5c4− 2b4b5c4 + a4
2
c5 + b4

2
c5− c3κ2 == 0&&− 1 + κ2ξ2 == 0&&

− a3
2
a4 + a4b3

2 − 2a3b3b4− a2κ3 == 0&&− 2a3a4b3 + a3
2
b4− b3

2
b4− b2κ3 == 0&&

− 2a3a4c3− 2b3b4c3 + a3
2
c4 + b3

2
c4− c2κ3 == 0&&− 1 + κ3ξ 3 == 0&&

− a2
2
a3 + a3b2

2 − 2a2b2b3 + 0.κ4 == 0&&− 2a2a3b2 + a2
2
b3− b2

2
b3− κ4 == 0&&

− 2a2a3c2− 2b2b3c2 + a2
2
c3 + b2

2
c3 + 0.κ4 == 0&&− 1 + κ4ξ4 == 0&&

(−1 + b5)b5 == 0&&(−1 + a5)(−1 + b5) == 0&&(−1 + b4)b4 == 0&&

(−1 + a4)(−1 + b4) == 0&&(−1 + b3)b3 == 0&&(−1 + a3)(−1 + b3) == 0&&

(−1 + b2)b2 == 0&&(−1 + a2)(−1 + b2) == 0

Fig. 4. Polynomials generated by the call of HFold for performing quintisection

when we fold along y and t. There are five solutions that are depicted in Fig. 3.
Cases 1, 2, 3, 4 and 5 are quintisections of the angles 2π + ]EAB, π + ]EAB,
]EAB, 4π + ]EAB and 3π + ]EAB, respectively. Since we are interested in
quintisecting the internal angle ∠EAB, case 3 has to be selected.

Next, we quintisect the internal angle ∠EAB by selecting case 3 of Fig. 3.
We obtain a multifolded origami of Fig. 5. The new points F , G, J and I are
intersections between lines BC and x, y, z and t, respectively. The final origami
is shown in Fig. 6. Four new lines are created, which are the four quintisectors of
∠EAB. After performing the quintisection, we need to prove that lines AF , AG,
AI and AJ are quintisectors of ∠EAB. This will be the topic of next section.

4 Proof of Correctness of Quintisection

In computational origami, the work of the origamist is not completed just by
presenting the construction. The construction has to be accompanied by a cor-
rectness proof.

4.1 Property to Prove

We will prove the following theorem.

Theorem 41 Given the origami in Fig. 6, if

(a) ]GAB = 2]FAB (mod 2π), and
(b) ]IAB = 3]FAB (mod 2π), and
(c) ]JAB = 4]FAB (mod 2π), and
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Fig. 5. Performing quintisection at step 4

(d) ]EAB = 5]FAB (mod 2π)

then lines AF , AG, AI and AJ are quintisectors of ∠EAB.

We will prove theorem 41 by showing that

(tan 2]FAB = tan ]GAB) ∧ (5)
(tan 3]FAB = tan ]IAB) ∧ (6)
(tan 4]FAB = tan ]JAB) ∧ (7)

(tan 5]FAB = tan ]EAB) (8)

Let T be equal to tan ]FAB. Furthermore, let T1, T2, T3 and T4 be equal to
tan ]GAB, tan ]IAB, tan ]JAB and tan ]EAB, respectively. Thus, based on
well known results in trigonometry, equations (5), (6), (7) and (8) are equivalent
to (9), (10), (11) and (12), respectively.

(− 2T
−1 + T2 == T1) ∧ (9)

(
T

(−3 + T2
)

−1 + 3T2 == T2) ∧ (10)

(−4T
(−1 + T2

)

1− 6T2 + T4 == T3) ∧ (11)

(
T

(
5− 10T2 + T4

)

1− 10T2 + 5T4 == T4) (12)

What follows is the illustration of how we can realize the proof of (9), (10),
(11) and (12) with Eos.



66 Fadoua Ghourabi, Tetsuo Ida, and Hidekazu Takahashi

Fig. 6. AF , AG, AI and AJ are quintisectors of ∠EAB

4.2 Proof by Eos

Besides origami construction, Eos also provides means to prove geometric prop-
erties of the construction. Eos records the geometric properties of all points and
fold lines used during the construction, as first-order logic formulas of L. These
properties form the premises. Note that we use P and C to refer to the premises
and the conclusion of the proof, respectively.

The next step is to formulate the property that we want to prove, also as a
formula of L. This property forms the conclusion of the proof. The conclusion C
can be written as C1∧C2∧C3∧C4, where C1, C2, C3, C4 are equivalent to (9), (10),
(11) and (12), respectively. Thus we need to prove the following implication

P ⇒ C1 ∧ C2 ∧ C3 ∧ C4 is valid

m
P ∧ ¬(C1 ∧ C2 ∧ C3 ∧ C4) is not satisfied

m
(P ∧ ¬C1) ∨ (P ∧ ¬C2) ∨ (P ∧ ¬C3) ∨ (P ∧ ¬C4) is not satisfied

Eos translates each of the formulas φi ≡ P ∧¬Ci for i = 1, . . . , 4 into polyno-
mial form with the translation function A described in Sect. 2.1. In our example,
the outcome is a set of polynomial equations {fi ==i 0 | 1 ≤ i ≤ n} where fi

are polynomials for i = 1, . . . , n. Here, the negation of Ci is turned into equali-
ties by using Rabinovich trick. Without loss of generality, we consider an initial
origami ¤ABCD with length equal to 1. Besides, we consider a Cartesian co-
ordinates system with point A being the origin and point B with coordinates
(1, 0). E is an arbitrary point on origami paper whose coordinates are (u, v).
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Only equalities are generated by the algebraic translation in the proof of
quintisection. Therefore, we make use of the following well known results [12,
13]: Let φi ≡ P ∧ ¬Ci. The formula φi is not satisfied iff the system of poly-
nomial equations A[[P ∧ ¬Ci]]ρ is unsolvable iff the reduced Gröbner bases of
A[[P ∧ ¬Ci]]ρ is {1}.

The computation of the Gröbner bases is performed in the field of multi-
variate polynomials whose coefficients are in Q(u, v). With degree reverse lex-
icographic ordering, the computation of the Mathematica 6 ’s implementation
of Gröbner bases of A[[P ∧ ¬C1]]ρ, A[[P ∧ ¬C2]]ρ, A[[P ∧ ¬C3]]ρ and A[[P ∧ ¬C4]]ρ
took 14.078 seconds, 16.797 seconds, 22.656 seconds and 21.484 seconds, respec-
tively. We made these computation on Microsoft XP notebook with 1.6 GHz
Intel Pentium M processor and 1 GB RAM.

5 Conclusion

Quintisection of an angle is a relevant construction problem that goes beyond
Euclidean geometry. We have realized the quintisection of an angle by origami
multifold. Besides, we have proven the correctness of the construction based on
Gröbner bases. Our approach is to extend the usage of the formalisms (L and
A) of Huzita’s axioms to deal with multifold. We have used Eos which supports
the whole process of construction and proof.

To perform quintisection we based on multifold operation. The construct is
clear and simple. However, it is interesting to examine the quintisection problem
in Huzita’s axiomatization system. A mathematical proof of impossibility or
possibility of quintisection by Huzita’s axioms has to be studied.

Although the geometric proofs based on the algebraic specification of ge-
ometric problems are simple and efficient, they do not necessarily reflect the
geometric nature of our construction. It is difficult to give a geometric inter-
pretation of polynomials generated by the construction and proof steps. Logical
inferences based on the logical view of origami construction can be augmented
to the algebraically based proof method.
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Abstract. We formalize paper fold (origami) by graph rewriting. Origami
construction is abstractly described by a rewrite system (O, #), where
O is the set of abstract origami’s and # is a binary relation on O, called
fold. An abstract origami is a triplet (Π,∽,≻), where Π is a set of faces
constituting an origami, and ∽ and ≻ are binary relations on Π , each
representing adjacency and superposition relations of the faces. Origami
construction is modeled as a rewrite sequence of abstract origami’s.
We then address the problems of representation and transformation of
abstract origami’s and of reasoning about the construction for computa-
tional purposes. We present a hypergraph of origami and define origami
fold as algebraic graph transformation. The algebraic graph theoretic
formalism enables us to reason origami in two separate domains of dis-
course, i.e. pure combinatoric domain and geometric domain R×R, and
thus helps us to further tackle challenging problems in origami research.

1 Introduction

Origami provides the methodology of constructing a geometrical object with a
piece of paper only by means of folding by hands. Computational origami studies
the mathematical aspects of origami. By the assistance of a computer we will be
able to formalize origami with rigor and capability that are beyond the methods
performed by hands.

In this paper we give graph theoretic formalization of origami. Our main
motivation of this study is to give more abstract view of origami fold. Although
paper fold appears to be a simple operation to humans, an anatomy of origami
reveals that it is not an easy operation. There are two distinct operations in
paper fold, i.e. division and reflection of origami faces. These operations lend
themselves to distinct modes of computations; algebraic and numeric compu-
tation on geometric objects, e.g. finding intersection of lines and checking the
overlap of two faces, on one hand, and purely combinatoric computation on dis-
crete objects, e.g. computing transitive closure of the adjacency relation on faces,
on the other.

These computations tend to be mixed when origami is analyzed mathemati-
cally in our earlier work [3]. Indeed our current implementation of Eos [4] relies

⋆ This research is supported by the JSPS Grants-in-Aid for Exploratory Research No.
19650001 and by Japan-Austria Research Cooperative Program of JSPS and FWF.
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very much on algorithms which resort to mixtures of algebraic, numeric and sym-
bolic computing. Sometimes algorithms are not easy to describe mathematically
because of this intricacy. There should be clearer separation of computations
of discrete and continuous objects in origami. By doing so, we not only clarify
the algorithms developed for the implementation of Eos, but also to extend the
capability of Eos to allow for more complex origami construction such as of 3D
and modular origami.

The rest of the paper is organized as follows. In Section 2 we will formalize
basic origami operations. In Section 3 we explain the bases for graph theoretic
modeling of origami. In Section 4, we show how basic operations of origami
are formalized in the algebraic and graph theoretic framework. In Section 5, we
summarize the results and point out the direction of our research.

2 Formalizing origami

2.1 First glimpse of origami

We start an origami construction with a single piece of paper, and repeats folding
of the paper until it becomes a desired shape. Here, we see that an origami can
be modeled as a set of faces. During the construction, some of the faces get
divided by a fold line, get rotated along the fold line and become above or below
the others. The faces form layers. The layers of faces exhibit a remarkable shape,
which may be regarded as a piece of art such as illustrated in Fig. 1.

The left origami in Fig. 1 is the top view of the constructed object. We see the
faces in two different colors in the figure. This is because the initial origami has
two sides, each colored differently. During the construction, some faces become
up and the others become down, resulting in the two colored object. We can
imagine that this origami models a cicada. The right is a 3D view of the same
origami after stretching it vertically and making overlapping faces slightly far
apart. From the shapes in Fig. 1, we will be able to observe that an origami can
be formalized as a set of faces together with the relations that express relative
positions, horizontally and vertically, among the faces.

2.2 Abstract origami

An origami can be modeled at several abstraction levels. A most abstract view
is to take an origami as an algebra 〈A, R〉, where A is a set and R is a binary
relation on A, where we identify A to be a set of faces that constitute an origami,
and R to be a geometrical relation on the faces. The origami construction is then
a transformation of the algebras viewed as an abstract rewrite system. We begin
with this view of abstraction and gradually make our modeling concrete.

We consider a finite set Π of faces to be the object of our study, and introduce
two binary relations on Π , expressing horizontal and vertical arrangements of
faces rather than a single binary relation R mentioned before. Then, we have
the following definition of an origami.
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Fig. 1. Origami cicada: art piece (left) and face layers (right)

Definition 1 (Abstract origami). An abstract origami is a structure

〈Π, ∽,≻〉

where

• Π is the finite set of faces, and
• ∽ and ≻ are binary relations on Π, called adjacency and superposition re-

lations, respectively.

From our observations so far it is clear that our modeling needs the relations
of adjacency and superposition.

Definition 2 (Abstract origami system). An abstract origami system is an
abstract rewrite system (O, #) where

• O is the set of abstract origami’s.
• # is the binary relation on O called abstract fold, and is denoted by O # O′

for O, O′ ∈ O.

Origami construction proceeds stepwise. Namely, we start with an initial
origami (i = 0) and perform folds along fold lines repeatedly until we obtain a
desired shape. Suppose that we are at the beginning of step i of the construction,
having an origami Oi−1 = (Πi−1, ∽i−1,≻i−1). We make the next fold and obtain
the next origami Oi = (Πi, ∽i,≻i). Thus we have the following:

Definition 3 (Abstract origami construction). An abstract origami con-
struction is a finite sequence of abstract folds:

O0 # O1 # · · · # On, where O0, O1, . . . , On ∈ O
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Although some properties of origami can be studied with necessary rigor
at this level, more geometric information is needed to understand many of the
properties of origami. We are lead to the definition of face in Def. 4.

Before we proceed, we note the following definition of an n-gon. An n(n > 3)-
gon is a polygon consisting of n edges none of which intersect each other. We
also use the notion of overlapping. Let an expression p◦ denote the interior of
an n-gon p. We identify the interior of an n-gon with the set of all the points in
the interior. N -gons p and q are called overlapping if p◦ ∩ q◦ 6= ∅.

Definition 4 (Face). A face is a convex n-gon.

Then we can define the adjacency relation as follows:

Definition 5 (Face adjacency). Two faces are adjacent if they share an edge.

We can determine whether a face is adjacent to the other face.
Concerning the superposition relation, we assume a decision procedure of

determining above or below relation among the faces. Namely, given two faces
f and g, we can determine whether:

(1) f is above g or
(2) g is above g or
(3) f and g are not related.

We also say that g is below f if f is above g. Now we have the following definition
of the superposition relation.

Definition 6 (Face superposition). Face f superposes face g if f and g are
overlapping, f is above g and no faces that are above g is below f .

2.3 Formalization of fold

Fold of an origami is a complex operation consisting of the following sub-operations.

(1) Specify the set F of the faces of concern and decide a basic fold operation.
We may use one of Huzita’s basic folds [2] or classical fold methods such as
mountain and valley folds.

(2) Compute a fold line l and make it a direct line called a ray r.
(3) For each face f in F , do the following until F = ∅.

(a) Divide f by r into two faces f1 and f2, where f2 is to the right of r. See
below for more details.

(b) Update F by removing f from F and adding faces that are affected by
this division using the superposition and adjacency relations.

(4) Compute new superposition and adjacency relations induced by the division.
(5) Rotate the faces to the right of r along r.
(6) Compute new superposition relation induced by the rotation.

As for the division of a face, we distinguish four cases of geometrical config-
urations:
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1. The line l intersects with the edges of f at two distinct points. The face f
is divided into two faces f1 and f2, where f2 is to be rotated.

2. The line l overlaps with some edge of f .
3. The line l passes through f at only one vertex.
4. The line l intersects with none of the edges of f .

Let us now make our modeling more concrete. We represent an n-gon as a
sequence of points 〈P1, . . . , Pn〉, where points P1, . . . , Pn are vertices of the n-
gon. A face is thus represented as a sequence of points. When points P1, . . . , Pn

are arranged counterclockwise, we say that the face is up, and when clockwise,
it is down. The division of an up face is illustrated in Fig. 2. This case is further
investigated for the graph transformation in the next section.

Pi

Pn

P1

P2

Pi−1

r

ai an

a1

a2

f1

f2

f

The face f is divided by the ray r into 〈f1, f2〉. The face f2 is to be rotated.

Fig. 2. Face division

3 Graph formalization

3.1 Hypergraph and graph term

To make origami amenable to computation, we further concretize the abstract
origami by graph theoretic formalism. We use a labeled hypergraph for this
purpose. Since we do not need algebraic graph theories in full generality such as
discussed in [1], we work with hypergraphs defined as follows.

Definition 7 (Hypergraph). A hypergraph is a quadruple 〈V, E, s, t〉, where

• V is the set of nodes1,
• E is the set of edges, and
• s, t : E → V ∗ are source and target functions.

1 We use of the word node here to avoid the clashes with vertices of a polygon. We
cannot avoid the clashes of the word edge of a polygon and of a graph, however.



74 Tetsuo Ida and Hidekazu Takahashi

Definition 8 (Hypergraph labeling). A hypergraph labeling consists of a pair
〈LE ,LV 〉 of label alphabets together with functions τs, τt : LE → L∗

V
.

Definition 9 (Labeled hypergraph). Given a pair L = 〈LV ,LE〉 of label
alphabets, an L-labeled hypergraph is a 6-tuple 〈V, E, s, t, lV , lE〉, where

• 〈V, E, s, t〉 is a hypergraph and
• lV : V → LV and lE : E → LE are functions satisfying τs · lE = l∗

V
· s and

τt · lE = l∗
V
· t.

Hereafter, we only consider hypergraphs. Therefore we call hyprergraph and
hyperedges without prefix “hyper” unless we want to emphasize “hyper”.

Definition 10 (Graph term). Given an L-labeled graph G = 〈V, E, s, t, lV , lE〉,
graph term representation G of a graph G is defined as

{lE(e)[s(e), t(e)] | e ∈ E}
⊎

{lV (v)[v] | v ∈ V } (3.1)

The expression lE(e)[s(e), t(e)] is of the form F [v1, . . . , vn], which is actually
the term representation in our language for graph transformation as we will see
shortly. Note that s(e), t(e) is a sequence of nodes.

In Eq.(3.1), {lE(e)[s(e), t(e)] | e ∈ E} is a multi-set and
⊎

is the union oper-
ation on multi-sets. The element of {lE(e)[s(e), t(e)] | e ∈ E} is called edge term
of the graph and the element of {lV (v)[v] | v ∈ V } is called node term. Both
terms are called graph terms, g-term in short. This representation allows us to
reason with tree structures even when we are dealing with graphs. Note that
terms are representation of trees. A hypergraph is now represented as a set of
g-terms. In most algebraic graph transformations to follow, our focus is more
on the manipulation on edges than of nodes. The rewrite rules for the graph
transformation are designed on the basis of the manipulation of edge terms.

Example 1. Let LV and LE be {F} and {A, R, L}, respectively, and let G be
an L-labeled graph 〈V, E, s, t, lV , lE〉, where

• V = {f, f1, f2}
• E = {e1, e2, e3, e4}
• s = {e1 7→ f, e2 7→ f, e3 7→ 〈f1, a1, . . . , ai, f2〉 , e4 7→ 〈f2, ai, . . . , an, a1, f1〉}
• t = {e1 7→ f1, e2 7→ f2, e3 7→ 〈f1〉 , e4 7→ 〈f2〉}
• lE = {e1 7→ L, e2 7→ R, e3 7→ A, e4 7→ A}
• lV = {f1 7→ F, f2 7→ F, f 7→ F}.

The hyperedge e3 forms a loop visiting the nodes f1, a1, . . . , ai, f2 in this
order. The hyperedge e4 also forms a loop. A looped hyperedge visiting nodes
v1, . . ., vn in this order may be described as a hyperedge visiting nodes vi,
. . ., vn, v1, . . ., vi−1 for any i ∈ {1, . . . , n}, as well. We, however, use a unique
representation of the hyperedge by imposing the condition that the first node is
always a newly created node(face), as seen in this example.

The g-term representation G of G is:
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G = { L[f, f1], R[f, f2],
A[f1, a1, . . . , ai, f2.f1], A[f2, ai, . . . , an, a1, f1, f2],
F[f ], F[f1], F[f2] }

The graph is shown in Fig. 3. In the graph the node vi with label L is
represented as a circled vi: L. The edge ei with label L is represented as a boxed
ei: L. This graph represents the face division given in Fig. 2.
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Fig. 3. Graph of an origami created by face division

3.2 Graph rewriting

In this section we give a language of graph rewriting. G-term t is defined by the
following grammar:

t := x | x | f [t1, . . . , tn]

Here, x denotes a variable, and the underlined one is a sequence variable. The se-
quence variable is indispensable since a function symbol f in g-term f [t1, . . . , tn]
representing a hyperedge has an unfixed arity. A g-pattern is a g-term possibly
with a condition c. A g-pattern p is defined by the following grammar:

p := t | t/; c

The syntax of condition c is not given here, as it is defined by an external
language. Readers can assume that a condition c has the same syntax as a g-
term, or more concretely has the syntax of Mathematica, which we are suing
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as our implementation language. The expression of the form t/; c is called a
conditional g-term. The intended use of the conditional g-term is as a left-hand
side of a graph rewrite rule, which is defined below. It is used for conditional
pattern matching. During pattern matching using a substitution θ for selecting
a subgraph, if cθ evaluates (by an external evaluator) to True, (t/; c)θ represents
tθ, and otherwise it represents ⊥. We use u to denote either a g-term or a g-
pattern.

As a meta notation we use 〈u1, . . . , un〉 to denote List[u1, . . . , un].

Definition 11 (Graph rewrite rule). A graph rewrite rule (rewrite rule for
short) is a pair of g-terms

gl → gr

where gl := 〈u1, . . . , um〉 and gr := 〈t1, . . . , tn〉.

Definition 12 (Graph rewriting).
A graph G is rewritten to G′ by a rewrite rule r := gl → gr, denoted by

G ⇒r G′

if there exist terms s1, . . . , sm, and a substitution θ such that {s1, . . . , sm} ⊆ G,
glθ after the evaluation of the conditions, if any, is 〈s1, . . . , sm〉 and G′ = G \
{s1, . . . , sm} ∪ {t1, . . . , tn}, where grθ = 〈t1, . . . , tn〉.

4 Fold as a graph rewriting

We are now ready to describe the fold explained in Subsection 2.3 in graph
rewriting framework. We recall that the fold consists of the following operations:

(1) division of faces,
(2) update of the adjacency relation,
(3) update of superposition relation induced by face division, and
(4) update of superposition relation induced by face rotation.

These operations are preformed in sequence, and we describe them in graph
rewriting.

Face division We consider the division of a face f into f1 and f2 by a ray r
as shown in Figs. 2 and 3. Figure 3 is the subgraph of the entire graph of the
origami that we are working on.

The graph was transformed in the following steps from the graph of the
previous step:

(1) Construct nodes f1 and f2.
(2) Construct the edge e1 that links f with f1 and e2 that links f with f2.

Depending on whether the divided faces are to the left or right of the ray r,
attach the labels R (R for Right) or L (L for Left) to the edges. In this case,
the label of e1 is L since face f1 is to the left of the ray, and the label of e2

is R.
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(3) Construct the edges e3 and e4 issuing from f1 and from f2, respectively. We
have s(e3) = 〈f1, a1, . . . , ai, f2〉, t(e3) = f1, s(e4) = 〈f2, ai, . . . , an, a1, f1〉
and t(e4) = f2. We label those edges by A (A for Adjacency) since the
constructed edges represent the adjacency relation.

Face update The graph constructed in the face division step has to be updated
since some of other faces are also divided, but the edges still link to those nodes
of previous (undivided) faces. This step does this face update. This update is
straightforward by the following rewrite rules:

{L[f, f1], A[f1, x], L[g, g1]/; g 6= g1 ∧ g ∈ {x} }
→ {L[f, f1], A[f1, x{g → g1}], L[g, g1]}

{R[f, f1], A[f1, x], R[g, g1]/; g 6= g1 ∧ g ∈ {x} }
→ {R[f, f1], A[f1, x{g → g1}], R[g, g1]}

Update of superposition relation induced by division Suppose that faces
f and g such that f ≻ g are divided into 〈f1, f2〉 and 〈g1, g2〉, respectively. In
the graph of Fig. 4, the edge e5 is labeled S (S for Superposition) since f ≻ g.
We have f1 ≻ g1 if f◦

1
∩ g◦

1
6= ∅, and f2 ≻ g2 if f◦

2
∩ g◦

2
6= ∅. In Fig. 4, we assume

that f◦

1 ∩ g◦1 6= ∅ and f◦

2 ∩ g◦2 6= ∅. Therefore, the edges e6 and e7 are added in
this step. The A labeled edges are omitted for simplicity.

This transformation is realized by the following rewrite rule:

{S[f, g],L[f, f1],R[f, f2],L[g, g1]/;f
◦

1
∩ g◦

1
6= ∅,R[g, g2]/;f

◦

2
∩ g◦

2
6= ∅}

→ {S[f1, g1],S[f2, g2],S[f, g],L[f, f1],R[f, f2],L[g, g1],R[g, g2]}

The g-terms S[f1, g1], S[f2, g2], S[f, g], L[f, f1], R[f, f2], L[g, g1] and R[g, g2]
match with edges e6, e7, e5, e1, e2, e3 and e4, respectively.

Depending on whether the faces are divided and non-divided, and on whether
they are to the right or left of the ray in the case of non-divided, we have other
four cases. Defining the rewrite rules for these cases is straightforward.

Update of superposition relation induced by rotation For any pair of
faces f and g, we have to check if they are related by the superposition. We
distinguish the following three cases for each pair.

(1) We rotate the face f that is to the right of r after the division. It may overlap
with the face g that is to the left of r. In this case, f ≻ g if no other faces
above g is below f .

(2) We rotate the faces f and g that are f ≻ g and are to the right of r. We
delete the relation f ≻ g and newly add g ≻ f .

(3) Otherwise no superposition is added.
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Fig. 4. Addition of superposition relation by division

Example 2. Figure 5 shows the origami at the intermediary step during the fold.
We are about to make a fold along the fold line indicated by the dotted line.
The ray r corresponding to the fold line runs from lower right to upper left. The
faces that form the base layer of the origami has been divided by r into faces a
and f. At this step, the origami consists of faces a, b, c, d, f, g and h. We see
that the faces a, b, c and d are to the right of r, and that the faces f, g and h
are to the left of r.

Figure 6 shows the result of the rotation along r, where the faces to the right
are moved.

Figure 7 shows the graph representation of the intermediary origami of Fig. 5.
Faces g and h superpose face f. Faces b and c superpose a. Face d superposes b.
For simplicity we omit the A, L and R labeled edges.

Figure 8 shows the graph representation of the origami of Fig. 6. The rotation
effects the graph transformation from the graph of Fig. 7 to that of Fig. 8. The
newly added S labeled edges are e6, e7, e8, e9 and e10. This is the result of the
following computation: Let RF = {a, b, c, d} and LF = {f, g, h}.

(1) We take d from RF and g from LF .
(2) Since d◦ ∩ g◦ = ∅, we have no superposition relation between d and g.
(3) We take h from LF , and check the overlap of d and h.
(4) We have d◦ ∩ h◦ 6= ∅, we have d ≻ h. This is shown by the edge e6.
(5) Likewise, we add the edge e7.
(6) We add the edge e8 since we had d ≻ b, the edge e9 since we had b ≻ a and

edge e10 since we had c ≻ a.

5 Conclusion

We have presented an abstract model of origami. The abstraction lead to graph
theoretic modelling and transformation of origami. More concretely, we formal-
ized an origami as a hypergraph and define the fold as algebraic graph transfor-
mations. The algebraic graph theoretic formalism enables us to reason origami in
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Fig. 5. Origami at the intermediary step
during the fold

Fig. 6. Origami after the fold
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Fig. 7. Graph representation of the origami of Fig. 5

two separate domains of discourse, i.e. pure combinatoric domain, and geometric
domain R×R, and thus helps us to further tackle challenging problems such as
of discovering a new construction given an origami shape, and of discovering a
new origami that has certain geometric properties.

Our formalism follows closely that of algebraic and categorical graph theory,
and we anticipate the rich theory in this area will be applicable to our compu-
tational origami research.
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Abstract. Algorithmic systems are devised as a framework providing
the possibility of defining infinite objects and functions on them, as in
a lazy functional programming language. Our concern is the ‘productiv-
ity’ of such definitions, which may be compared to lazy termination in
functional programming.
Algorithmic systems are a kind of orthogonal infinitary rewriting sys-
tems, that are also constructor TRSs. The constructor function symbols
are divided into two classes: inductive and coinductive ones. In algorith-
mic systems, infinite nesting is only allowed of coinductive constructor
symbols.
In the present work, we formulate our notion of algorithmicity, and inves-
tigate a criterion for the productivity of an algorithmic system. Produc-
tivity is divided into two parts, which we will call Domain Normalisation
(DN) and Constructor Normalisation (CN). The DN property gives a
certain requirement on the infinitary normal forms, and the CN property
is the counterpart of lazy normalisation in functional programming. We
investigate criteria to establish these properties.

1 Introduction

Infinitary objects are not only theoretically interesting to consider, but also
naturally arise as the semantics of computation, in particular, the semantics of
cyclic objects. Moreover, periodic infinitary objects are also something to deal
with; consider the TRS

filter(x : y, 0,m) → 0 : filter(y, m, m)
filter(x : y, s(n),m) → x : filter(y, n, m)

sieve(0 : y) → sieve(y)
sieve(s(n) : y) → s(n) : sieve(filter(y, n, n))

nats(n) → n : nats(s(n))
primes → sieve(nats(s(s(0))))

which appears in [12, Sect. 12]. This system provides a version of the sieve of
Eratosthenes where the filter function replaces struck-out members of the list
by zeros (0), which are subsequently deleted by the sieve function. The nats(n)
function generates the list of natural numbers starting with n, with the successor
constructor s. Thus, we can compute (or imagine)

primes →→→ p2q : p3q : p5q : p7q : p11q : . . . (?)
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where →→→ denotes the infinite reduction, and pnq denotes the representation of a
natural number; pnq = sn(0). Though we cannot obtain the entire sequence (?)
in finite time, each element of the sequence can be obtained in finite time. That
is known as lazy evaluation, and thereby we regard primes well specified as a(n
infinite) sequence of natural numbers. We refer to this feature as productivity. In
this example, the primes function is productive, for the system determines the
sequence.

Unfortunately, determining productivity is generally very difficult; the pro-
ductivity problem (whether a definition is productive or not) covers a lot of
mathematical open problems. For example, we can code the twin prime problem
by

plusTwo(x : y) → s(s(x)) : plusTwo(y)
twins → intersect(primes, plusTwo(primes))

where the intersect function computes the intersection of two ordered sequences,
which can be implemented as follows:

intersect(n : x, m : y) → intersectAux(cmp(n, m), n : x,m : y)
intersectAux(eq, n : x, m : y) → n : intersect(x.y)
intersectAux(gt, n : x, m : y) → intersect(n : x, y)
intersectAux(lt, n : x, m : y) → intersect(x,m : y)

with the cmp function as above. If the twins function is productive, then there
exist infinitely many twin primes, and vice versa.

In fact, productivity is undecidable; one can code the Halting problem of
Turing machines, which is known to be undecidable [13]. Actually, the above
example of primes is already difficult; the productivity of the sieve function is
based on the mathematical fact that there exist infinitely many prime numbers.
The difficulty is caused by the rules for the sieve function:

sieve(0 : y) → sieve(y)
sieve(s(n) : y) → s(n) : sieve(filter(y, n, n)).

The behaviour varies depending on whether the given sequence begins with 0
or a successor s(n). In the first case it only consumes the leading 0 from the
sequence to produce nothing, while in the second case it produces the element
s(n) followed by sieve(filter(y, n, n)). So, the computation of sieve(0 : 0 : 0 : . . . )
yields nothing:

sieve(0 : 0 : 0 : . . . ) → sieve(0 : 0 : 0 : . . . ) → sieve(0 : 0 : 0 : . . . ) . . . .

Of course, sieve(0 : 0 : 0 : . . . ) is never called during the computation of primes.
But, how could we know that, if we did not know that there are infinitely many
primes? In the present work, we wish to forget this annoyance arising from case-
distinctive analysis, and are concerned with what we will call ‘data-oblivious’
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analysis of productivity. We refer to [4] where the concept of data-oblivious is
defined and a detailed analysis is provided.

As an easy example of data-oblivious analysis, we recall the plusTwo function
which appears in the implementation of the twin prime problem:

plusTwo(x : y) → s(s(x)) : plusTwo(y).

Being oblivious on data, all the data now look like ‘•’ (something):

plusTwo(• : y) → • : plusTwo(y).

Moreover, any sequence of natural numbers is now no more than

• : • : • : . . .

for us. Thus, the result of plusTwo is always computed as follows:

plusTwo(• : • : • : . . . ) → • : plusTwo(• : • : • : . . . )
→ • : • : plusTwo(• : • : • : . . . )
. . .

→→→ • : • : • : . . . .

Here we can imagine that the infinite stream of pebbles (•) goes into the gate
plusTwo, and that the gate yields again an infinite stream of pebbles. In [5], we
call this abstracted view ‘pebbleflow’. There we studied data-oblivious analysis
of productivity, and presented a definition scheme for which productivity is
decidable.

In the present work, we study this data-oblivious analysis with a weaker
restriction and a general framework in which we can deal with infinitary objects
other than streams.

Running Example

As the running example, we consider the system which computes the Hamming
numbers. (In our framework we will be able to deal with much more complicated
objects than streams, however, streams would be still suitable as paradigmatic
infinitary objects.)

Figure 1 shows our running example (ignore the rightside for this moment).
Natural numbers are represented by 0 and s, and streams are represented by
the stream constructor ‘:’. Formally, we regard n : x as an abbreviated form
of cons(n, x), where cons is the formal name of ‘:’. The functions add and mul
compute addition and multiplication, using the rules of Dedekind’s TRS [3], and
merge together with aux computes the union of two ordered streams with help
of the comparison function cmp. The function scalar multiplicates each element
of a stream by a fixed number. The function nats is the same as given above.
The Ham function computes the Hamming numbers with mutually recursively
called ham2, ham3, and ham5 functions.
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add(n, 0) → n

add(n, s(m)) → s(add(n, m))

mul(n, 0) → 0

mul(n, s(m)) → add(mul(n, m), n)

merge(n : x, m : y) → aux(cmp(n, m), n : x, m : y)

aux(eq, n : x, m : y) → n : merge(x, y)

aux(gt, x, m : y) → m : merge(x, y)

aux(lt, n : x, y) → n : merge(x, y)

cmp(0, 0) → eq

cmp(s(n), 0) → gt

cmp(0, s(m)) → lt

cmp(s(n), s(m)) → cmp(n, m)

scalar(n : x, m) → mul(n, m) : scalar(x, m)

ham2 → scalar(Ham, s(s(0)))

ham3 → scalar(Ham, s(s(s(0))))

ham5 → scalar(Ham, s(s(s(s(s(0))))))

Ham → merge(merge(ham2, ham3), ham5)

S I
= {N, c} , SC

= {S}

eq, gt, lt : () → c

0 : () → N

s : N → N

cons : N× S → S

add : N×N → N

mul : N×N → N

merge : S× S → S

aux : c× S× S → S

cmp : N×N → c

scalar : S×N → S

ham2 : () → S

ham3 : () → S

ham5 : () → S

Ham : () → S

Fig. 1. The running example

Overview

The remainder of the paper is organized as follows: Section 2 presents nota-
tions and concisely recalls infinitary term rewriting. In Section 3 we formalise
our new notion of algorithmicity, and define productivity in our framework.
Section 4 divides the productivity property into two properties, which will be
called Domain Normalisation (DN) and Constructor Normalisation (CN); those
properties are studied in Section 5 and Section 6, respectively. Section 7 gives a
concluding remark.

2 Preliminaries

2.1 Notations

The set of natural numbers including zero is denoted by N. The set N consists of
coinductive natural numbers; N = N∪ {∞}. We stimulate ∞+ n = ∞− n = ∞
for all n ∈ N. The set of countable ordinals is denoted by Ω. The set P of
positions consists of the finite sequences of positive integers. The empty sequence
is denoted by ε. The depth of p, written |p|, is defined as the length of p. The
set S of streams consists of infinite sequences of natural numbers; S = Nω.
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2.2 Infinitary Rewriting

We assume familiarity with finitary TRSs; we refer to [12] as a standard reference.
Here we briefly recall some notions and propositions on infinitary rewriting based
on strongly convergent reductions. We refer to [12, Sect. 12], [7], and [8] for
further information.

Let Σ, X ,R be fixed sets of symbols, variables, and rewrite rules, respectively.
The sets Σ and R can be finite or infinite, and X is infinite. Each symbol f has
a fixed finite arity, and each variable has the arity 0. Then, a finite term can be
regarded as a partial function t : P⇀ (Σ∪X ) satisfying the following conditions:

1. The domain dom(t) is finite.
2. The root ε is in dom(t).
3. For every p ∈ P, we have p · n ∈ dom(t) if and only if p ∈ dom(t) and

1 6 n 6 k, where k is the arity of the symbol t(p).

Each p ∈ dom(t) represents a node in the term tree, labeled by Σ∪X . An infinite
term is a partial function satisfying the above conditions 2 and 3; we allow the
domain (the nodes) to be infinite. A term is called ground if the term has no
variable.

A rewrite rule is a pair of terms (l, r). We call l and r respectively lefthand-
side (lhs) and righthand-side (rhs). Requirements on rewrite rules are the same
as in finitary rewriting; both the terms should be finite, every variable in r should
occur also in l, and l should not be a variable. Then, the single-step reduction
relation → on finite terms can be naturally extended to that on infinite terms.
We write →→ to denote multi-step reductions, the reflexive transitive closure of
→.

For an infinite sequence t0, t1, . . . of terms, we write lim t = s if for any n ∈ N,
there exists m ∈ N such that i > m and |p| < n implies ti(p) = s(p). An infinite1

sequence of single-step reductions

t0 → t1 → t2 → . . .

weakly converges to s if lim t = s. Moreover, it strongly converges if the depth
of redexes that are contracted tends to infinity. We write t →ω s if there exists
a strongly convergent sequence from t leading to s. We write →→→ to denote
→→ ∪ →ω.

Proposition 1. In an orthogonal TRS,

1. The system is finitary confluent, viz. If t →→ s and t →→ s′, then there exists u
such that s →→ u and s →→ u′. This u is called a common reduct of s and s′.

2. If t →→→ s and t →→→ s′ where s and s′ are normal forms, then s ≡ s′. This
property is called infinitary unique normal form property (UN∞).

1 We can formalise transfinite reduction of any ordinal length. However, in an orthog-
onal TRS, any transfinite reduction can be reduced to an infinite reduction of length
at most ω (Compression Lemma). Since we consider only orthogonal TRS, infinite
reduction suffices for the present paper.
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3. The following conditions are all equivalent.
– For every term t, there exists a normal form s such that t →→→ s. This

property is called infinitary weak normalisation (WN∞).
– Every infinite reduction sequence strongly converges. This property is

called infinitary strong normalisation (SN∞).
4. If t →→ s and t →→→ u where u is a normal form, then s →→→ u.

Proof. See [12] for the first one, and [8] for the others. ut
We write t/p to denote the subterm of t at the position p, and write tσ

to denote the substitution result, where the substitution σ is a mapping from
variables to terms.

3 Algorithmic Systems

We deal with our running example in the framework of infinitary term rewriting
systems. As seen in Figure 1, it already forms a TRS. However, in order to
formalise productivity, we need some further properties. We shall refer to TRSs
satisfying these properties as ‘algorithmic (term rewriting) systems’, for the
computation of each function is algorithmically determined in an algorithmic
system.

3.1 An Informal Aspect of Productivity

Before we formalise productivity, we roughly present a semantical aspect of
productivity.

First, we consider the spaces of N and S. The space N is algebraically specified
by 〈0, S〉 : 1 + N → N and hence the constructors 0 : () → N and S : N → N
arise, constructing the space of natural numbers {0, S0, SS0, SSS0 . . . }. On the
other hand, S is coalgebraically specified by 〈hd, tl〉 : S → N × S and hence the
destructors hd : S→ N and tl : S→ S arise with the function cons : N× S→ S
to satisfy cons ◦ 〈hd, tl〉 = idS.

Second, we embed those two spaces into the term space. The algebraic space
N can be directly translated by embedding the constructors as given by 0

p−qN7−→ 0

and S
p−qN7−→ s, resulting the same representation as p−q given in Introduction.

For example, we have 3 ≡ SSS0
p−qN7−→ s(s(s(0))). The coalgebraic space S is

not so easy, because the terms, even the infinite terms, are constructed not
coalgebraically but algebraically. Hence, we regard cons as a constructor and
map it to cons as cons

p−qS7−→ cons, and leave the destructors not embedded. Thus,
the only difference between the constructions of N and S is whether we allow
infinite nesting of constructors; µx. s(x) is not accepted but µx. cons(0, x) is.
The first one represents something like ∞, which is not included in N, while the
second one represents the stream of zeros.

We call such terms ‘values of N or S’ representing an element of N or S, and
write VN or VS, respectively. Note that VN and VS are the images of p−qN and
p−qS.
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S
p−qS // VS

× scalar // TS nf // VS
J−KS // S

N
p−qN // VN

Fig. 2. Productive behaviour of scalar

Third, consider the productivity of the scalar function in the running example.
Given v ∈ VS and w ∈ VN, we can construct a term scalar(v, w). Here we define
the productivity of scalar, as

the scalar function is productive if scalar(v, w) has a unique normal form
u in VS, viz. scalar(v, w) →→→ u ∈ VS for every v ∈ VS and w ∈ VN.

This is the surface aspect of productivity. We write nf(scalar(v, w)) to denote that
u. Notice the restrictions v ∈ VS and w ∈ VN; in this respect, the productivity
property is not so strong as SN∞, and those restrictions imply also that our
system will be sorted. On the other hand, notice also the restriction u ∈ VS; in
this respect, the productivity property is not so weak as SN∞. Thus, productivity
can be regarded as SN∞ from a certain class of terms to a certain class of normal
forms.

Finally, we project the above computed u from VS back to S by cons
J−KS7−→ cons,

i.e. cons(n, x)
J−KS7−→ cons(JnKN, JxKS) coinductively defined. On the other hand,

J−KN is inductively given by 0
J−KN7−→ 0 and s(n)

J−KN7−→ SJnKN.
Figure 2 summarises the whole story of this subsection, with an example case

of the scalar function, where GS is the set of the proper ground terms, which will
be defined in the next subsection (Definition 2).

3.2 Algorithmic Systems

In this subsection, we formalise the notion of algorithmic systems, and productiv-
ity of those systems. First of all, we formalise properness of terms, making explicit
which kind of terms we wish to evaluate, and which kind of constructor normal
forms we expect as results of computation. Productivity will be then defined as
infinitary normalisation from proper terms to proper constructor normal forms.

We divide the symbols Σ into two kinds: The set ΣF of (defined) function
symbols consists of the symbols that occur at the root of the lhs of a rule, i.e.
ΣF = {l(ε) | (l, r) ∈ R}. The set ΣC of constructor (function) symbols consists
of the others; ΣC = Σ \ ΣF. A term which contains only constructor symbols is
called a constructor normal form. Note that every constructor normal form is a
normal form.

We fix the set S of sorts, and also divide it into S I of inductive sorts and
SC of coinductive sorts. According to this division on S, a constructor symbol
c sorted S1 × · · · × Sn → T is called inductive constructor symbol if T ∈ S I;
coinductive constructor symbol if T ∈ SC. We write ΣCI and ΣCC to denote
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the sets of inductive and coinductive constructor symbols, respectively. For the
running example, we set S I and SC as in the rightside of Figure 1. The following
figure summarises the partition of Σ.

symbols
(Σ)





function symbols (ΣF)

constructor symbols (ΣC)

{
inductive constructor symbols (ΣCI)

coinductive constructor symbols (ΣCC)

Definition 2 (Proper Terms).

1. An infinite path in a term t is an infinite sequence of positive integers such
that every finite prefix of it is in dom(t).

2. An infinite path n0n1n2 . . . in t is a forbidden path if there exist infinitely
many i such that t(n0 . . . ni) 6∈ ΣCC.

3. A term t is proper if there exists no forbidden path in t.

We write T to denote the set of proper terms; T fin for finite terms; G for proper
ground terms; N for constructor normal forms; V for proper constructor normal
forms (T ∩ N ). We say that a substitution σ is proper if σ maps every variable
to a proper term of the required sort.

Thus, TS in Figure 2 denotes the set of proper terms of the sort S. Note that VN
and VS as seen in the top of this section exactly consist of the proper constructor
normal forms of the respective sorts. So, we refer to proper constructor normal
forms as values. It should be noticed that proper terms are allowed to be infinite
only due to the construction of coinductive objects. This stipulation will be
technically discussed in the next section.

We are now prepared to formalise our notion of algorithmic term rewriting
systems and productivity of those systems.

Definition 3. – The system is algorithmic if the following conditions are
satisfied.
(Alg–1) The system is orthogonal.
(Alg–2) The lhs of every rule contains exactly one function symbol, which

occurs only at the root.
(Alg–3) The lhs and the rhs of each rule are proper and of the same sort.
(Alg–4) Every well-sorted term of the form f(v1, . . . , vn) has a redex at

the root, where f is a function symbol and v1, . . . , vn are values.
– A function symbol f is productive if for every well-sorted t ≡ f(v1, . . . , vn)

where v1, . . . , vn ∈ V, there exists a unique s ∈ V such that t →→→ s.
– An algorithmic system is productive if every function symbol is productive.

One who is familiar with functional programming will recognise the condition
(Alg–2) stating that every rule is of the form of a pattern-matching, and the
condition (Alg–4) guarantees that those pattern-matching covers every pattern
of constructor prefixes.
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Remark 4. The primes function as in the head of the Introduction is productive,
but the whole system is not productive because of the term sieve(0 : 0 : . . . ).
So, productivity may be understood in a local and a global way, referring to
individual function symbols or the whole system. In the present work, we focus
on the latter.

The next proposition will help us to check orthogonality:

Proposition 5. Given the condition (Alg–2), the possible overlaps of the rules
are all root-overlaps.

Proof. We recall the definition of overlap: a pair of rules (l, r), (l′, r′) ∈ R
overlaps if there exists p ∈ dom(l) and substitutions σ, τ such that (l/p)σ ≡ l′τ ,
l(p) 6∈ X , and (l 6≡ l′ or p 6= ε). If p = ε, we call the overlap root-overlap. Thus,
we suppose (l/p)σ ≡ l′τ and l(p) 6∈ X to show p = ε. By the definition of ΣF,
we have l′τ(ε) ∈ ΣF, Since l(p) 6∈ X , we have ((l/p)σ)(ε) = (l/p)(ε) = l(p).
Therefore, l(p) = l′τ(ε) ∈ ΣF. From the condition (Alg–2), l(p) 6∈ ΣF unless
p = ε. ut

Observe that our running example is algorithmic.

4 Analysing Productivity

From now on, we assume that the system is algorithmic, and analyse its produc-
tivity.

We divide the productivity into two conditions:

Definition 6. – The system is domain normalising (DN) if t ∈ G, t →→→ s, and
s ∈ N implies s ∈ V.

– The system is constructor normalising (CN) if for every t ∈ G, there exists
a unique s ∈ N such that t →→→ s. We write nf(t) to denote that s.

Clearly, productivity is the conjunction of DN and CN (cf. Proposition 1).
The DN property assures that normalisation leads all the proper terms to the
intended domain, and CN guarantees that every normal form is fully evaluated,
viz. contains no function symbol.

In the following two sections we will study a way to recognise these DN and
CN properties by observing the behaviour of each function symbol.

5 Domain Normalisation

This section studies the DN property, which is closely related to the notion of
properness.

For a term t, we write It or Ft to denote the uppermost positions where a
inductive constructor symbol or a function symbol occurs, respectively. We slice
the values V by countable ordinals Ω.
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Definition 7. For each α ∈ Ω, Vα ⊆ V is defined by transfinite induction on Ω
by Vα = {v ∈ V | ∀p ∈ Iv. ∃β < α. ∀n. (p · n ∈ dom(v) ⇒ v/(p · n) ∈ Vβ)}. Note
that Vα ⊆ Vβ if α 6 β.

The above definition is a little technical because of the infinitary construction
of values. Roughly, if c(v1, . . . , vn) ∈ Vα, then each argument v1, . . . , vn must be
in Vα, and moreover, if c is not a coinductive constructor symbol, then each
argument must be in the class indexed by a smaller ordinal.

Lemma 8. For every value v, there exists α ∈ Ω such that v ∈ Vα.

Proof. Let v be a constructor normal form such that v 6∈ Vα for any α. To show
that v is not proper will suffice. Let P = {p · n ∈ dom(v) | v(p) ∈ ΣCC}. If
there exists βp such that v/p ∈ Vβp for every p ∈ P , then we have v ∈ Vβ where
β = supp∈P βp, which conflicts to the assumption. Hence, we can find p ∈ P such
that v/p does not belong to any Vα. Let v′ = v/p and iterate this argument.
Thus, we construct a forbidden path in v. ut

Now, we formalise the notion of ‘DN certificate’.

Definition 9. – Given monotonous functions VfWΣF : Ωn → Ω for each n-ary
function symbol f , and ordinals VxWX ∈ Ω for each variable x ∈ X , we
generate the function V−WT fin : T fin → Ω inductively by

Vc(t1, . . . , tn)WT fin = sup{Vt1WT fin , . . . , VtnWT fin}+

{
0 (c ∈ ΣCC)
1 (c 6∈ ΣCC)

Vf(t1, . . . , fn)WT fin = VfWΣF(Vt1WT fin , . . . , VtnWT fin)
VxWT fin = VxWX .

– A tuple of monotonous functions VfWΣF : Ωn → Ω forms a DN certificate if
for every variable assignment V−WX : X → Ω, the above generated V−WT fin

satisfies VlWT fin > VrWT fin for every (l, r) ∈ R.

Theorem 10. The system is DN if there exists a DN certificate.

Proof. Let V−WG : G → Ω be a function recursively given as follows:

1. Let t ∈ G.
2. For every p ∈ It, let κp = max{Vt/(p · i)WG | i = 1, . . . , n}+ 1, where n is the

arity of t(p).
3. For every p ∈ Ft, let κp = Vt(p)WΣF(Vt/(p · 1)WG , . . . , Vt/(p · n)WG), where n is

the arity of t(p).
4. Let VtWG = sup{κp | p ∈ It ∪ Ft}, where we stipulate sup ∅ = 0.

Observe that this V−WG is well-defined (cf. the proof of Lemma 8). By the
definition of DN certificate, t →→ s implies VtWG > VsWG .

Suppose t →→→ s and s ∈ N , and assume that s 6∈ V. Then, we have Fs = ∅
and can find p ∈ Is such that s/p is not proper. From the definition of strong
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convergence, we can find t′ such that t →→ t′ and t′ agrees on s up to the
position p. Note that VtWG > Vt′WG > Vt′/pWG and that t′/p →→→ s/p. Replace t
and s respectively by t′/p and s/p, and iterate this argument. That produces an
infinite descending chain of ordinals. Hence, s must be proper. ut

To show how we can find a DN certificate, we consider the following subsys-
tem of the running example.

add(n, 0) → n

add(n, s(m)) → s(add(n, m))
mul(n, 0) → 0

mul(n, s(m)) → add(mul(n, m), n)
scalar(n : x,m) → mul(n,m) : scalar(x,m)

Then, compute VlWT fin and VrWT fin for each rule (l, r), to get the inequalities that
a DN certificate has to satisfy:

VaddWΣF(VnWX , 1) > VnWX
VaddWΣF(VnWX ,VmWX + 1) > VaddWΣF(VnWX ,VmWX ) + 1

VmulWΣF(VnWX , 1) > 1
VmulWΣF(VnWX ,VmWX + 1) > VaddWΣF(VmulWΣF(VnWX , VmWX ), VnWX )

VscalarWΣF(max{VnWX ,VxWX }, VmWX ) > VmulWΣF(VnWX ,VmWX )
VscalarWΣF(max{VnWX ,VxWX }, VmWX ) > VscalarWΣF(VxWX , VmWX ).

It is not so difficult to find a tuple of functions which satisfies the above inequal-
ities. For example, let VaddWΣF(α, β) = α + β, VmulWΣF(α, β) = α · β, and
VscalarWΣF(α, β) = sup{ι · β | ι < α}. Similarly, we can find VmergeWΣF(α, β) =
sup{α, β}, VcmpWΣF(α, β) = 0, VauxWΣF(α, β, γ) = sup{β, γ}, and Vham2WΣF() =
Vham3WΣF() = Vham5WΣF() = VHamWΣF() = ω for a DN certificate for the whole
system. Observe that the above functions certainly form a DN certificate. Thus,
the running example is DN.

Remark 11. Admittedly, it requires a little ingenuity to find a DN certificate.
However, for many algorithmic systems, we would be able to compute a DN
certificate automatically; those functions are constructed by the following oper-
ations: taking the successor, taking the maximal of finite ordinals, and accumu-
lating operations. The set of countable ordinals is closed under those operations.

6 Constructor Normalisation

In [5], we have performed a ‘data-oblivious’ analysis, with a focus on the number
of leading data that are already evaluated. Also in the present work, we perform
quantitative analysis on the abstract coinductive data-space.

In this section, we assume the existence of a DN certificate V−WΣF .
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Definition 12. Let t ∈ G.

– For p ∈ dom(t), the coinductive depth of p in t, written bpct, is the number
of coinductive constructor symbols on the finite path from the root up to p,
i.e.

bεct = 0

bp · nct = bpct +

{
1 (t(p) ∈ ΣCC)
0 (otherwise)

– The rank of t, written rank(t), is the minimal depth where a function symbol
occurs. Formally, rank(t) = inf{bpct | t(p) ∈ ΣF} where we stipulate inf ∅ =
∞. Note that rank(t) = ∞ iff t ∈ V.

– The potential rank of t, written rank−→∗
(t), is given by rank−→∗

(t) = sup{rank(s) |
t →→ s}.

Lemma 13. If rank−→∗
(t) = ∞, then the normal form nf(t) exists. Moreover,

nf(t) ∈ N if t ∈ G.

Proof. We can find tn ∈ G such that t →→ tn and rank(tn) = n for every n ∈ N.
Let t′−1 = t and t′n be a common reduct of t′n−1 and tn. Then, t →→ t′0 →→ t′1 →→ . . .
witnesses t →→→ lim t′n, and rank(lim t′n) = ∞. The latter claim is obvious. ut
Definition 14. A tuple (l, r′, k) where l, r′ ∈ T fin, k ∈ N is a dependency if there
exists (l, r) ∈ R such that r′ = r/p where p is an uppermost occurrence of a
function symbol in r, and k = bpcr. We write ∆ to denote the set of dependencies,
and let ∆f = {(l, r′, k) ∈ ∆ | l(ε) = f} for every f ∈ ΣF.

Roughly, dependency indicates dependence of evaluation. For example, from
the rule scalar(n : x,m) → mul(n,m) : scalar(x,m), we have ∆scalar =
{δ1, δ2} where δ1 = (scalar(n : x,m), mul(n,m), 0) and δ2 = (scalar(n :
x,m), scalar(x,m), 1). So, for terms tn, tx, tm ∈ G, to have rank−→∗

(scalar(tn :
tx, tm)) > i, we need rank−→∗

(mul(tn, tm)) > i and rank−→∗
(scalar(tx, tm)) + 1 > i.

Moreover, it should be noticed that the funciton mul does not depend on scalar
so that the dependency δ1 will not occur for infinitely many times in a chain
of dependencies. On the other hand, δ2 can be infinitely nested, because of the
recursive call. But, not all recursive calls cause infinitely nested dependencies.
For counterexample, consider the rule add(n, s(m)) → s(add(n,m)), from which
a dependency δ3 = (add(n, s(m)), add(n,m), 0) arises. Since we do not allow
s continually infinitely nested, the other rule add(n, 0) → n will be eventually
applied. So, we divide ∆ into two kinds: those can be continually infinitely nested
such as δ2, and those can be not, such as δ1 and δ3.

Definition 15. Let 〈Ξ, 4〉 be a well-founded partial order. Then, a complex-
ity index consists of functions ξf : Ωn → Ξ for each n-ary function sym-
bol f . For a proper term t such that t(ε) ∈ ΣF, we write ξ(t) to denote
ξt(ε)(Vt/1WG , . . . , Vt/nWG). Given a complexity index, a dependency (l, r′, k) is
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decreasing if ξ(l) Â ξ(r′) for any V−WX : X → Ω; infinitely nestable otherwise.
We write ∆> and ∆∞ to denote decreasing and infinitely nestable dependencies,
respectively.

For the running example, we set

Ξ ={addι, mulι, cmpι | ι ∈ Ω}
∪ {merge, aux, nats, scalar, ham2, ham3, ham5, Ham}

with nats ≺ cmpι1 ≺ addι2 ≺ mulι3 ≺ scalar ≺ ham2 ≺ ham3 ≺ ham5 ≺
aux ≺ merge ≺ Ham for every ι1, ι2, ι3 ∈ Ω, and cmpι ≺ cmpκ, addι ≺ addκ,
and mulι ≺ mulκ if ι < κ. The complexity index is given by ξcmp(ι) = cmpι,
ξf (κ, ι) = fι for f = add, mul, and ξf (. . . ) = f for the other function symbols.
Then, the infinitely nestable dependencies in the running example are those from
aux, δ2 as mentioned above, and (nats(n), nats(s(n)), 1) from the nats rule.

Definition 16. For an n-ary function symbol f and i = 1, . . . , n, the lookahead
of f at i, written LAf

i , is defined by LAf
i = sup{bi · pcl + 1 | l(i · p) 6∈ X}, where

we stipulate sup ∅ = 0.

In data-oblivious analysis, lookahead indicates the required rank of each argu-
ment to determine which rule to apply.

Definition 17. 1. A CN estimation ρ consists of functions ρf : Nn → N for
every n-ary function symbol f .

2. The minimal CN estimation o is given by of (. . . ) = 0 for every f ∈ ΣF.
3. Given E ⊆ ∆ and a CN estimation ρ, Eρ is the CN estimation given by

(Eρ)f (k1, . . . , kn) =

{
0 (∃i. ki < LAf

i )
inf{Tr′U+ k | (l, r′, k) ∈ E, l(ε) = f} (otherwise)

where T−U : T fin → N is inductively defined by

Tc(t1, . . . , tm)U = inf{TtiU+ 1 | i = 1, . . . , m} (c ∈ ΣCC)

Tc(t1, . . . , tm)U = inf{TtiU | i = 1, . . . , m} (c ∈ ΣCI)

Tg(t1, . . . , tm)U = ρg(Tt1U, . . . , TtmU) (g ∈ ΣF)
TxU = ki − bi · pcl. (x ∈ X , l(i · p) = x)

4. The approximated CN estimation π is given by πf (. . . ) = sup πf
i0(. . . ) where

π00 = o

πi,j+1 = ∆>πi,j

πf
i+1,j(. . . ) = ∆∞(inf

j
πf

i,j(. . . ))
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Roughly, the approximated CN estimation approximates the production
of each function, viz. a term f(t1, . . . , tn) has the potential rank at least
πf (rank−→∗

(t1), . . . , rank−→∗
(tn)). First, we start from the minimal estimation o, since

any term has the potential rank at least 0. The recursive definition of πij reflects
the fact that decreasing dependencies are never be infinitely nestedly applied.

Thus, the following theorem holds:

Theorem 18. If πf (∞, . . . ,∞) = ∞ for every f ∈ ΣF, then the system is CN.

Proof. We can prove that πf
n0(rank−→∗

(t1), . . . , rank−→∗
(tn)) 6 rank−→∗

(f(t1, . . . , tn)) for
every n, by nested induction on N and Ξ. The claim will follow from the above
definition and Lemma 13. ut

Observe that the running example satisfies the condition, and therefore CN.

7 Conclusion

We have presented a new framework of algorithmic systems, and given criteria
to recognise productivity of an algorithmic system.

The productivity of stream (or list) specifications has been studied from
many directions [2, 5, 6, 10, 11, 14]. The mixture of inductive and coinductive
specifications has been also studied in [1, 9].

As to future work, we wish to automate or partially automate the procedure
to find a DN certificate. CN estimation will be closely related to the production
function and I/O sequence in [5].
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Abstract. The notion of delimited continuations has been proved useful in various
areas of computer programming such as partial evaluation, mobile computing, and
web transaction. In our previous work, we proposed polymorphic calculi with control
operators for delimited continuations. This paper presents a proof of strong normal-
ization (SN) of these calculi based on a refined (i.e. administrative redex-free) CPS
translation.
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1 Introduction

Control operators in functional languages allow the explicit manipulation of control flow of
programs, and thus give more flexibility and expressiveness than those programs without
them. Scheme has the control operator “call/cc” for continuations, which has been intensively
studied from theory to implementation and practical applications. Type-theoretic studies on
“call/cc” have revealed that it corresponds to classical logic [10].

Delimited continuation is a similar notion to (unlimited) continuation, but it represents
part of the rest of the computation rather than whole rest of the computation. Since Danvy
and Filinski have proposed the control operators “shift” and “reset” for delimited contin-
uations [6], they have been proved useful in various applications such as backtracking [6],
A-normalization in direct style [2], let-insertion in partial evaluation [17], type-safe “printf”
[3], and web transaction [15].

This paper investigates the type structure of “shift” and “reset”, and in particular, proves
strong normalization of a polymorphic calculus for them. In our previous work [4], we have
introduced a polymorphic type system for “shift” and “reset”, and proved a number of prop-
erties such as type soundness (subject reduction and progress). The strong normalization
property, however, was only mentioned as a theorem without a proof, which is the subject
of the present paper.

Strong normalization (SN) is the property that no reduction sequence can be infinite,
and is considered as one of the most fundamental properties of many typed lambda calculi
which correspond to logical systems under the Curry-Howard isomorphism. For instance,
strong normalization of Girard’s System F [9] implies its (logical) consistency.

On the other hand, strong normalization of computational calculi with control operators
is a subtle issue as shown by the following list:
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v ::= c | x | λx.e value

e ::= v | e1e2 | Sk.e | 〈e〉 | let x = e1 in e2

| if e1 then e2 else e3 expression

Fig. 1. Syntax of λ
s/r
let .

– A typed calculus with “call/cc” is strongly normalizing, while that with exception in
Standard ML is not strongly normalizing (see, for instance, [11]).

– The calculus with “shift” and “reset” under Filinski’s typing3 is not normalizing, while,
under Danvy and Filinski’s type system, it is strongly normalizing [1].

– A typed calculus with “control” and “prompt”, the other control operators for delim-
ited continuations, is not normalizing [13]. Similarly, a typed calculus with the control
operator cupto is not normalizing [14].

Hence, we can say SN for the calculi with control operators is a non-trivial issue. This
paper solves the problem for the case of “shift” and “reset” under the polymorphic type
system.

The rest of this paper is organized as follows: Section 2 gives the syntax and semantics
of the polymorphic calculus for shift and reset in [4], and Section 3 reviews the definitional
CPS translation for this calculus. In Section 4 we introduce a refined CPS translation and
study its properties. In Section 5, we prove strong normalization of our calculus by making
use of the refined CPS translation. Section 6 gives conclusion.

2 A Polymorphic Calculus with Shift/Reset

In this section we introduce the polymorphic typed calculi λ
s/r
let for shift and reset in [4].

Following the literature, we distinguish two versions of polymorphism: predicative polymor-
phism (or let-polymorphism) found in ML families and impredicative polymorphism which
is based on the second order lambda calculus (Girard’s System F [9]). In this paper, we
concentrate on the predicative version.

2.1 Syntax and Operational Semantics

We assume that the sets of constants (denoted by c), variables (denoted by x, y, k, f), type
variables (denoted by t), and basic types (denoted by b) are mutually disjoint, and that each
constant is associated with a basic type. We assume bool is a basic type which has constants
true and false.

The syntax of λ
s/r
let is given in Figure 1. A value is either a constant, a variable or a lambda

abstraction. An expression is either a value, an application, a shift expression (denoted by

3 Filinski did not give a type system explicitly, but his well-known implementation of “shift” and
“reset” [8] specifies a certain type system.
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(λx.e)v Ã e[v/x]

〈v〉 Ã v

〈F [Sk.e]〉 Ã 〈let k = λx.〈F [x]〉 in e〉
let x = v in e Ã e[v/x]

if true then e1 else e2 Ã e1

if false then e1 else e2 Ã e2

Fig. 2. Reduction rules for λ
s/r
let

Sk.e), a reset expression (denoted by 〈e〉), a let expression, or a conditional. Note that we
omit the fixpoint operator from the calculus in [4].

Variables are bound by lambda or shift (k is bound in the expression Sk.e), and are free
otherwise. FV(e) denotes the set of free variables in e.

We give call-by-value operational semantics for λ
s/r
let . Contexts, pure evaluation contexts

(abbreviated as pure e-contexts), and redexes are defined as follows:

C ::= [ ] | λx.C | eC | Ce | Sk.C | 〈C〉 | let x = C in e | let x = e in C

| if C then e else e | if e then C else e | if e then e else C context
F ::= [ ] | vF | Fe | if F then e else e pure e-context
R ::= (λx.e)v | 〈v〉 | 〈F [Sk.e]〉 | let x = v in e

| if true then e1 else e2 | if false then e1 else e2 redex

A pure e-context F is an evaluation context such that no reset encloses the hole. Therefore,
in the redex 〈F [Sk.e]〉, the outermost reset is guaranteed to be the one corresponding to
this shift, i.e., no reset exists inbetween.

The notion of one-step reduction Ã is defined by C[R] Ã C[e] where C is an arbitrary
context 4 and R Ã e is an instance of reductions in Figure 2. In this figure, e[v/x] denotes the
ordinary capture-avoiding substitution. As usual, Ã∗ (and Ã+, resp.) denotes the reflexive-
transitive (transitive, resp.) closure of Ã.

2.2 Type System

The type system of λ
s/r
let is an extension of Danvy and Filinski’s monomorphic type system

for shift and reset [5].
Types are defined by Figure 3, which are similar to those in core ML except that the

function type is annotated with two answer types as (α/γ → β/δ) where γ (and δ, resp.)
denotes the answer type before (after, resp.) the execution of the function body. See Asai
and Kameyama [4] for details. A type variable is bound by the universal quantifier ∀ as
usual, and FTV(α) denotes the set of free type variables in α.
4 Note that we have slightly extended the notion of one-step reduction from our previous paper [4]

where the context enclosing a redex must be an evaluation context, not a general context. Hence
the SN property in this paper is slightly stronger than the one in [4].
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α, β, γ, δ ::= t | b | (α/γ → β/δ) monomorphic type

A ::= α | ∀t.A polymorphic type

Fig. 3. Types of λ
s/r
let .

(x : A ∈ Γ and τ ≤ A)

Γ `p x : τ
var

(c is a constant of basic type b)

Γ `p c : b
const

Γ, x : σ; α ` e : τ ; β

Γ `p λx.e : (σ/α → τ/β)
fun

Γ ; γ ` e1 : (σ/α → τ/β); δ Γ ; β ` e2 : σ; γ

Γ ; α ` e1e2 : τ ; δ
app

Γ `p e : τ

Γ ; α ` e : τ ; α
exp

Γ, k : ∀t.(τ/t → α/t); σ ` e : σ; β

Γ ; α ` Sk.e : τ ; β
shift

Γ ; σ ` e : σ; τ

Γ `p 〈e〉 : τ
reset

Γ `p e1 : σ Γ, x : Gen(σ; Γ ); α ` e2 : τ ; β

Γ ; α ` let x = e1 in e2 : τ ; β
let

Γ ; σ ` e1 : bool; β Γ ; α ` e2 : τ ; σ Γ ; α ` e3 : τ ; σ

Γ ; α ` if e1 then e2 else e3 : τ ; β
if

Fig. 4. Type Inference Rules of λ
s/r
let .

A type context (denoted by Γ ) is a finite list of the form x1 : A1, · · · , xn : An where the
variables x1, · · · , xn are mutually distinct, and A1, · · · , An are (polymorphic) types.

Judgments are either one of the following forms:

Γ `p e : τ judgment for pure expression
Γ ; α ` e : τ ; β judgment for general expression

The first form of the judgment signifies the expression e is a pure expression (free from control
effects), and the second is for an arbitrary expression. We distinguish pure expressions from
other expressions in order to present the restriction of let-polymorphism: polymorphism can
be introduced only for pure expressions, as we can see it from the type inference rule for let
below.

Figure 4 lists the type inference rules of λ
s/r
let where τ ≤ A in the rule (var) means

the instantiation of type variables by monomorphic types. Namely, if A ≡ ∀t1. · · · ∀tn.ρ
for some monomorphic type ρ, then τ ≡ ρ[σ1, · · · , σn/t1, · · · , tn] for some monomorphic
types σ1, · · · , σn. The type Gen(σ; Γ ) in the rule (let) is defined by ∀t1. · · · ∀tn.σ where
{t1, · · · , tn} = FTV(σ)− FTV(Γ ).

The type inference rules are a natural extension of the monomorphic type system by
Danvy and Filinski [5]. Pure expressions are defined by one of the rules (var), (const), (fun)
or (reset). They can be freely turned into general expressions by the rule (exp). Pure ex-
pressions can be used polymorphically through the rule (let). It generalizes the standard
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let-polymorphism found in ML where the so called value restriction is adopted.5 Finally, the
rule (shift) is extended to cope with the answer type polymorphism of captured continua-
tions: k is given a polymorphic type ∀t.(τ/t → α/t).

2.3 Properties

In our previous paper [4], we claimed that our calculus provides a good foundation for
studying the interaction between polymorphism and delimited continuations. To support
this claim, we have presented the proofs of the following properties: Strong Type Soundness,
Existence of Principal Types, and Preservation of types and equality through CPS trans-
lation. We have also stated Confluence and Strong Normalization for the calculus, but did
not present the proofs.

In this subsection, we quickly review the properties which were proved in [4].6

Theorem 1 (Subject Reduction). If Γ ; α ` e1 : τ ; β is derivable and e1 Ã∗ e2, then
Γ ; α ` e2 : τ ; β is derivable. Similarly, if Γ `p e1 : τ is derivable and e1 Ã∗ e2, then
Γ `p e2 : τ is derivable.

Theorem 2 (Progress). If `p 〈e〉 : τ is derivable, then 〈e〉 can be reduced.

By Theorems 1 and 2, we can conclude that our type system is sound (strong type
soundness in the sense of [18]).

Theorem 3 (Principal Type and Type Inference). In λ
s/r
let , principal type exists, and

we can construct a sound and complete type inference algorithm as an extension of Hindley-
Milner’s algorithm.

3 Definitional CPS Translation

A CPS translation is a translation from one calculus (typically with control operators) to a
simpler calculus (typically without control operators). It allows us to investigate the semantic
structure of the source calculus. The merit of shift and reset over other control operators for
delimited continuations comes from the fact that there exists a simple, compositional CPS
translation. Danvy and Filinski gave the precise semantics of shift and reset in terms of a
CPS translation [6, 7], and based on their translation, various theoretical results as well as
applications using shift and reset have been proposed (see, for instance, [12]).

In this section, we present an extension of Danvy and Filinski’s CPS translation, namely,
a CPS translation from λ

s/r
let to a pure polymorphic lambda calculus λlet. We call this CPS

translation as “definitional” one, since it defines the semantics of λ
s/r
let .

In the following, we first define the target calculus λlet, and then present the definitional
CPS translation.
5 Note that all values are pure, but pure expressions are not necessarily values.
6 Strictly speaking, these theorems are extended versions of the corresponding theorems in [4],

since the notion of reduction in this paper is slightly extended.



Strong Normalization of Polymorphic Calculus for Delimited Continuations 101

(x : A ∈ Γ and τ ≤ A)

Γ ` x : τ
var

(c is a constant of basic type b)

Γ ` c : b
const

Γ, x : α ` e : β

Γ ` λx.e : α → β
fun

Γ ` e1 : α → β Γ ` e2 : α

Γ ` e1e2 : β
app

Γ ` e1 : σ Γ, x : Gen(σ; Γ ) ` e2 : β

Γ ` let x = e1 in e2 : β
let

Γ ` e1 : bool Γ ` e2 : β Γ ` e3 : β

Γ ` if e1 then e2 else e3 : β
if

Fig. 5. Type Inference Rules of λlet

b∗ = b for a basic type b

t∗ = t for a type variable t

((α/γ → β/δ))∗ = α∗ → (β∗ → γ∗) → δ∗

(∀t.A)∗ = ∀t.A∗
(Γ, x : A)∗ = Γ ∗, x : A∗

Fig. 6. CPS translation for types and type contexts.

3.1 Target Calculus λlet

The syntax of values and expressions in λlet are the same as those in λ
s/r
let except that λlet

does not have control operators shift and reset. Types of λlet are standard and given by:

α, β ::= t | b | α → β monomorphic type
A ::= α | ∀t.A polymorphic type

Figure 5 defines the type inference rules of λlet. Note that, in the type inference rule
for (let), there is no side condition on the expression e1. Hence, for instance, an expression
let x = yz in x is not typable in λ

s/r
let , but is typable in λlet.

The reduction rules for λlet are the same as those for λ
s/r
let restricted to the expressions

in λlet, and are omitted.

3.2 Definitional CPS Translation from λ
s/r
let to λlet

Figures 6 and 7 define the definitional CPS translation for λ
s/r
let where the variables κ, κ′, m

and n are fresh. The type (α/γ → β/δ) is translated to the type of a function which, given
a parameter of type α∗ and a continuation of type β∗ → γ∗, returns a value of type δ∗.

In [4], we proved that the CPS translation preserves types and equality.

Theorem 4 (Preservation of Types). If Γ ; α ` e : τ ; β is derivable in λ
s/r
let , then

Γ ∗ ` [[e]] : (τ∗ → α∗) → β∗ is derivable in λlet.
If Γ `p e : τ is derivable in λ

s/r
let , then Γ ∗ ` [[e]] : (τ∗ → γ) → γ is derivable for an

arbitrary type γ in λlet.
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c∗ = c

x∗ = x

(λx.e)∗ = λx.[[e]]

[[v]] = λκ.κv∗

[[e1e2]] = λκ.[[e1]](λm.[[e2]](λn.mnκ))

[[Sk.e]] = λκ.let k = λnκ′.κ′(κn) in [[e]](λm.m)

[[〈e〉]] = λκ.κ([[e]](λm.m))

[[let x = e1 in e2]] = λκ.let x = [[e1]](λm.m) in [[e2]]κ

[[if e1 then e2 else e3]] = λκ.[[e1]](λm.if m then [[e2]]κ else [[e3]]κ)

Fig. 7. CPS translation for values and expressions.

Theorem 5 (Preservation of Equality). If Γ ; α ` e1 : τ ; β is derivable and e1 Ã∗ e2

in λ
s/r
let , then [[e1]] = [[e2]] in λlet where = is the least congruence relation containing Ã in

λlet.

Note that Theorem 5 only guarantees that the equality is preserved through the CPS
translation. In fact, we cannot show that e1 Ã e2 implies [[e1]] Ã∗ [[e2]].

4 Refined CPS Translation

The definitional CPS translation is useful in the semantic study of shift and reset. However,
it does not preserve reductions, and hence cannot be used to prove SN. The failure of
preservation of reduction is due to the fact that the CPS translation introduces a lot of
administrative redexes through the translation.

To overcome this difficulty, we refine the definitional CPS translation so that it may
produce fewer administrative redexes. There are several ways to define such optimized CPS
translations since Plotkin proposed Colon Translation [16]. Here we use an extended version
of two-level lambda calculus [7] as the target calculus of the translation, and define a refined
CPS translation from λ

s/r
let to it.

4.1 Two-Level Version of Polymorphic Lambda Calculus

In this subsection we introduce λ2L
let, a two-level version of polymorphic typed lambda cal-

culus (without control operators). In this calculus, function spaces are classified into two -
static one and dynamic one. Accordingly, each occurrence of λ and application (explicitly
denoted by “@”) is annotated by overlines (static) as λ and @, or underlines (dynamic) as λ
and @. In their original article, Danvy and Filinski classified every construct into two, but
here we only classify lambda’s and applications, and we assume that the other constructs
are implicitly classified as dynamic ones.

Figure 8 gives the syntax of λ2L
let, which is an annotated variant of λlet.
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e ::= c | x | λx.e | λx.e | e1@e2 | e1@e2

| let x = e1 in e2 | if e1 then e2 else e3 expression

α, β ::= t | b | α→β | α→β monomorphic type

A ::= α | ∀t.A polymorphic type

Fig. 8. Syntax of Two-Level Polymorphic Lambda Calculus.

Γ, x : α ` e : β

Γ ` λx.e : α→β
static fun, x ∈ FV(e) Γ, x : α ` e : β

Γ ` λx.e : α→β
dynamic fun

Γ ` e1 : α→β Γ ` e2 : α

Γ ` e1@e2 : β
static app

Γ ` e1 : α→β Γ ` e2 : α

Γ ` e1@e2 : β
dynamic app

Fig. 9. Type Inference Rules of Two Level Polymorphic Calculus.

Figure 9 gives the type system of λ2L
let, where the type inference rules for (var), (const),

(let), and (if) are the same as those in λlet, and are omitted.
The crucial difference of the type system of λ2L

let from that of λlet (besides the annotations)
is the side condition x ∈ FV(e) in the static function:

Γ, x : α ` e : β

Γ ` λx.e : α→β
static fun, x ∈ FV(e)

The condition imposes that the abstracted variable x must occur freely in e.
We put this side condition by the following reason: we will use the static lambda ab-

straction to constitute an administrative redex (a redex which does not exist in the source
expression, and is created by the CPS translation). When we prove that the CPS translation
preserves reductions, it is important to guarantee that reducing an administrative redex does
not discard any subexpressions, hence we put the side condition.

Note that the static lambda expression is not necessarily linear, namely, x may appear
more than once in e, since CPS translating conditional expressions (if-then-else) may du-
plicate the arguments of continuations. Note also that the side condition is not applied to
dynamic lambda abstraction which corresponds to lambda abstraction in the source expres-
sion. In other words, the actual continuations in λ

s/r
let may discard their arguments.

The operational semantics of λ2L
let is given as regarding the only redex as the static β-

redex. Namely, the following single rule constitutes the notion of reduction in λ2L
let:

(λx.e1)@e2 Ã e1[e2/x]

Note that this is full β-reduction, rather than the call-by-value variant.
For this notion of reduction, we have subject reduction, strong normalization and con-

fluence as follows.

Theorem 6 (Subject Reduction). If Γ ` e : α is derivable in λ2L
let, and e Ã e′ by

reducing static β-redexes only, then Γ ` e′ : α is derivable in λ2L
let.
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b∗ = b for a basic type b

t∗ = t for a type variable t

(α/γ → β/δ)∗ = α∗→(β∗→γ∗)→δ∗

(∀t.A)∗ = ∀t.A∗
(Γ, x : A)∗ = Γ ∗, x : A∗

Fig. 10. Refined CPS translation for types.

Note that this theorem is not trivial, as we have a side condition in the typing rule for
static lambda abstractions.

Proof. Since all static lambda abstractions λx.e satisfy the side condition x ∈ FV(e), all free
variables in (λx.e)@e′ occur in e[e′/x] freely, so the result of static β-reduction also satisfies
the side condition, too.

Theorem 7. Static reduction Ã in λ2L
let is confluent and strongly normalizing.

Proof. Since we can embed λ2L
let into the second order lambda calculus (where we only

consider static reductions in λ2L
let), strong normalization is apparent. We can easily prove

that static reduction is Church-Rosser, since dynamic constructs are not reduced through
the reduction.

By this theorem, for each expression e in λ2L
let, its normal form uniquely exists (the

normality is defined with respect to the static β-reduction). The normal form of e is denoted
by NF(e).

4.2 Refined CPS Translation

The refined CPS translation is a syntax-directed translation from λ
s/r
let to λ2L

let where we use
static constructs (λ and @) for administrative redexes, and dynamic constructs (λ, @ and
all other constructs) for source redexes.

Given an expression e in λ
s/r
let and an expression K in λ2L

let, we define an expression [[e, K]]
in λ2L

let as the CPS translation for e with respect to the continuation K. We first define the
translation for types in Figure 10.

Figure 11 gives the CPS translation for expressions and values where m, m1, m2, n,
κ, and κ′ are fresh variables. In the definition for shift, we have added a redundant redex
let m1 = true in · · · for the purpose of SN proof.

The complete CPS transform of an expression e may be defined by C[[e]] ≡ λκ.[[e, λx.κ@x]],
though we do not need this definition in the proof of strong normalization.

Theorem 8 (Preservation of Types).

1. Suppose Γ ; α ` e : τ ; β is derivable in λ
s/r
let , ∆ ` K : τ∗→α∗ is derivable in λ2L

let, and
Γ ∗,∆ is a valid type context in λ2L

let. Then Γ ∗,∆ ` [[e,K]] : β∗ is derivable in λ2L
let.
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x∗ = x

c∗ = c

(λx.e)∗ = λx.λκ.[[e, λm. κ@m]]

[[v, K]] = K@v∗

[[e1 e2, K]] = [[e1, λm1.[[e2, λm2.(m1@m2)@(λn. K@n)]]]]

[[〈e〉, K]] = K@[[e, λm.m]]

[[Sk.e, K]] = let m1 = true in

let k = λn.λκ′.κ′@(K@n) in [[e, λm.m]]

[[let x = e1 in e2, K]] = let x = [[e1, λm.m]] in [[e2, K]]

[[if e1 then e2 else e3, K]] = [[e1, λm.if m then [[e2, K]] else [[e3, K]]]]

Fig. 11. Refined CPS translation for expressions and values.

2. Suppose Γ `p e : τ is derivable in λ
s/r
let and ∆ ` K : τ∗→γ is derivable in λ2L

let, and
Γ ∗,∆ is a valid type context in λ2L

let. Then Γ ∗,∆ ` [[e,K]] : γ is derivable in λ2L
let.

Proof. We can prove this theorem by induction on the derivation of Γ ; α ` e : τ ; β and
Γ `p e : τ . Here, we give proofs for a few cases.

(Case e = e1e2) We assume that Γ ; α ` e1e2 : τ ; β is derivable in λ
s/r
let and ∆ ` K :

τ∗→α∗ is derivable in λ2L
let.

By inversion, we have

Γ ; γ ` e1 : (σ/α → τ/β); δ in λ
s/r
let

Γ ; β ` e2 : σ; γ in λ
s/r
let

Then by induction hypothesis on e2, we have:

Γ ∗,∆ ` [[e2, λm2.(m1@m2)@(λn. K@n)]] : γ∗ in λ2L
let

and by induction hypothesis on e1, we have:

Γ ∗,∆ ` [[e1, λm1.[[e2, λm2.(m1@m2)@(λn. K@n)]]]] : δ∗ in λ2L
let

Hence we are done.
(Case Γ ; α ` Sk.e : τ ; β) By inversion, we have

Γ, k : ∀t.(τ/t → α/t); σ ` e : σ; β in λ
s/r
let

By induction hypothesis on e, we have:

Γ ∗, k : ∀t.(τ∗→(α∗→t)→t),∆ ` [[e, λm.m]] : β∗ in λ2L
let

and then it is easy to derive:

Γ ∗,∆ ` let m1 = true in let k = λn.λκ′.κ′@(K@n) in [[e, λm.m]] : β∗ in λ2L
let

hence we are done.
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4.3 Summary of this Section

We can summarize the results in this section as the properties on the following translations:

λ
s/r
let =⇒ λ2L

let =⇒ λlet

In the first step, the refined CPS translation maps an expression in λ
s/r
let to an expression

in λ2L
let. Theorem 8 guarantees that this step preserves the type.
In the second step, an expression in λ2L

let is normalized to its unique normal form, which
can be viewed as an expression in λlet by removing all the overlines and underlines.7 Theorem
6 guarantees that this step preserves the type.

We know that the calculus λlet is strongly normalizing, since it can be embedded in,
for instance, the second order lambda calculus [9]. Hence, in order to prove the strong
normalizability of λ

s/r
let , it only remains to show that the composed translation from λ

s/r
let to

λlet preserves reductions, which will be proved in the next section.

5 Strong Normalization

In this section, we prove that reductions in λ
s/r
let are preserved by the composed translation

of the refined CPS translation and the static reduction in λ2L
let.

Theorem 9 (Preservation of Reduction). Suppose Γ ; α ` e1 : τ ; β is derivable in
λ

s/r
let , and ∆ ` K : τ∗→α∗ is derivable in λ2L

let. Then we have:

1. If e1 Ã e2 by a reduction rule other than the reset-value reduction (〈v〉 Ã v), then
NF([[e1,K]]) Ã+ NF([[e2,K]]) in λlet.

2. If e1 Ã e2 by the reset-value reduction (〈v〉 Ã v), then NF([[e1,K]]) ≡ NF([[e2,K]]) in λlet.

In the theorem above, we regard expressions in λ2L
let as those in λlet by erasing all overlines

and underlines.

Proof. The first part of this theorem is proved by the case analysis of reduction rules used
in e1 Ã e2.

– If the reduction is the call-by-value β reduction (the first reduction in Figure 2), or
reductions for let, or conditional, then the theorem can be proved easily.

– For the reduction 〈F [Sk.e]〉 Ã 〈let k = λx.〈F [x]〉 in e〉, we first prove that NF([[F [e],K]]) ≡
NF([[e, λm.[[F [m],K]]]]). This property can be easily proved by induction on F . Note that
this property holds for typable expressions only.
Then we can prove:

NF([[〈F [Sk.e]〉,K]])

≡ NF(K@[[F [Sk.e], λm.m]])

≡ NF(K@[[Sk.e, λm′.[[F [m′], λm.m]]]])

≡ NF(K@(let m1 = true in let k = λn.λκ′.κ′@((λm′.[[F [m′], λm.m]])@n) in [[e, λm.m]]))

≡ NF(K@(let m1 = true in let k = λn.λκ′.κ′@[[F [n], λm.m]] in [[e, λm.m]]))

Ã+ NF(K@(let k = λn.λκ′.κ′@[[F [n], λm.m]] in [[e, λm.m]]))
7 Note that static constructs may remain in the normal forms.
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In the last step above, since K does not discard its argument by the side condition of
the static lambda expression, the reduction let m1 = true in e1 Ã e1 is preserved,
and at least one step reduction occurs during this sequence. (Recall that we have added
a dummy redex in the refined CPS translation of the shift expression.) We also have:

NF([[〈let k = λx.〈F [x]〉 in e〉,K]])

≡ NF(K@let k = λx.λκ.κ@[[F [x], λm.m]] in [[e, λm.m]])

and therefore the resulting expressions are the same up to α-equivalence, hence we have:

NF([[〈F [Sk.e]〉,K]]) Ã+ NF([[〈let k = λx.〈F [x]〉 in e〉, K]])

The second part of this theorem is proved by a simple calculation, hence we are done.

We now give the strong normalization property for λ
s/r
let as a theorem.

Theorem 10 (Strong Normalization). If Γ ; α ` e : τ ; β is derivable in λ
s/r
let , then there

is no infinite reduction sequence starting from e.

Proof. Suppose there is an infinite reduction sequence e1 Ã e2 Ã · · · in λ
s/r
let . Since the

reset-value reduction (〈v〉 Ã v) cannot be applied to an expression infinitely many times,
the reduction sequence must contain infinitely many reductions which are not the reset-value
reduction. Then by Theorem 9, we have an infinite sequence NF(C[[e1]]) Ã+ NF(C[[e2]]) Ã+ · · · .
But, since the target calculus λlet is a strongly normalizing calculus, we get contradiction.

Hence, λ
s/r
let does not have an infinite reduction sequence.

As a corollary of strong normalization, we obtain confluence of λ
s/r
let , though it can be

proved directly.

Theorem 11 (Confluence). The notion of reduction in λ
s/r
let is confluent.

Proof. Since the reductions in λ
s/r
let are not overlapping, they are weakly Church-Rosser

(WCR). Church-Rosser property is subsumed by WCR and SN.

6 Conclusion

In this paper, we have presented a proof of strong normalization of the polymorphic calculus
for shift and reset introduced by our previous work. The calculus allows let-polymorphism
with a less restricted condition than the value restriction in ML families.

Let us emphasize that our proof is simple and easy to understand compared with the
SN proofs for the calculi with call/cc and λµ, for which one needs more involved proof. The
simplicity of our proof partly comes from the modularity of the proof, but mainly from the
design of the control operators shift and reset and the naturality of the type system [4].

For future work, we plan to extend this result to the calculi with impredicative poly-
morphism given in [4]. Finding a better perspective of strong normalizability of calculi with
various control operators is also left for future work.
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Experiences with Web Environment Origamium:
Examples and Applications
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Abstract. We present a web environment for origami theorem proving
and show the experimental results for using its functionalities. The envi-
ronment consists of a mathematical engine for computational origami, a
graphical interface for origami construction and visualization through the
web, and a system of web services for symbolic computation, which allows
web users to access computer algebra software systems. We demonstrate
our experiences with this environment through a set of examples, where
we use computational origami to construct objects representing geomet-
rical theorems, and then access via web to computer algebra systems to
prove those theorems automatically.

Keywords. Computational origami, symbolic web services, geometrical the-
orem proving, symbolic computation, Gröbner bases.

1 Introduction

Origami, the traditional Japanese art of paper folding, is a powerful tool for
constructive geometry. Despite its simplicity, it can be used to solve several
challenging problems from classical geometry, such as trisecting an arbitrary
angle or doubling the volume of a given cube [18].

The growing interest in manipulating origami with computers led to the dis-
cipline termed as computational origami. It is concerned with simulating origami
constructions on computers, and moreover, with the geometrical and mathemat-
ical aspects of origami constructions [6].

As a part of our research in computational origami at SCORE1 laboratory,
we have developed a software called Eos (E-origami system) [11, 14]. It has
capabilities of symbolic and numeric constraint solving, visualization of origami
constructions, and assists the user in proving geometric theorems about origami
by decision methods from computer algebra.

We built WebEos system to provide interested origamists with a web inter-
face to the features of Eos. Through graphical interactive interfaces, web users
can easily construct origami pieces using their web browsers. To enable those

1 The Symbolic Computation Research Group at University of Tsukuba
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users to reason about their constructed origami, we also built a system for sym-
bolic computation web services, called Scorum. It allows access to mathemat-
ical software for performing symbolic computations related to origami theorem
proving. These web systems, along with Eos, are integrated to form a web envi-
ronment for computational origami. Details about this environment have already
been published [16].

In this paper, we focus on showing some experimental results through a set of
examples. We present our trials to prove geometrical theorems, and the results of
some intensive symbolic computations. We also compare the computation time
among symbolic computation requests run on different mathematical systems,
with different parameters and algorithms. The paper serves to show the merits of
using the environment for origami theorem proving, and how it helps to organize
and properly utilize our available resources.

2 Overview of the Environment

In this section, we will give a brief overview of the environment which we think
is important to help the reader to understand the context of the research.

The web environment for computational origami is called Origamium [16].
The diagram in Fig. 1 shows its architecture and the interaction between its
subsystems. The environment integrates three main systems.

Fig. 1. Overview of Origamium Architecture

First is the mathematical engine for origami manipulation, Eos. It is devel-
oped in Mathematica [21] and provides the implementation of a set of functions
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to create origami and manipulate it by folding, unfolding, creating points, cut-
ting, etc. Accessing Eos is done by executing text-based commands through
Mathematica’s frontend.

Second is WebEos, the web interface of Eos for interactive origami construc-
tion. WebEos is based on Ajax technology for web applications development.
It allows asynchronous access to various functions of Eos, and facilitates dy-
namic origami constructing using a graphical user interface running on a web
browser. It aims to reach a wide number of users interested in origami, and helps
to demonstrate interesting examples and constructions, and share them publicly
on the web. Further details about WebEos system can be found in [17, 16].

A snapshot for one of the web pages of WebEos is shown in Fig. 2. It shows
an intermediate step of constructing a regular triangle inscribed in origami.

Fig. 2. Execution of origami fold operation using WebEos. Two fold lines satisfying
the fold conditions are possible, and they can be viewed by clicking the hyperlinks
above the origami image

Third is the Symbolic Computation Research Forum, Scorum, a system
that exposes web services for symbolic computation. It is designed to facilitate
standard web access to the functionalities of various mathematical systems, such
as Mathematica, Maple [19], CoCoa [4], etc. Scorum also provides user-friendly
interfaces to access these web services, and to input and visualize mathematical
expressions using web pages.

In Scorum, we distinguish two kinds of symbolic computations, i.e. inter-
active and time-consuming (non-interactive) computations. Interactive compu-
tations are expected to finish within allowed time slice. Thus, their result is
delivered immediately to the caller. Time-consuming computations are those
which are expected to take long time before they finish, and thus they are not
suited for web services interaction due to the timeout problems.
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For non-interactive services, the user can check the status and the result of
the submitted requests. Besides, (s)he can view the list of completed requests
and sort it according to the computation time, or other criteria. This helps to
compare and check the efficiency of computations related to each other, such as
submitting the same computation request for Mathematica and Maple systems
at the same time. Further details about Scorum can be found in [20, 16]2.

2.1 Origami Theorem Proving

Each origami construction has geometric properties that can represent a ge-
ometrical problem or theorem, such as: the theorem of Morley’s triangle, the
maximum equilateral triangle inscribed in a square, creating a regular heptagon,
etc.

These theorems or problems can be illustrated by computational origami. To
prove their correctness, we can use methods from computer algebra to reason
about their geometric properties. We usually follow the following approach:

1. Construct the geometrical object by origami folding.
2. Transform the geometrical properties of the construction into polynomials,

which we call the premises P .
3. A conclusion C is then formulated as polynomial equations.
4. The final formula that we try to prove becomes P ⇒ C.
5. To prove this implication, we use techniques of automated theorem proving

over polynomials, namely Gröbner bases method. Checking whether the im-
plication holds or not leads to proving the correctness of the construction\the-
orem.

There are various implementations for these methods of computer algebra.
The design of our environment enables users to access this variety of symbolic
computation implementations through Scorum.

3 Experimental Results

We will present several examples to show how the web environment can organize
our research activities on origami, and facilitate the interaction with symbolic
computation software. We use WebEos to make the origami constructions of
our examples. Then, we generate the polynomial equations that represent these
constructions, and formulate the desired conclusions.

Automated proofs for the theorems are performed by computing Gröbner
bases for the polynomials, as explained in the previous section. This requires ac-
cessing computer algebra systems to perform this time-and-memory consuming
computation. Almost always, we need to make several trial runs of such compu-
tations to investigate a given problem. The investigation involves experimenting
with several trials where we may change one or all of the following:
2 Please note that services of WebEos and Scorum systems are not yet made public

on the web. The reasons are discussed in the referred papers
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– the construction method to build the geometric object, which will affect the
generated polynomials.

– the conclusion formulation, which may reduce computation time.
– the assigned coordinates mappings of the geometric object. Careful selection

can simplify the generated polynomials and lead to faster computation.
– the parameters for Gröbner bases computation, such as monomial orders,

computing method, and the order of variables, which are known to substan-
tially affect computing time.

– the used mathematical system, which can expose different potential param-
eters and methods.

It is clear that trying multiple combinations of these possible variations con-
sumes a lot of time and effort. The usage of Scorum enables us to reduce this
effort and focus on the creative part of solving the problem, while using the
system to skip most of the routine and manual interventions.

Scorum can facilitate and organize submitting requests for computations
of Gröbner bases to different mathematical systems. The computations are ex-
ecuted on dedicated servers, which have powerful hardware specifications. This
allows a better utilization of our networked resources.

We use MathML as the standard representation of mathematical data in
Scorum. This helps the user to make uniform access to multiple mathematical
systems which may use different data representations.

In Fig. 3, we view the web page that allows users to submit requests for
Gröbner bases computation. The page contains information about Gröbner bases
method and allows the user to input the necessary parameters. Inputting math-
ematical expressions is made possible using MathML text, or using graphical
pallets. The pallets are provided using the Java applets of WebEQ [15] product.

Figure 4 shows a listing of all requests for Gröbner bases computations sub-
mitted by an authenticated user. Through this page, the user can access the
requests to check their results, compare or delete them. As indicated by the sta-
tus icons in the figure, some of the requests have been computed and their results
are shown as MathML text. We can also see that one computation has started
and wasn’t finished at the time of accesssing the page. The rest of computations
are pending requests waiting for the execution to start.

By clicking on the ”Select” icon, all the data of the selected request will be
shown, with visual representation of its mathematical expressions. By clicking
on the headers of the list, the user can sort the requests in many ways, such as
according to their consumed computation time. This offers a possibility to easily
compare certain computations with each other.
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Fig. 3. Scorum web page for submitting a Gröbner bases computation
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rö
b
n
er

b
a
se

s
co

m
p
u
ta

ti
o
n



116 Asem Kasem and Tetsuo Ida

In the following parts of the paper, we show the results of our investigations
and experiments to use Origamium to prove Morley’s theorem, and to make
angle quintisecting (division of an angle into 5 equal angles).

3.1 Morley’s Triangle Theorem

The theorem is also known as Morley’s trisector theorem. It states that in any
triangle in plane geometry, the three points of intersection of the adjacent angle
trisectors form an equilateral triangle [2]. In previous publications [13, 12], we
have shown an automated proof of this theorem by computational origami using
Eos system. However, in this paper, we focus on the usage of the web environ-
ment, and comparing the results obtained by several trials to prove it. Here, we
use two methods to construct Morley’s triangle.

The first is based on Abe’s method for trisecting an angle [9, 1]. It depends
on the basic folding axioms, known as Huzita’s origami axioms [10]. In Fig. 5, we
show a snapshot of the triangle being constructed on the web using WebEos.

Fig. 5. Construction of Morley’s triangle using WebEos

The second method is based on general folding method that finds multiple
fold lines satisfying a given constraint. Eos system provides implementation of
this fold operation, and we use it in order to simplify construction steps for
trisecting the angles of the triangle. This also leads to reduced polynomial form,
compared with the previous method.

It is important to mention that the usage of general folding method is lim-
ited to the implementation of Eos system in Mathematica 6. Interfacing this
method to WebEos is not feasible currently, because webMathematica 3, which
allows access to Mathematica 6 from the web, is still a Beta-version release. In
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WebEos, we use webMathematica 2 [22] which is compatible with Mathematica
5.2 only.

Using the web page of Gröbner bases in Scorum, we submit several compu-
tation requests with different parameters, and then wait for their computation
results.

In the case of Abe’s method, the number of generated polynomials is 65, with
51 variables. Computation timings (always in seconds) are shown in Table 13.

Table 1. Proof of Morley’s triangle theorem, using Abe’s method

Available algorithms: Buchberger [3] and GroebnerWalk [5] methods
Monomial orders: Lexicographic, DRLexicographic, and Elimination Order

Hardware spec.: Mathematica 6 on Intel Core 2 Duo 2.67 GHz, 2.00 GB of RAM

Lexicographic
Degree Reverse
Lexicographic

Elimination Order

Buchberger 1554.55 1554.66

GroebnerWalk 1570.05 1537.25 1550.12

While in the case of using the general fold method, the number of generated
polynomials is 53, with 41 variables. Computations times are shown in Table 2,
where we use the same hardware specifications as before. The results show a
significant improvement to prove the theorem using the general fold method.

With the same hardware specifications, we have also performed trials to
compute Gröbner bases using Mathematica 5.2. The results are shown in Table 3.

3 Empty cells in the table refer to the failure of the computation. This is due to the
limitation of memory space, or to interruption of computation after taking long time
without any result
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Table 2. Proof of Morley’s triangle theorem, using general fold method

Lexicographic
Degree Reverse
Lexicographic

Elimination Order

Buchberger 1.782 1.61 1.563

GroebnerWalk 1.547 1.562 1.563

We also used Maple 11 to compute Gröbner bases with the same hardware
specifications. Maple 11 provides a wider set of algorithms and monomial orders,
compared to Mathematica, which allows us to try new possibilities of computa-
tions as shown in Table 4.

3.2 Angle Quintisection

The other example in this paper is angle quintisection. Using the general folding
method to find multiple fold lines, we are able to divide an arbitrary angle into
5 equal angles, as shown in Fig. 6.

The automated proof of the construction requires 4 sub-computations of
Gröbner bases. The numbers of polynomials in each is 42,46,42, and 42. The
corresponding numbers of variables are 36,38,36, and 36. The times for the 4
computations are summed up and presented in Table 5.

4 Discussion and Conclusion

We have presented our web environment for origami theorem proving through
several examples. We conducted experiments that illustrate its usage, and allow
us to make interesting comparisons.
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Table 3. Morley’s triangle with general fold method, using Mathematica 5.2

Available algorithms: Buchberger method
Monomial orders: Lexicographic, DRLexicographic, and DLexicographic

Lexicographic
Degree Reverse
Lexicographic

Degree Lexicographic

Buchberger 8910.03 3.25 19.219

Fig. 6. Angle quintisection using general fold method of Eos

During the different trials to compute Gröbner bases, we encountered some
problems that terminated these computations, and caused the absence of results
in the tables of Section 3.

In some cases, the reason was insufficient memory. The usage of more pow-
erful hardware could have solved the problem. However, we preferred to use
the same hardware specification for all computations, in order to make fair and
reasonable comparisons. In other cases, the computations continued for several
hours (6, 12, or 18 hours) without obtaining any result, so we manually in-
terrupted them. In the future, we may allow longer time trials to check these
computations.

Through out our experiments, we noticed good improvements in the efficiency
of computing Gröbner bases in Mathematica 6 compared to Mathematica 5.2.
This can be shown from Table 2 and Table 3.

By comparing the values in Table 2 with Table 4, we can see that Mathematica
6 was faster than Maple 11 in computing Gröbner bases for the same input.

It is important to add that, in the paper, we showed only few of the variations
of computations that we tried in order to prove the theorems. However, we
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Table 4. Morley’s triangle with general fold method, using Maple 11

Available algorithms: Buchberger, GroebnerWalk, MapleF4 [7], and FGLM [8]
Monomial orders: Lexicographic, GradedLexicographic, and

GradedReverseLexicographic

Lexicographic GLexicographic GRLexicographic

Buchberger 407.578 1564.765

GroebnerWalk 104.032 54.046 57.999

MapleF4 1940.734

FGLM 371.563 425.234 407.625

actually made many other trials which included changes to the order of variables
in Gröbner bases, usage of different coordinates mappings to generate simplified
polynomials, and different formalizations of the desired conclusion. We think
that these changes are not of great importance to be presented in the paper,
however, awareness should be given to this fact to show how the environment
assists us through all of these trials.
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Abstract. We present an automatic method for generating polynomial invariants
of a subfamily of imperative loops operating on numbers, called the P-solvable
loops. The approach combines algorithmic combinatorics and polynomial alge-
bra with computational logic, and it derives a set of polynomial invariants from
which, under additional assumptions, any polynomial invariant can be derived.
The technique is implemented in a new software package Aligator written in
Mathematica, and successfully tried on many programs implementing interesting
algorithms working on numbers.

1 Introduction

To verify and/or analyze programs containing loops one needs to discover some prop-
erties of loops automatically. Such properties are known as loop invariants. Powerful
techniques for finding loop invariants are thus crucial for further progress of software
verification and program analysis.

By combining symbolic computation with computer aided verification, in this paper
we address the question of automatic generation of invariants for loops of a special
form. These loops are characterized by the following conditions: (i) they contain only
assignments to variables and conditional loops; (ii) tests conditions are omitted; (iii)
the variables in assignments range over numeric types, such as integers or rationals;
(iv) the variables can be expressed as a polynomial of the initial values of variables
(those when the loop is entered), the loop counter, and some new variables, where there
are algebraic dependencies among the new variables. We call such loops P-solvable.
There are many natural examples of P-solvable loops in real-life programs, e.g. affine
loops are P-solvable.

Finding invariants for P-solvable loops may be a very hard and creative work since
non-trivial mathematical knowledge and intuition may be required. In [14], we derived
a systematic method for generating polynomial loop invariants of P-solvable loops.
These invariants are of the form p1 = 0 ∧ · · · ∧ pr = 0, where p1, . . . , pr are polyno-
mials over the program variables. In the sequel we will call a polynomial equality any
equality of the form p = 0, where p is a polynomial, thus an invariant is polynomial
if it is a conjunction of polynomial equalities. Finding valid polynomial identities (i.
e. invariants) has applications in many classical data flow analysis problems [20], e.
g., constant propagation, discovery of symbolic constants, discovery of loop induction
variables, etc.
? Work was done while the author was at RISC-Linz, Austria.
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Our method for invariant generation first translates conditional statements within
the loop into a sequence of loops, called inner loops. Then all loop conditions are ig-
nored, thus turning the loop into a non-deterministic program. Next symbolic summa-
tion methods are applied to the inner loops to determine if the output values of their
variables can be expressed using symbolic expressions in their input values and inner
loop counters. If yes, a collection of potential polynomial invariants is generated us-
ing a Gröbner basis algorithm to eliminate loop counters. The invariant property of
these polynomials are then checked using the weakest precondition strategy, and valid
polynomial invariants of P-solvable loops are thus derived. Moreover, we proved that
under some conditions the method computes all polynomial invariants, i.e. it computes
a Gröbner basis of the ideal of polynomial invariants. However, we could not find any
example of a P-solvable loop for which our approach fails to be complete. We thus
conjecture that the imposed completeness conditions cover a large class of imperative
programs, and the completeness proof of our approach without the additional assump-
tions is a challenging task for further research.

Exploiting the symbolic manipulation capabilities of the computer algebra system
Mathematica, our approach is implemented in a new software package called Aligator
[14]. Aligator includes algorithms for solving special classes of recurrence rela-
tions (those that are either Gosper-summable or C-finite) and generating polynomial
dependencies among algebraic exponential sequences. Using Aligator, a complete
set of polynomial invariants is successfully generated for numerous imperative pro-
grams working on numbers [14]; some of these examples are presented in this paper.

The automatically obtained invariant assertions, together with the user-asserted non-
polynomial invariant properties, can be subsequently used for proving the partial cor-
rectness of programs by generating appropriate verification conditions as first-order
logical formulas. This verification process is supported in an imperative verification
environment implemented in the Theorema system [3].

The work presented in this paper is an overview of already published theoretical
results and practical experiments regarding verification of imperative programs [18, 14,
17, 16, 15]. Our goal in this paper is to present and exemplify the main ideas and re-
quirements that are involved in the invariant generation process; for technical details
and correctness of the presented algorithms and properties we refer to the papers men-
tioned before.

2 Related Work

In [10], M. Karr proposed a general technique for finding affine relationships among
program variables. However, Karr’s work used quite complicated operations (trans-
formations on invertible/non-invertible assignments, affine union of spaces) and had
a limitation on arithmetical operations among the program variables. For these reasons,
extension of his work has recently become a challenging research topic.

One line of work uses a generic polynomial relation of an a priori fixed degree [21,
22, 28, 9, 26]. Coefficients of the polynomial are replaced by variables, and constraints
over the values of the coefficients are derived. The solution space of this constraint
system characterizes the coefficients of all polynomial invariants up to the fixed degree.
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However, in case when the program has polynomial invariants of different degrees,
these approaches have to be applied separately for the different degrees. This is not
the case of our algorithm. Our restriction is not on the degree of sought polynomial
relations, but on the type of assignments (recurrence equations) present in the loop
body. The shape of assignments restricts our approach to the class of P-solvable loops,
and thus we cannot handle loops with arbitrary polynomial assignments, nor tests in
loop condition.

A different line of research imposes structural constraints on the assignment state-
ments of the loop. Based on the theory of Gröbner basis, in [27] a fixpoint procedure for
invariant generation is presented for so–called simple loops having solvable mappings
with positive rational eigenvalues. This fixpoint is the ideal of polynomial invariants.
The restriction of assignment mappings being solvable with positive rational eigenval-
ues ensures that the program variables can be polynomially expressed in terms of the
loop counter and some auxiliary rational variables. Hence, the concept of solvable map-
ping is similar to the definition of P-solvable loop. However, contrarily to [27], in our
approach we compute closed form solutions of program variables for a wider class of
recurrence equations (assignment statements). The restriction on the closed form solu-
tion for P-solvable loops brings our approach also to the case of having closed forms as
polynomials in the loop counters and additional new variables, but, unlike [27], the new
variables can be arbitrary algebraic numbers, and not just rationals. Contrarily to [27]
where completeness is always guaranteed, the completeness of our method for loops
with conditionals is proved only under additional assumptions over ideals of polynomial
invariants. It is worth to be mentioned though that these additional constraints cover a
wide class of loops, and we could not find any example for which the completeness of
our approach is violated.

3 Preliminaries

This section starts with a brief overview of P-solvable loops. Next, we introduce some
notion about recurrence solving and polynomial equalities, and recall some fundamental
facts about their algorithmic treatment.

We assume that K is a field of characteristic zero (e.g. Q, R, etc.), and by K̄ we de-
note its algebraic closure. Throughout this paper, X = {x1, . . . , xm} (m > 1) denotes
the set of loop variables with initial values X0, and K[X] is the ring of polynomials in
the variables X with coefficients from K.

P-solvable Loops. In our approach for generating polynomial invariants, test con-
ditions in the loops are ignored. When we ignore conditions of loops, we will deal
with non-deterministic programs. Using regular-expression like notation, in [14] we in-
troduced the syntax and semantics of the class of non-deterministic programs that we
consider. We called this class basic non-deterministic programs. Essentially, when we
omit the condition b from a conditional statement If[b Then S1 Else S2], where S1

and S2 are sequences of assignments, we will write it as If[. . . Then S1 Else S2]
and mean the basic non-deterministic program S1|S2. Similarly, we omit the condition
b from a loop While[b, S], where S is a sequence of assignments, and write it in the
form While[. . . , S] to mean the basic non-deterministic program S∗. Ignoring the tests
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in the conditional branches means that either branch is executed in every possible way,
whereas ignoring the test condition of the loop means the loop is executed arbitrarily
many nonzero times. We will refer to the loop obtained in this way by dropping the loop
condition and all test conditions also as a P-solvable loop.

In the rest of this paper we will focus on non-deterministic P-solvable loops with
assignments and conditional branches with ignored conditions, written as below.

While[. . . ,If[. . . Then S1]; . . . ;If[. . . Then Sk]]. (1)

In our work, we developed a systematic method for generating (all) polynomial
invariants for loops of such a non-deterministic syntax and semantics. Namely, we
identified a class of loops with assignments, sequencing and conditionals, called the
P-solvable loops, for which tests are ignored, and the value of each loop variable is
expressed as a polynomial in the initial values of variables (those when the loop is en-
tered), the loop counter, and some new variables, where there are polynomial relations
among the new variables. The class of P-solvable loops includes the simple situations
when the expressions in the assignment statements are affine mappings, and thus affine
loops are P-solvable [14].

A precise definition of P-solvable loops can be found in [14].
Polynomial Ideals and Invariants. A non-empty subset I ⊆ K[X] is an ideal of

K[X] if p1 + p2 ∈ I for all p1, p2 ∈ I and pq ∈ K[X] for all p ∈ I and q ∈ K[X].
As observed in [25], the set of polynomials p such that p = 0 is a polynomial invariant
forms a polynomial ideal, called polynomial invariant ideal.

By Hilbert’s basis theorem [1], any ideal, and in particular thus the polynomial in-
variant ideal, has a finite basis. Using the Buchberger Algorithm [2], a special ideal
basis called Gröbner basis {p1, . . . , pr} (pi ∈ K[X]) of the polynomial invariant ideal
can be effectively computed. Hence, the conjunction of the polynomial equations cor-
responding to the polynomials from the computed basis (i.e. pi(X) = 0) characterizes
completely the polynomial invariants of the loop. Namely, any other polynomial invari-
ant can be derived as a logical consequence of p1 = 0 ∧ · · · ∧ pr = 0.

In the process of deriving a basis for the polynomial invariant ideal, we rely on
efficient methods from algorithmic combinatorics, as presented below.

Sequences and Recurrences. From the assignments statements of a P-solvable
loop, recurrence equations of the variables are built and solved, using the loop counter
n as the recurrence index.

In what follows, f : N→ K defines a (univariate) sequence of values f(n) from K
(n ∈ N). A recurrence equation for the sequence f is a rational function defining the
values of f(n + r) in terms of the previous values f(n), f(n + 1), . . . , f(n + r − 1),
where r ∈ N is called the order of the recurrence. A solution of the recurrence equation
f(n), that is a closed-form solution, expresses the value of f(n) as a function of the
summation variable n and some given initial values, e.g. f(0), . . . , f(r−1). A detailed
presentation of sequences and recurrences can be found in [5, 7]. In our research, we
only consider special classes of recurrence equations, as follows.

A C-finite recurrence f(n) is of the form f(n + r) = a0(n)f(n) + a1(n)f(n +
1) + . . . + ar−1(n)f(n + r− 1), where the constants a0, . . . , ar−1 ∈ K do not depend
on n. The closed form of a C-finite recurrence can always be computed [31, 5], and it is
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a linear combination of polynomials in n and algebraic exponential sequences θn ∈ K̄,
with θ ∈ K̄, where there exist polynomial relations among the exponential sequences.
By adding any linear combination of polynomials and exponential sequences in n to the
rhs of a C-finite recurrence, we obtain an inhomogeneous linear recurrence f(n+ r) =
a0(n)f(n)+ a1(n)f(n+1)+ . . .+ ar−1(n)f(n+ r− 1)+

∑
i qi(n)θn

i with constant
coefficients, where qi ∈ K̄[n] and θi ∈ K̄. Such recurrences can be transformed into
C-finite ones, and thus their closed forms can be always computed. For solving such
recurrences, we rely on our Mathematica implementation integrated into Aligator.
For example, the closed form of f(n+1) = 4f(n)+2 is f(n) = 4nf(0)− 2

3 (4n− 1),
where f(0) is the initial value of f(n).

A Gosper-summable recurrence f(n) is of the form f(n + 1) = f(n) + h(n),
where the sequence h(n) can be a product of rational function-terms, exponentials,
factorials and binomials in the summation variable n (all these factors can be raised
to an integer power). The closed form solution of a Gosper-summable recurrence can
be exactly computed using the decision algorithm given by [6]. In our research, we
use a Mathematica implementation of the Gosper-algorithm given by the RISC Com-
binatorics group [23]. For example, the closed form of f(n + 1) = f(n) + n5 is
f(n) = f(0)− 1

12n2 + 5
12n4 − 1

2n5 + 1
6n6, where f(0) is the initial value of f(n).

In our work, we only consider P-solvable loops whose assignment statements de-
scribe Gosper-summable or C-finite recurrences. Thus, the closed forms of loop vari-
ables can be computed as presented above.

Algebraic Dependencies. As mentioned already, the closed form solutions of the
variables of a P-solvable loop are polynomial expressions in the summation variable
n and algebraic exponential sequences in n. We thus need to relate this sequences in
a polynomial manner, such that the exponential sequences can be eliminated from the
closed forms of the loop variables, and polynomial invariants can be subsequently de-
rived. In other words, we need to compute the algebraic dependencies among the expo-
nential sequences θn

1 , . . . , θn
s ∈ K̄ of the algebraic numbers θ1, . . . , θs ∈ K̄ present in

the closed forms.
An algebraic dependency (or algebraic relation) of these sequences over K̄ is a

polynomial p ∈ K̄[y1, . . . , ys] in s distinct variables y1, . . . , ys, such that p(θn
1 , . . . , θn

s ) =
0,∀n ∈ N. Computing algebraic dependencies reduces thus to compute a Gröbner basis
of the ideal of all algebraic dependencies. We integrated in our framework a Mathemat-
ica implementation for deriving such a basis [11]. For example, θn

1 θn
2 −1 = 0 generates

the ideal of algebraic dependencies among the exponential sequences of θ1 = 4 and
θ2 = 1

4 , whereas there is no algebraic dependency among the exponential sequences of
θ1 = 4 and θ2 = 3.

4 P-solvable Loops with Conditional Branches

We have now all necessary ingredients to synthesize our invariant generation algorithm
for P-solvable loops with assignments and (nested) conditionals. This is achieved in
Algorithm 4.3, as described below.

(1) P-solvable loop with conditional branches (1), i.e. outer loop, is transformed into
nested P-solvable loops with assignments only, i.e. inner loops.
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(2) Further, using fresh variables denoting inner loop counters, the body of each P-
solvable inner loop is written as a system of recurrence equations of the loop vari-
ables X . Recurrences are then exactly solved, and polynomial closed forms of inner
loops are derived. Next, the ideal of algebraic dependencies among the exponential
sequences from the derived closed forms is computed.

Further, the polynomial invariants of (1) are inferred using the closed forms of its
inner loops, as presented in the next steps.

(3) Inner loops are executed in all possible orders. Hence, closed forms are “merged” to
express the behavior of a sequence of inner loops as a polynomial system in the in-
ner loop counters, initial values of variables (those before the inner loop sequence),
and some new variables standing for the exponential sequences in the inner loop
counters, where there are algebraic dependencies among the new variables. Loop
counters are next eliminated by Gröbner basis computation, and the ideal of valid
polynomial identities after arbitrary inner loop sequences are thus derived.

(4) Further, the intersection of the polynomial ideals of all inner loop sequences is
computed, and the ideal of polynomial relations for an arbitrary iteration of the
outer loop (3) is obtained. In particular, the ideal of polynomial relations after the
first iteration of the outer loop are inferred, as candidate polynomial invariants of
(1) (i.e. after arbitrary many iterations).

(5) Using the weakest precondition strategy, the inductiveness property of candidate
polynomial invariants is checked, and finally polynomial invariants for (1) are ob-
tained. Moreover, under the additional assumptions introduced in Theorem 4.9, we
prove that our approach is complete. Namely, it returns a basis for the polynomial
invariant ideal for some special cases of P-solvable loops with conditional branches
and assignments.

In what follows, we discuss the above steps in more detail.
1. Loop Transformation. The transformation rule is given below.

THEOREM 4.1 Let us consider the following two loops:

While[b, s0;If[b1 Then s1 Else . . . If[bk−1 Then sk−1 Else sk]. . .]; sk+1] (2)

and
While[b,
While[b ∧ b′1, s0; s1; sk+1];
. . .
While[b ∧ ¬b′1 ∧ · · · ∧ ¬b′k−1, s0; sk; sk+1]],

(3)

where s0, s1, . . . , sk, sk+1 are sequences of assignments, and b′i = wp(s0, bi) is the
weakest precondition of s0 with postcondition bi, i = 1, . . . , k − 1.
Then any formula I is an invariant of the first loop if and only if it is an invariant of the
second loop and all of its inner loops.

Since in our approach for invariant generation tests are ignored in the loop and con-
ditional branches, the loop (2) can be equivalently written as (1), by denoting Si =
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s0; si; sk+1. Further, using our notation for basic non-deterministic programs men-
tioned on page 125, the outer loop (3) can be written as (S1|S2| . . . |Sk)∗. Based on
Theorem 4.1, an imperative loop having k ≥ 1 conditional branches and assignment
statements only is called P-solvable if the inner loops obtained after performing the
transformation rule from Theorem 4.1 are P-solvable.

EXAMPLE 4.2 Consider the loop implementing Wensley’s algorithm for real division
[29].

While[(d ≥ Tol),
If[(P < a + b)
Then b := b/2; d := d/2
Else a := a + b; y := y + d/2; b := b/2; d := d/2]].

(4)

After applying Theorem 4.1 and omitting all test conditions, the obtained nested loop
system is as follows.

While[. . . ,
S1 : While[. . . , b := b/2; d := d/2];
S2 : While[. . . , a := a + b; y := y + d/2; b := b/2; d := d/2]].

2. Closed Forms of Inner Loops. For each P-solvable inner loop Si, where i =
1, . . . , k, with loop counter ji ∈ N, the recurrence equations of the loop variables X are
first extracted. Next, the type of recurrences are identified and solved by the methods
from page 126. Using the P-solvable loop property, the closed form system of an inner
loop Si with ji iterations can be thus written as:





x1[ji] = qi,1(ji, θ
ji

i1, . . . , θ
ji

is)
...
xm[ji] = qi,m(ji, θ

ji

i1, . . . , θ
ji

is)

, where
θi,r ∈ K̄, qi,l ∈ K̄[ji, θ

ji
i1, . . . , θ

ji
is ],

qi,l are parameterized by X0,
r = 1, . . . , s, l = 1, . . . , m

(5)

Furthermore, the ideal Ai of algebraic dependencies among ji, θ
ji

i1, . . . , θ
ji

is is computed.
Conform page 127, we thus have Ai = I(ji, θ

ji

i1, . . . , θ
ji

is).
The structural restrictions on recurrences from page 126 are crucial. If the recur-

rences cannot be solved exactly, or their closed forms do not fulfill the P-solvable form,
our algorithm fails in generating valid polynomial relations among the loop variables.

EXAMPLE 4.3 For Example 4.2, the closed form systems of its inner loops S1 and S2

are given below.

Inner loop S1: Inner loop S2:
j1 ∈ N j2 ∈ N
z11 = 2−j1 , z12 = 2−j1 z21 = 2−j2 , z22 = 2−j2 , z23 = 2−j2 , z24 = 2−j2





a[j1] = a[01]
b[j1] =

C−finite
b[01] ∗ z11

d[j1] =
C−finite

d[01] ∗ z12

y[j1] = y[01]





a[j2] =
Gosper

a[02] + 2 ∗ b[02]− 2 ∗ b[02] ∗ z21

b[j2] =
C−finite

b[02] ∗ z22

d[j2] =
C−finite

d[02] ∗ z23

y[j2] =
Gosper

y[02] + d[02]− d[02] ∗ z24,
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with the computed algebraic dependencies

{
z11 − z12 = 0 and





z21 − z24 = 0
z22 − z24 = 0
z23 − z24 = 0,

where X01 = {a[01], b[01], d[01], y[01]} and X02 = {a[02], b[02], d[02], y[02]} are re-
spectively the initial values of a, b, d, y before entering the inner loops S1 and S2.

3. Polynomial Relations of Inner Loop Sequences. In the general case of a P-solvable
loop (2) with a nested conditional statement having k ≥ 1 conditional branches, by ap-
plying Theorem 4.1, we obtain an outer loop (3) with k P-solvable inner loops S1, . . . , Sk.
Thus an arbitrary iteration of the outer loop is described by an arbitrary sequence of
the k P-solvable loops. Since the tests are ignored, for any iteration of the outer loop we
have k! possible sequences of inner P-solvable loops.
Let us denote the set of permutations of length k over {1, . . . , k} by Sk. Consider a per-
mutation W = (w1, . . . , wk) ∈ Sk and a sequence of numbers J = {j1, . . . , jk} ∈ Nk.
Then we write SJ

W = S
jw1
w1 ;Sjw2

w2 ; . . . ; S
jwk
wk to denote an arbitrary iteration of the outer

loop, i.e. an arbitrary sequence of the k inner loops. By Sj
i we mean the sequence of

assignments Si; . . . ; Si︸ ︷︷ ︸
j times

.

As previously discussed, for each P-solvable inner loop S
jwi
wi from SJ

W we obtain its
system of closed forms together with its ideal of algebraic dependencies among the ex-
ponential sequences (steps 1-4 of Algorithm 4.1). Further, the system of closed forms
of loop variables after SJ

W is obtained by merging the closed forms of its inner loops.
Merging is based on the fact that the initial values of the loop variables corresponding
to the inner loop S

jwi+1
wi+1 are given by the final values of the loop variables after S

jwi
wi

(step 5 of Algorithm 4.1). In [14] we showed that merging of closed forms of P-solvable
inner loops yields a polynomial closed form system as well.
We can now compute the ideal of valid polynomial relations among the loop variables
X with initial values X0 corresponding to the sequence of assignments Sw1 ; . . . ; Sw1︸ ︷︷ ︸

jw1 times

;

Sw2 ; . . . ;Sw2︸ ︷︷ ︸
jw2 times

; . . . . . . ; Swk
; . . . ; Swk︸ ︷︷ ︸

jwk
times

. Using notation introduced on page 125, we thus

compute the ideal of valid polynomial relations after S∗w1
; . . . ; S∗wk

. This is presented
in Algorithm 4.1.

Algorithm 4.1 Polynomial Relations of a P-solvable Loop Sequence
Input: k P-solvable inner loops Sw1 , . . . , Swk

Output: The ideal G E K[X] of polynomial relations among X with initial values
X0 after S∗w1

; . . . ; S∗wk

Assumption: Swi are sequences of assignments, wi ∈ {1, . . . , k}, ji ∈ N, k ≥ 1

1 for each S
jwi
wi , i = 1, . . . , k do

2 Compute the closed form of S
jwi
wi

3 Compute the ideal Awi of algebraic dependencies for S
jwi
wi
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4 endfor
5 Compute the merged closed form of S

jw1
w1 ; . . . ; S

jwk
wk :





x1[j1, . . . , jk] = f1(jw1 , θ
jw1
w11

, . . . , θ
jw1
w1s, . . . . . . , jwk

, θ
jwk
wk1, . . . , θ

jwk
wks)

...
xm[j1, . . . , jk] = fm(jw1 , θ

jw1
w11

, . . . , θ
jw1
w1s, . . . . . . , jwk

, θ
jwk
wk1, . . . , θ

jwk
wks)

, where

fl ∈ K̄[z10, . . . , z1s, . . . . . . , zk0, . . . , zks],

the variables zi0, . . . , zis are standing for the C-finite sequences jwi , θ
jwi
wi1

, . . . , θ
jwi
wis,

the coefficients of fl are given by the initial values before S
jw1
w1 ; . . . ; S

jwk
wk

6 A∗ =
k∑

i=1

Awi

7 I = 〈x1 − f1, . . . , xm − fm〉+ A∗ ⊂ K̄[z10, . . . . . . , zks, x1, . . . , xm]
8 return G = I ∩K[x1, . . . , xm].

Elimination of z10, . . . , zks at step 8 is performed by Gröbner basis computation of I
w.r.t. an elimination order Â such that z10 Â · · · · · · Â zks Â x1 · · · Â xm.

EXAMPLE 4.4 For Example 4.2, the steps of Algorithm 4.1 are presented below.
Steps 1-4. The closed form systems of the inner loops S1 and S2 are as in Example 4.3.
Steps 5-6. For the inner loop sequence Sj1

1 ; Sj
2 the initial values X02 are given by the

values a[j1], b[j1], d[j1], y[j1] after Sj1
1 . Hence, the merged closed form of Sj1

1 ; Sj2
2 is

given below. For simplicity, let us rename the initial values X01 to respectively X0 =
{a[0], b[0], d[0], y[0]}.





a[j1, j2] = a[0] + 2 ∗ b[0] ∗ z11 − 2b[0] ∗ z21 ∗ z11

b[j1, j2] = b[0] ∗ z22 ∗ z11

d[j1, j2] = d[0] ∗ z12 ∗ z23

y[j1, j2] = y[0] + d[0] ∗ z12 − d[0] ∗ z24 ∗ z12,

(6)

with the already computed algebraic dependencies

A∗ = 〈z11 − z12, z21 − z24, z22 − z24, z23 − z24〉. (7)

Steps 7, 8. From (6) and (7), by eliminating z11, z12, z21, z22, z23, z24, we obtain the
ideal of polynomial relations for Sj1

1 ; Sj2
2 , as below.

G = 〈 −b[0] ∗ d + b ∗ d[0], a ∗ d[0]− a[0] ∗ d[0]− 2 ∗ b[0] ∗ y + 2 ∗ b[0] ∗ y[0],
a ∗ d− a[0] ∗ d− 2 ∗ b ∗ y + 2 ∗ b ∗ y[0]〉.

4. Polynomial Relations of an Iteration of (3). In order to get all polynomial relations
among the loop variables X with initial values X0 corresponding to an arbitrary itera-
tion of the outer loop (3), we need to apply Algorithm 4.1 on each possible sequence of
k inner loops that are in a number of k!. This way, for each sequence of k inner loops we
get the ideal of their polynomial relations among the loop variables X with initial values
X0 (step 3 of Algorithm 4.2). Using ideal theoretic results, by taking the intersection of



132 L. Kovács

all these ideals, we derive the ideal of polynomial relations among the loop variables
X with initial values X0 that are valid after any sequence of k P-solvable inner loops
(step 4 of Algorithm 4.2). The intersection ideal thus obtained is the ideal of polynomial
relations among the loop variables X with initial values X0 after an arbitrary iteration
of the outer loop (3). This can be algorithmically computed as follows.

Algorithm 4.2 Polynomial Relations for an Iteration of (3)
Input: P-solvable loop (3) with P-solvable inner loops S1, . . . , Sk

Output: The ideal PI ⊂ K[X] of the polynomial relations among X with initial
values X0 corresponding to an arbitrary iteration of (3)
Assumption: X0 are the initial values of X before the arbitrary iteration of (3)

1 PI = Algorithm 4.1
(
S1, . . . , Sk

)
2 for each W ∈ Sk \ {(1, . . . , k)} do
3 G = Algorithm 4.1

(
Sw1 , . . . , Swk

)
4 PI = PI ∩ G
5 endfor
6 return PI.

THEOREM 4.5 Algorithm 4.2 is correct. It returns the generators for the ideal PI of
polynomial relations among the loop variables X with initial values X0 after a possible
iteration of the outer loop (3).

EXAMPLE 4.6 Similarly to Example 4.4, we compute the ideal of polynomial relations
for Sj2

2 ;Sj1
1 for Example 4.2. Further, we take the intersection of the ideals of polyno-

mial relations for Sj1
1 ; Sj2

2 and Sj2
2 ;Sj1

1 . We thus obtain

PI = 〈 −b[0] ∗ d + b ∗ d[0], a ∗ d[0]− a[0] ∗ d[0]− 2 ∗ b[0] ∗ y + 2 ∗ b[0] ∗ y[0],
a ∗ d− a[0] ∗ d− 2 ∗ b ∗ y + 2 ∗ b ∗ y[0]〉.

5. Polynomial Invariants of Outer Loop (1). What remains is to identify the rela-
tionship between the polynomial invariants among the loop variables X of the outer
loop (1) and the computed polynomial relations using Algorithm 4.2 for an arbitrary
iteration of the outer loop (3). For doing so, we proceed as follows.

1. Note that the initial values X0 of the loop variables X at the entry point of the outer
loop are also the initial values of the loop variables X before the first iteration of the
outer loop (3). We thus firstly compute by Algorithm 4.2 the ideal of all polynomial
relations among the loop variables X with initial values X0 corresponding to the
first iteration of the outer loop (3). We denote this ideal by PI1.

2. Next, from (the generators of) PI1 we keep only the set GI of polynomial relations
that are invariants among the loop variables X with initial values X0: they are
preserved by any iteration of the outer loop (3) starting in a state in which the
initial values of the loop variables X are X0. By correctness of Theorem 4.1, the
polynomials from GI thus obtained are invariants among the loop variables X with
initial values X0 of the P-solvable loop (2), and thus of (1) (see Theorem 4.7).

Finally, we can now formulate our algorithm for polynomial invariant generation for
P-solvable loops with conditional branches and assignments.
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Algorithm 4.3 P-solvable Loops with Non-deterministic Conditionals
Input: P-solvable loop (2) with k ≥ 1 conditional branches and assignments
Output: Polynomial invariants of (2) among X with initial values X0

1 Apply Theorem 4.1, yielding a nested loop (3) with k P-solvable inner loops
S1, . . . , Sk

2 Apply Algorithm 4.2 for computing the ideal PI1 of polynomial relations
among X after the first iteration of the outer loop (3)

3 From PI1 keep the set GI of those polynomials whose conjunction is pre-
served by each S1, . . . , Sk:

GI = {p ∈ PI1 | wp(Si, p(X) = 0) ∈ 〈GI〉, i = 1, . . . , k} ⊂ PI1, where
wp(Si, p(X) = 0) is the weakest precondition of Si with postcondition p(X) = 0

4 return GI .

THEOREM 4.7 Algorithm 4.3 is correct. It returns polynomial invariants among the
loop variables X with initial values X0 of the P-solvable loop (2) (and thus of (1)).

EXAMPLE 4.8 From Example 4.6 we already have the set PI1 for Example 4.2. By
applying step 3 of Algorithm 4.3, the set of polynomial invariants for Example 4.2 is

GI = {b[0] ∗ d + b ∗ d[0], a ∗ d[0]− a[0] ∗ d[0]− 2 ∗ b[0] ∗ y + 2 ∗ b[0] ∗ y[0],
a ∗ d− a[0] ∗ d− 2 ∗ b ∗ y + 2 ∗ b ∗ y[0]}.

In what follows, we state under which additional assumptions Algorithm 4.3 returns a
basis of the polynomial invariant ideal. We fix some further notation.
– J∗ the polynomial invariant ideal among X with initial values X0 of the P-solvable
loop (2).
– JW denotes the ideal of polynomial relations among X with initial values X0 after
SJ

W .
– For all i = 1, . . . , k and j ∈ N, we denote by JW,i the ideal of polynomial relations
among X with initial values X0 after SJ

W ;Sj
i .

For proving completeness of our method, we impose structural conditions on the ideal
of polynomial relations among X with initial values X0 corresponding to sequences of
k and k + 1 inner loops, as presented below.

THEOREM 4.9 Let ak =
⋂

W∈Sk

JW and ak+1 =
⋂

W∈Sk
i=1,...,k

JW,i. Let GI be as in Algo-

rithm 4.3.

1. If ak = ak+1 then J∗ = ak.
2. If 〈GI〉 = ak ∩ ak+1 then J∗ = ak ∩ ak+1.
3. If 〈GI〉 = ak then J∗ = ak.

EXAMPLE 4.10 From Examples 4.6 and 4.8 we obtain GI = PI1. By Theorem 4.9
we thus derive GI = J∗, yielding the completeness of Algorithm 4.3 for Example 4.2.
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Note, that P-solvable loops with assignments only are a special case of loop (1). Algo-
rithm 4.3 is thus applicable to this class of P-solvable loops as well (i.e. for k = 1).
Moreover, for P-solvable loops with assignments only filtering and completeness check
of the result is not needed; for these loops a basis of the polynomial invariant ideal is al-
ways derived by variable elimination from the closed form system of the (single inner)
loop [14, 17, 16].

5 Further Examples

Our approach to invariant generation is implemented in a new software package, called
Aligator. The package combines algorithms from symbolic summation and polyno-
mial algebra with computational logic, and is applicable to the rich class of P-solvable
loops. Aligator contains routines for checking the P-solvability of loops, transform-
ing them into a system of recurrence equations, solving recurrences and deriving closed
forms of loop variables, computing the ideal of polynomial invariants by variable elim-
ination, invariant filtering and completeness check of the resulting set of invariants

Aligator was implemented in Mathematica 5.2 [30], and is available from:

http://mtc.epfl.ch/software-tools/Aligator/

Using Aligator, we have successfully tested our method on a number of inter-
esting number theoretic examples [14], some of them being listed in Table 1. The first
column of the table contains the name of the example, the second and third columns
specify the applied combinatorial methods and the number of generated polynomial in-
variants for the corresponding example, whereas the fourth column shows the timing
(in seconds) needed on a machine with 2.0GHz CPU and 2GB of memory. The fifth
columns shows whether our method was complete.

6 Conclusion

We described a framework for generating loop invariants for a family of imperative
programs operating on numbers. The approach is implemented as a Mathematica pack-
age, called Aligator. Aligator offers software support for automated invariant
generation by algebraic techniques over the rationals. The successful application of the
package on a number of examples demonstrates the value of using symbolic summation
and polynomial algebra together with computational logic for program verification.

So far, the focus has been on generating polynomial equations as loop invariants.
We believe that it should be possible to identify and generate polynomial inequalities in
addition to polynomial equations, as invariants as well. Quantifier elimination methods
on theories, including the theory of real closed fields, should be helpful. We are also
interested in generalizing the framework to programs on nonnumeric data structures.

Acknowledgements. The author wishes to thank Tudor Jebelean, Andrei Voronkov,
Deepak Kapur and Manuel Kauers for their help and comments.
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Example Comb. Methods Nr.Poly. (sec) Compl.
P-solvable loops with assignments only

Division [4] Gosper 1 0.031 yes
Integer square root [12] Gosper 2 0.063 yes
Integer square root [13] Gosper 1 0.046 yes
Integer cubic root [13] Gosper 2 0.094 yes
Fibonacci [14] C-finite, Alg.Dependencies 1 0.219 yes
Sum of powers n5 [24] Gosper 1 0.125 yes

P-solvable loops with conditional branches and assignments
Wensley’s Algorithm [29] Gosper, C-finite, Alg.Dependencies 3 0.25 yes
LCM-GCD computation [4] Gosper 1 0.437 yes
Extended GCD [13] Gosper 5 3.094 yes
Fermat’s factorization [13] Gosper 1 0.109 yes
Square root [32] Gosper, C-finite, Alg.Dependencies 1 0.406 yes
Binary Product [13] Gosper, C-finite, Alg.Dependencies 1 0.219 yes
Binary Product [27] Gosper, C-finite, Alg.Dependencies 1 0.297 yes
Binary Division (2nd Loop) [8] C-finite, Alg. Dependencies 1 0.219 yes
Hardware Integer Division [19] Gosper, C-finite, Alg.Dependencies 3 0.25 yes
Hardware Integer Division [28] Gosper, C-finite, Alg.Dependencies 3 0.25 yes
Factoring Large Numbers [13] C-finite, Gosper 1 0.906 yes

Table 1. Experimental Results
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Abstract. The PHP string analyzer approximates the possible string
output of a PHP program with a context-free grammar. The approxima-
tion is obtained by repeatedly transforming grammars with finite state
transducers approximating string operations. For the approximation of
the regular expression functions such as those performing regular expres-
sion matching and replace, we approximate the functions as combinations
of transducers. We first review how we approximate the functions in the
current version of the PHP string analyzer. The approximation does not
take the disambiguation strategy of the regular expression functions and
thus produces a rough approximation for ambiguous regular expressions.
To improve the precision of approximation, we adopt transducers with
regular look-ahead and show that the disambiguation strategies can be
modeled precisely.

1 Introduction

PHP is one of the most popular server-side scripting languages used to generate
Web pages dynamically [AB+05]. The PHP string analyzer developed by the
author is a static analysis tool that approximates the string output of a program
as a context-free grammar [Min05]. The analysis is an extension of the string
expression analysis of Christensen et al. approximating a string value of an ex-
pression with a regular language [CMS03]. The PHP string analyzer was applied
to check validity of dynamically generated HTML documents [MT06,NM08] and
to detect command injection vulnerabilities in server-side programs [WS07].

The analyzer obtains the context-free grammar approximating the possible
string output of a program by repeatedly transforming grammars with finite
state transducers approximating string operations. In order to obtain a precise
approximation, it is crucial to precisely model string operations as transducers.
Scripting languages such as Perl and PHP offer advantages in string manip-
ulation by providing powerful string manipulation functions based on regular

? This work has been partially supported by CREST of JST (Japan Science and Tech-
nology Agency), and JSPS and FWF under the Japan-Austria Research Cooperative
Program.
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expressions. Critical operations on strings such as sanitization are often con-
ducted by regular expression functions. Thus, we study how to approximate the
regular expression functions precisely in this paper.

We first review how the current version of the analyzer approximates the
functions as transducers. The approximation does not take the disambiguation
strategy of the regular expression functions, and thus produces a rough approx-
imation for ambiguous regular expressions. To improve the precision of approx-
imation, we adopt transducers with regular look-ahead and show that the dis-
ambiguation strategies can be modeled precisely with transducers with regular
look-ahead.

This paper is organized as follows. In Sections 2 and 3, we review the PHP
string analyzer and the regular expression functions in PHP. In Section 4, we
present how we modeled the regular expression functions as transducers in the
current version of the analyzer. In Section 5, we introduce transducers with
regular look-ahead and precisely model disambiguation strategies of the regular
expression functions. Section 6 presents the decomposition of transducers with
regular look-ahead that makes it possible to incorporate them in the PHP string
analyzer. Finally, we present some conclusions.

2 PHP String Analyzer

In this section, we review the PHP string analyzer and present how transducers
are utilized to model string operations. The analyzer takes two inputs: a PHP
program and an input specification. The input specification is given as a regular
expression and describes the set of possible inputs to the PHP program.

To illustrate the string analysis, let us consider the following program.

for ($i = 0; $i < $n; $i++)
$x = "0".$x."1";

echo $x;

In PHP, the infix operator dot represents string concatenation. This program
concatenates the same number of "0"s to the left and "1"s to the right of $x:
the number depends on the value of $n.

The input specification is given by specifying the initial values of global
variables in our analyzer. The initial values of $x and $n are described in the
following specification.

$x : /abc|xyz/
$n : int

The specification /abc|xyz/ is a regular expression representing the set of strings
{abc, xyz}. Only the type is specified for the variable $n.

The idea of string analysis is to consider assignments as production rules of a
context-free grammar. By considering assignments as production rules and trans-
lating the input specification into production rules, we can obtain the following
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grammar approximating the output of the program.

X → abc | xyz | 0X1

This grammar represents the set of strings, {0nabc1n | n ≥ 0} ∪ {0nxyz1n | n ≥
0}, as we expect.

This analysis works even if a program contains string operations other than
concatenation. Let us consider the following revised program:

for ($i = 0; $i < $n; $i++)
$x = "0".$x."1";

echo str_replace("00","0",$x);

where str_replace("00","0",$x) replaces the string 00 in $x with 0. The set
of strings the variable $x may contain after the for loop is represented by the
context-free grammar above. Therefore, we can obtain the context-free grammar
for the output of the revised program if we know how a grammar is transformed
by str_replace("00","0",$x).

A finite automaton with output called a transducer plays a crucial rule here.
A transducer has the key property that the image of a context-free language
under a transducer is context-free [Ber79]. Furthermore, many string operations
can be realized by transducers.

Let us consider str_replace("00","0",$x) in the example: this operation
can be realized by the following transducer:

²²
?>=<89:;1

A/0A,0/0

<<
?>=<89:;/.-,()*+0

0/ε

||

A/A

UU

0/0 //?>=<89:;/.-,()*+2

where A is any character except 0. There are three states 0, 1 and 2 in this
transducer: the state 0 is the start state, and 0 and 2 are the final states. The
transitions labeled with 0/ε and A/0A mean that the transducer produces ε and
0A for the inputs 0 and A, respectively. For example, this transducer outputs
0abc11 for the input 00abc11.

We developed an algorithm to compute the image of a context-free lan-
guage under a transducer based on the the context-free graph reachability algo-
rithm [Rep00,MR00]. By the algorithm, we obtain the following context-free
grammar with the start symbol S by computing the image of the previous
context-free grammar.

S → abc | xyz | X1
X → 0abc | 0xyz | 0S1
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3 Regular Expression Operations in PHP

Scripting languages such as Perl and PHP offer advantages in string manip-
ulation by providing powerful string manipulation functions based on regular
expressions. Let us consider the following regular expression replace function.

preg_replace("/a([0-9]*)b/", "x\\1y", $x)

This function replaces substrings matching a([0-9]*)b in $x with x\\1y where
\\1 is replaced with the string matching the first grouped subexpression ([0-9]*).
The following example clarifies the operation.

preg_replace("/a([0-9]*)b/", "x\\1y", "a01ba234b") => "x01yx234y"

In the PHP string analyzer, we need to approximate this kind of powerful string
operations as precisely as possible.

The following two families of regular expression functions are provided in
PHP.

– POSIX-compatible
• ereg: perform a regular expression match.
• ereg_replace: perform a regular expression search and replace.

– Perl-compatible
• preg_match: perform a regular expression match.
• preg_replace: perform a regular expression search and replace.

The two families adopt different disambiguation strategies and behave differently
for an ambiguous regular expression.

– a POSIX-compatible regular expression matches the longest prefix of a string
matching the expression.

– Perl-compatible regular expressions adopt the first and greedy strategy we
will explain later.

The differences of various implementations of regular expression functions are
discussed into details in [Fri06]. Vansummeren formalized several disambiguation
strategies including POSIX, and showed that it is possible to precisely infer
the type of regular expression matching [Van06]. The type inference for greedy
matching were also discussed in [TSY02,HVP05].

Let us consider the following regular expression replace operation. It replaces
the substrings matching a+ with x in aaabaaa.

ereg_replace("a+", "x", "aaabaa") => "xbx"

Although a+ matches any number of a’s except zero, by the longest matching
strategy the regular expression first matches aaa and then matches aa. Thus, we
obtain xbx.

The choice operator behaves in the similar manner for a POSIX-compatible
regular expression. The regular expression a|aa matches aa, a, and then aa in
the example below.
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ereg_replace("a|aa", "x", "aaabaa") => "xxbx"

A Perl-compatible regular expression behaves differently. The first choice of
| has higher priority. Thus, in the following expression a|aa matches five single
a’s and produces "xxxbxx".

preg_replace("/a|aa/", "x", "aaabaa") => "xxxbxx"

Kleene closure in a Perl-compatible regular expression is greedy.

pereg_replace("/a+/", "x", "aaabaa") => "xbx"

The behavior of r∗ in Perl-compatible regular expressions can be interpreted
by rr∗ + ε where the first choice has a higher priority. That makes the Kleene
closure in a Perl-compatible regular expression greedy.

4 Approximation of Regular Expression Functions

In this paper, we concentrate the approximation of the regular expression replace
function. Furthermore, we do not consider the case where matched substrings
are used in the replacement like x\\1y. The approximation for that case is briefly
discussed in [Min05] and the discussion in this paper can also be extended to
treat that case.

In this section, we review the definition of regular transducers and then show
how the regular expression replace function can be approximated by a combi-
nation of regular transducers. The current version of the PHP string analyzer
adopts the method presented in this section.

A regular transducer is an automaton with output and formalized as follows.

Definition 1. A regular transducer T is a 6-tuple (Q, Σi, Σo,∆, q0, F ) where Q
is the finite set of states, Σi is the input alphabet, Σo is the output alphabet, ∆
is the finite transition-and-output relation, ∆ ⊆ (Q×Σi ×Q×Σ∗

o ) ∪ (Q×Q),
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states.

If (q1, a, q2, w) ∈ ∆, then at the state q1 and for the input a, the transducer
outputs w and changes its state to q2. If (q1, q2) ∈ ∆, the transducer can perform
ε-transition from q1 to q2. In this definition, we exclude transducers that output
a string for ε-transition.

Let us consider the regular expression replace functions. To avoid using the
concrete syntax of PHP, let us write replaceperl(r, w) and replaceposix(r, w) where
r is a regular expression defined below and w is a replacement string:

r ::= ∅ | ε | a | r + r | r∗

where a is a symbol in the alphabet. The examples in the previous section are
rewritten as follows.

replaceposix(a + aa, x)(aaabaa) = xxbx
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replaceperl(a + aa, x)(aaabaa) = xxxbxx

We approximate these regular expression replace functions by a combination
of two transducers used by Mohri and Sproat [MS96] to compile context-sensitive
rewrite rules on strings.

The first transducer is called markers of type 1. For a regular expression
r, it inserts marker # every position in w where w is divided to w1w2 and at
that position w2 is divided to w3w4 for w3 ∈ L(r). The marker for r can be
constructed as follows 1.

1. Construct a deterministic automaton A1 = (Q,Σ, δ, q0, F ) accepting Σ∗rrev.
2. T ′1 is (Q,Σ, Σ ∪ {#},∆, q0, F ) where ∆ has the following transition.

(q, a, q′, a) ∈ ∆ if δ(q, a) = q′ and q′ 6∈ F
(q, a, q′, a#) ∈ ∆ if δ(q, a) = q′ and q′ ∈ F

3. The marker T1 is the reverse of T ′1.

The second transducer replaces substrings matching r with a string w. Since
the left ends of the substrings matching r are marked with #, it starts replacing
a matching substring with w when it encounters #.

1. Construct a deterministic automaton A2 = (Q,Σ, δ, q0, F ) accepting r.
2. T2 is (Q∪{q′0}, Σ∪{#}, Σ, ∆, q′0, {q′0}) where ∆ has the following transition.

(q′0, #, q0, w) ∈ ∆
(q′0, a, q′0, a) ∈ ∆ if a 6= #
(q, a, q′, ε) ∈ ∆ if δ(q, a) = q′

(q, ε, q′0) ∈ ∆ if q ∈ F
(q, #, q, ε) ∈ ∆ if q 6= q′0

At a final state of A2, it nondeterministacally changes its state to q′0 with ε-
transition. This corresponds to stopping matching at the point. Because # may
appear inside a substring matching r after applying T1, we need the transitions
that ignore #: (q, #, q, ε) ∈ ∆.

Example 1. We obtain the following transducer for a + ab.

//GFED@ABC?>=<89:;q′0

A/A

¶¶

#/w
// ?>=<89:;q0

#/ε

¸¸

a/ε
// ?>=<89:;q1

#/ε

¸¸

b/ε
//B

ÄÄÄ
A

ε

__??
?>=<89:;q2

#/ε

¸¸

BC@A
ε

OO

where A is any symbol in Σ.

1 If ε ∈ L(r), a slight adjustment is necessary.



Approximation of String Operations in the PHP String Analyzer 143

By applying these two transducers, we can approximate the regular expres-
sion replace function. Let us consider the following example.

replaceposix((a + ab)(b + bb), x)(abbb) = x

By applying T1 and T2 to abbb, we obtain the rough approximation {x, xb, xbb}.
This is because we have not taken into account the longest matching strategy of
the POSIX regular expression functions.

5 Modeling Regular Expression Functions with
Transducers with Regular Look-Ahead

5.1 Transducers with Regular Look-Ahead

It is rather difficult to precisely model regular expression functions with the
disambiguation strategies of POSIX and Perl by transducers directly. Thus, we
employ regular transducers with regular look-ahead used by Engelfrite in the
study of top-down tree transducers [Eng77]. Transducers with regular look-ahead
make it much easier to model disambiguation strategies of POSIX and Perl.

It was shown that regular transducers with regular look-ahead can be de-
composed into two transducers [Eng77].

– The first transducer preprocesses an input from the end and annotates the
input.

– The second transducer simulates the transducer with look-ahead by taking
advantages of the annotation added by the first transducer.

This decomposition can be considered a generalization of the construction in the
previous section. Regular look-ahead was also implicitly used by the algorithms
of regular expression matching with contexts of Kearns [Kea91] and greedy reg-
ular expression matching of Frisch and Cardelli [FC04].

We formalize transducers with regular look-ahead that decides whether a
transition is permitted or not with a regular language associated to ε-transition.
If a regular language r is associated with an ε-transition, the transition can be
taken only if the rest of the input string is not in rΣ∗.

Definition 2. A transducer with regular look-ahead T is a 6-tuple (Q,Σi, Σo,
∆, q0, F ). The only difference from the standard transducer is the transition re-
lation: ∆ ⊆ (Q × Σi × Q × Σ∗

o ) ∪ (Q × Q × 2Σ∗i ). For (q, q′, r) ∈ ∆, r is the
look-ahead regular language for the ε-transition from q to q′ and must be regular.

We write (q, ε, q′, r) ∈ ∆ when (q, q′, r) ∈ ∆.
The configuration of a transducer is a tuple of a state, the rest of input, and

the output string. The transition between configurations (q, w, v) ` (q′, w′, v′) is
defined as follows.

(q, aw, v) ` (q′, w, vv′) if (q, a, q′, v′) ∈ ∆
(q, w, v) ` (q′, w, v) if (q, ε, q′, r) ∈ ∆ ∧ w 6∈ rΣ∗
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5.2 POSIX-Compatible Regular Expressions

We model the POSIX-compatible regular expression replace function as a trans-
ducer with regular look-ahead. We construct a transducer T2 replacing the
longest substrings matching a regular expression r below. We assume that the
mark # of the substrings matching r are inserted by T1 in Section 4.

1. Construct a deterministic automaton A2 = (Q,Σ, δ, q0, F ) accepting r. We
write L(q) for {w | δ(q, w) ∈ F}. It is clear that L(q) is regular for any q ∈ Q.

2. T2 is (Q∪{q′0}, Σ, Σ∪{#},∆, q′0, {q′0}) where ∆ has the following transition.

(q′0, #, q0, w) ∈ ∆
(q′0, a, q′0, a) ∈ ∆ if a 6= #
(q, a, q′, ε) ∈ ∆ if δ(q, a) = q′

(q, ε, q′0, L(q)− {ε}) ∈ ∆ if q ∈ F
(q, #, q, ε) ∈ ∆ if q 6= q′0

The construction is almost the same as T2 in the previous section. The only
difference is the look-ahead in the ε-transition from a final state of A2 to q′0. It
allows the transducer to start searching a next matching substring only when no
nonempty w′ ∈ L(q) is a prefix of the rest of input. That ensures that at that
point the transducer is at the end of a longest matching substring.

Example 2. We obtain the following transducer for a + ab.

//GFED@ABC?>=<89:;q′0

A/A

¶¶

#/w
// ?>=<89:;q0

#/ε

¸¸

a/ε
// ?>=<89:;q1

#/ε

¸¸

b/ε
//B

ÄÄÄ
A

ε|r1

__??
?>=<89:;q2

#/ε

¸¸

BC@A
ε|r2

OO

where A is any symbol and r1 = L(q1)− {ε} = {b} and r2 = L(q2)− {ε} = ∅.

By applying the marker in the previous section and this transducer, we can
precisely model the POSIX compatible regular expression replace function.

5.3 Perl-Compatible Regular Expressions

Perl-compatible regular expressions require us to insert look-ahead at not only
final states but all the states that have choices. In order to achieve this, we
extend the standard construction of an ε-NFA from a regular expression.

We define ε-NFA with regular look-ahead M(r, rc) modeling the disambigua-
tion strategy of Perl for a regular expression r and a continuation regular ex-
pression rc. The continuation regular expression rc is required to annotate ε-
transition with regular look-ahead.
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The cases for symbols, the empty string, and the empty set are standard. We
show the construction for r1r2, r1 + r2, and r∗ below.

M(r1r2, rc) = q1
0

º¹ ¸·
³´ µ¶M(r1, r2rc) q1

f q2
0

º¹ ¸·
³´ µ¶M(r2, rc) q2

fε
//

M(r1 + r2, rc) = q1
0

º¹ ¸·
³´ µ¶M(r1, rc) q1

f

///.-,()*+ ε

99sssss

ε|r1rc
%%KKKKK /.-,()*+ÂÁÀ¿»¼½¾

q2
0

º¹ ¸·
³´ µ¶M(r2, rc) q2

f

ε

99sssss

ε %%KKKKK

M(r∗, rc) =

///.-,()*+ ε //@A BC
ε|r+rc

OOq0

º¹ ¸·
³´ µ¶M(r, r∗rc) qf

ε|(r+−{ε})rc //
EDGF

ε

²² /.-,()*+ÂÁÀ¿»¼½¾

In the regular expression r1 + r2, r2 is taken only when the rest of the input
is not in r1rcΣ

∗. Thus, the ε-transition for r2 is annotated with r1rc.
For r∗, the greedy strategy is enforced by the two ε-transition with look-

ahead r+rc and (r+ − {ε})rc. In order to treat problematic regular expressions
such at (a∗)∗, one of the ε-transition must be annotated with (r+−{ε})rc instead
of r+rc. The construction above models Perl-compatible regular expressions. For
the greedy matching strategy of Frisch and Cardelli [FC04], the other ε-transition
of the two must be annotated with (r+ − {ε})rc instead.

The ε-NFA with look-ahead M(r, ε) constructed in this way can be easily
converted into a transducer with look-ahead to perform the regular expression
replace function for r.

Example 3. Let us consider the following regular expression replace.

replaceperl((ab + a)∗(baa + a), x)(abaa) = xa

The transducer for the function is constructed as follows.

/.-,()*+ ab ///.-,()*+
ε

$$HHHHH /.-,()*+ baa ///.-,()*+
ε

$$HHHHH

///.-,()*+ÂÁÀ¿»¼½¾

A/A

EE
#/w ///.-,()*+ ε //

@A BC
ε|r1

OO
/.-,()*+

ε|r2 $$HHHHH
ε

::vvvvv /.-,()*+ ε|r1 //

EDGF
ε

²² /.-,()*+
ε

::vvvvv
ε|baa

$$HHHHH /.-,()*+

EDGF
ε

²²

/.-,()*+ a ///.-,()*+
ε

::vvvvv /.-,()*+
a

///.-,()*+ ε

::vvvvv

where r1 = (ab + a)+(baa + a) and r2 = ab(ab + a)∗(baa + a). In this diagram,
we omit the transitions (q, #, q, ε) ∈ ∆ for all q that is not the initial state. It is
easy to check that by apply T1 and this transducer we do not obtain x, but xb.
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6 Decomposing Transducers with Regular Look-Ahead

In order to incorporate the transducers with regular look-ahead in the PHP
string analyzer, we need to transform them into combinations of standard trans-
ducers. We adopt the transformation of Engelfrite [Eng77]. The transformation
decomposes a transducer with look-ahead into two transducers: one preprocesses
the input from the end and one simulates the original transducer by utilizing
the information added by the other. Although the composition of top-down and
bottom-up tree transducers cannot be represented by one transducer, the com-
position of the two transducers above results in one nondeterministic transducer
for strings. Thus, it is also possible to implement a transducer with look-ahead
with a standard nondeterministic transducer without look-ahead.

Let T be a transducer with look-ahead and L = {L1, . . . , Lk} be the set of
all look-ahead sets in T . T is decomposed into a preprocessing transducer T1

that reads the input from the end and T2 that simulates T with the annotation
added by T1.

The output alphabet of T1 is Σ′
i = Σ∪{0, 1}k and produces I0a1I1a2I2 . . . In−1anIn

for a1a2 . . . an such that the following holds.

πi(Ij) = 1 if aj+1 . . . an ∈ LiΣ
∗

πi(Ij) = 0 if aj+1 . . . an 6∈ LiΣ
∗

T1 can be constructed in the same manner as the marker in Section 4.
With the annotation added by the T1, T can be easily simulated. Let T =

(Q,Σi, Σo,∆, q0, F ). Then, T2 = (Q∪ (Q× {0, 1}k), Σi ∪ {0, 1}k, Σo,∆
′, q0, F ×

{0, 1}k) where ∆′ is defined as follows.

((q, I), a, q′, w) ∈ ∆′ if (q, a, q′, w) ∈ ∆
(q, I, (q, I), ε) ∈ ∆′

((q, I), ε, (q′, I)) ∈ ∆′ if (q, ε, q′, Lj) ∈ ∆ ∧ πj(I) = 0

We have implemented the transducers for both POSIX and Perl-compatible reg-
ular expression replace functions in this manner in the PHP string analyzer.

7 Conclusion

We have reviewed how we approximate the regular expression functions in the
current version of the PHP string analyzer. The approximation is not precise
since it ignores the disambiguation strategies of the regular expression functions.
To make it more precise, we have adopted transducers with regular look-ahead
and precisely modeled the disambiguation strategy of POSIX and Perl. We have
implemented the improved transducers in the PHP string analyzer, but have not
conducted detailed experiments yet.

The regular expression replace functions have a feature that matched sub-
strings can be referred in a replacement string. Although we have not discussed
this feature in this paper, we believe that we can also model this feature precisely
if you restrict the use of matched substrings so that they are used in the order
that they appear.
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A Computer Verified Theory of Compact Sets?

Russell O’Connor??
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Abstract. Compact sets in constructive mathematics capture our in-
tuition of what computable subsets of the plane (or any other complete
metric space) ought to be. A good representation of compact sets pro-
vides an efficient means of creating and displaying images with a com-
puter. In this paper, I build upon existing work about complete metric
spaces to define compact sets as the completion of the space of finite
sets under the Hausdorff metric. This definition allowed me to quickly
develop a computer verified theory of compact sets. I applied this theory
to compute provably correct plots of uniformly continuous functions.

1 Introduction

How should we define what computable subsets of the plane are? Sir Roger
Penrose ponders this question at one point in his book “The Emperor’s New
Mind” [9]. Requiring that subsets be decidable is too strict; determining if a
point lies on the boundary of a set is undecidable in general. Penrose gives the
unit disc, {(x, y)|x2 + y2 ≤ 1}, and the epigraph of the exponential function,
{(x, y)| exp(x) ≤ y}, as examples of sets that intuitively ought to be consid-
ered computable [2]. Restricting one’s attention to pairs of rational or algebraic
numbers may work well for the unit disc, but the boundary of the epigraph of
the exponential function contains only one algebraic point. A better definition
is needed.

To characterize computable sets, we draw an analogy with real numbers.
The computable real numbers are real numbers that can be effectively approxi-
mated to arbitrary precision. The approximations are usually rational numbers
or dyadic rational numbers. We can define computable sets in a similar way.

We need a dense subset of sets that have finitary representations. In the
case of the plane, the simplest candidate is the finite subsets of Q2. Again, Q
could be replaced with the dyadic rationals. How do we measure the accuracy of
an approximation? Distances between subsets can be defined by the Hausdorff
metric (section 3).

To construct the real numbers, we complete the rational numbers. By reason-
ing constructively (section 2), the real numbers generated are always computable.

? This document has been produced using TEXmacs(see http://www.texmacs.org)
?? r.oconnor@cs.ru.nl
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Completing the finite subsets of Q2 with the Hausdorff metric yields the com-
pact sets (section 5). By reasoning constructively, the generated compact sets
are always computable!

The unit disc is constructively compact; it can be effectively approximated
with finite sets. When a computer attempts to display the unit disc, only a
finite set of the pixels can be shown. So instead of displaying an ideal disc,
the computer displays a finite set that approximates the disc. This is the key
criterion that Penrose’s examples enjoy. They can be approximated to arbitrary
precision and displayed on a raster.

Technically the epigraph of the exponential function is not compact; however,
it is locally compact. One may wish to consider constructive locally compact sets
to be computable. This would mean that any finite region of a computable set
has effective approximations of arbitrary precision.

This definition of constructively compact sets has been formalized in the
Coq proof assistant [11]. Approximations of compact sets can be rasterized and
displayed inside Coq (section 6). For example, figure 1 shows a theorem in Coq
certifying that a plot is close the exponential function. The plot itself is computed
from the definition of the graph of the exponential function.

Fig. 1. A theorem in Coq stating that a plot on a 42 by 18 raster is close to the graph
of the exponential function on [−6, 1].

The standard definition of computable sets used in computable analysis says
that a set is computable if the distance to the set is a computable real-valued
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function. This definition is equivalent to our definition using computable ap-
proximations (although, this has not been verified in Coq). However, I believe
defining computable sets by effective approximations of finite sets more accu-
rately matches our intuition about sets that can be drawn by a computer.

2 Constructive Mathematics

Usually constructive logic is presented as a restriction of classical logic where
proof by contradiction and the law of the excluded middle are not allowed.
While this is a valid point of view, constructive logic can instead be presented
as an extension of classical logic.

Consider formulas constructed from universal quantification (∀), implica-
tion (⇒), conjunction (∧), true (>), false (⊥), and equality for natural num-
bers (=N). Define negation by ¬ϕ := ϕ ⇒ ⊥. One can (constructively) prove
¬¬ϕ ⇒ ϕ holds for any formula ϕ generated from this set of connectives by
induction on the structure of ϕ because the atomic formulas—which in this case
are equalities on N—are decidable. Thus, one can deduce classical results with
constructive proofs for formulas generated from this restricted set of connectives.

This set of connectives is not really restrictive because it can be used to
define the other connectives. One can define the classical disjunction (∨̃) by
ϕ∨̃ψ := ¬(¬ϕ ∧ ¬ψ). Similarly, one can define the classical existential quanti-
fier (∃̃) by ∃̃x.ϕ(x) := ¬∀x.¬ϕ(x). With this full set of connectives, one can
produce classical mathematics. The law of the excluded middle (ϕ∨̃¬ϕ) has a
constructive proof when the classical disjunction is used.

Given this presentation of classical logic, we can extend the logic by adding
two new connectives, the constructive disjunction (∨) and the constructive exis-
tential (∃). These new connectives come equipped with their constructive rules
of inference (given by natural deduction) [12]. These constructive connectives are
slightly stronger than their classical counterparts. Constructive excluded mid-
dle (ϕ ∨ ¬ϕ) cannot be deduced in general, and our inductive argument that
¬¬ϕ ⇒ ϕ holds no longer goes through if ϕ uses these constructive connectives.

We wish to use constructive reasoning because constructive proofs have a
computational interpretation. A constructive proof of ϕ ∨ ψ tells which of the
two disjuncts hold. A proof of ∃n : N.ϕ(n) gives an explicit value for n that
makes ϕ(n) hold. Most importantly, we have a functional interpretation of ⇒
and ∀. A proof of ∀n : N.∃m : N.ϕ(n,m) is interpreted as a function with an
argument n that returns an m paired with a proof of ϕ(n, m).

The classical fragment also admits this functional interpretation, but formu-
las in the classical fragment typically end in . . . ⇒ ⊥. These functions take their
arguments and return a proof of false. Of course, there is no proof of false, so it
must be the case that the arguments cannot simultaneously be satisfied. There-
fore, these functions can never be executed. In this sense, only trivial functions
are created by proofs of classical formulas. This is why constructive mathematics
aims to strengthen classical results. We wish to create proofs with non-trivial
functional interpretations.



A Computer Verified Theory of Compact Sets 151

From now on, I will leave out the word “constructive” from phrases like
“constructive disjunction” and “constructive existential” and simply write “dis-
junction” and “existential”. This follows the standard practice in constructive
mathematics of using names from classical mathematics to refer to some stronger
constructive notion. I will explicitly use the word “classical” when I wish to refer
to classical concepts.

2.1 Dependently Typed Functional Programming

This functional interpretation of constructive deductions is given by the Curry-
Howard isomorphism [12]. This isomorphism associates formulas with dependent
types, and proofs of formulas with functional programs of the associated depen-
dent types. For example, the identity function λx : A.x of type A ⇒ A represents
a proof of the tautology A ⇒ A. Table 1 lists the association between logical
connectives and type constructors.

Logical Connective Type Constructor

implication: ⇒ function type: ⇒
conjunction: ∧ product type: ×
disjunction: ∨ disjoint union type: +

true: > unit type: ()

false: ⊥ void type: ∅
for all: ∀x.ϕ(x) dependent function type: Πx.ϕ(x)

exists: ∃x.ϕ(x) dependent pair type: Σx.ϕ(x)
Table 1. The association between formulas and types given by the Curry-Howard
isomorphism

In dependent type theory, functions from values to types are allowed. Using
types parametrized by values, one can create dependent pair types, Σx : A.ϕ(x),
and dependent function types, Πx : A.ϕ(x). A dependent pair consists of a value
x of type A and an value of type ϕ(x). The type of the second value depends
on the first value, x. A dependent function is a function from the type A to the
type ϕ(x). The type of the result depends on the value of the input.

The association between logical connectives and types can be carried over
to constructive mathematics. We associate mathematical structures, such as the
natural numbers, with inductive types in functional programming languages. We
associate atomic formulas with functions returning types. For example, we can
define equality on the natural numbers, x =N y, as a recursive function:

0 =N 0 := >
Sx =N 0 := ⊥
0 =N Sy := ⊥

Sx =N Sy := x =N y
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One catch is that general recursion is not allowed when creating functions.
The problem is that general recursion allows one to create a fixpoint opera-
tor fix : (ϕ ⇒ ϕ) ⇒ ϕ that corresponds to a proof of a logical inconsistency. To
prevent this, we allow only well-founded recursion over an argument with an
inductive type. Because well-founded recursion ensures that functions always
terminate, the language is not Turing complete. However, one can still express
fast growing functions like the Ackermann function without difficulty [12].

Because proofs and programs are written in the same language, we can freely
mix the two. For example, in my previous work [7], I represent the real numbers
by the type

∃f : Q+ ⇒ Q.∀ε1ε2.|f(ε1)− f(ε2)| ≤ ε1 + ε2. (1)

Values of this type are pairs of a function f : Q+ ⇒ Q and a proof of
∀ε1ε2.|f(ε1)− f(ε2)| ≤ ε1 + ε2. The idea is that a real number is represented by
a function f that maps any requested precision ε : Q+ to a rational approxi-
mation of the real number. Not every function of type Q+ ⇒ Q represents a
real number. Only those functions that have coherent approximations should be
allowed. The proof object paired with f witnesses the fact that f has coher-
ent approximations. This is one example of how mixing functions and formulas
allows one to create precise datatypes.

2.2 Notation

I will use the functional style of defining multivariate functions with Curried
types. A binary function will have type X ⇒ Y ⇒ Z instead of X ∧ Y ⇒ Z
(⇒ is taken to be right associative). To ease readability, I will still write binary
function application as f(x, y), even though it should really be f(x)(y).

Anonymous functions are written using lambda expressions. A function on
natural numbers that doubles its input is written λx : N.2x. The type of the
parameter will be omitted when it is clear from context what it should be.

The type of propositions is ?. Predicates are represented by functions to ?.
These predicates are often used where power sets are used in classical mathe-
matics. The type X ⇒ ? can be seen as the power set of X. I will often write
x ∈ A in place of A(x) when A : X ⇒ ? and x : X.

The notation x ∈ l is also used when l is a finite enumeration (section 4).
Also x ∈ S will be used when S is a compact set (section 5). The types will
make it clear what the interpretation of ∈ should be.

I will use shorthand to combine membership with quantifiers. I will write
∀x ∈ A.ϕ(x) for ∀x.x ∈ A ⇒ ϕ(x), and ∃x ∈ A.ϕ(x) will mean ∃x.x ∈ A∧ϕ(x).

Quotient types are not used in this theory. In place of quotients, setoids are
used. A setoid is a dependent record containing a type X (its carrier), a relation
³: X ⇒ X ⇒ ?, and a proof that ³ is an equivalence relation. When we define
a function on setoid, we usually prove it is respectful, meaning it respects the
setoid equivalence relations on its domain and codomain. Respectful functions
will also be called morphisms.

I will often write f(x) when f is a record (or existential) with a function as
its carrier (or witness) and leave implicit the projection of f into a function.
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3 Metric Spaces

Traditionally, a metric space is defined as a set X with a metric function
d : X ×X ⇒ R0+ satisfying certain axioms. The usual constructive formulation
requires d be a computable function. In my previous work [7], I have found it
useful to take a more relaxed definition for a metric space that does not require
the metric be a function. Instead, I represent the metric via a respectful ball
relation B : Q+ ⇒ X ⇒ X ⇒ ? satisfying five axioms:

1. ∀xε.Bε(x, x)
2. ∀xyε.Bε(x, y) ⇒ Bε(y, x)
3. ∀xyzε1ε2.Bε1(x, y) ⇒ Bε2(y, z) ⇒ Bε1+ε2(x, z)
4. ∀xyε.(∀δ.ε < δ ⇒ Bδ(x, y)) ⇒ Bε(x, y)
5. ∀xy.(∀ε.Bε(x, y)) ⇒ x ³ y

The ball relation Bε(x, y) expresses that the points x and y are within ε of
each other. I call this a ball relationship because the partially applied relation
Bε(x) : X ⇒ ? is a predicate that represents the ball of radius ε around the point
x. The first two axioms are reflexivity and symmetry of the ball relationship.
The third axiom is a version of the triangle inequality.

The fourth axiom states that the balls are closed balls. Closed balls are used
because being closed is usually a classical formula. This means they can be
ignored during computation because they have no computational content [4].
We want to minimize the amount of computation needed to get our constructive
results.

The fifth axiom states the identity of indiscernibles. This means that if two
points are arbitrarily close together then they are equivalent. The reverse im-
plication follows from the reflexivity axiom and the fact that B is respectful. In
some instances, axiom 5 can be considered as the definition of ³ on X.

For example, Q can be equipped with the usual metric by defining the ball
relation as

BQ
ε (x, y) := |x− y| ≤ ε.

This definition satisfies all the required axioms.

3.1 Uniform Continuity

We are interested in the category of metric spaces with uniformly continuous
functions between them. A function f : X ⇒ Y between two metric spaces is
uniformly continuous with modulus µf : Q+ ⇒ Q+ if

∀x1x2ε.B
X
µf (ε)(x1, x2) ⇒ BY

ε (f(x1), f(x2)).

We call a function uniformly continuous if it is uniformly continuous with
some modulus. We use notation X → Y with a single bar arrow to denote the
type of uniformly continuous functions from X to Y . This record type consists
of three parts, a function f of type X ⇒ Y , a modulus of continuity, and a proof
that f is uniformly continuous with the given modulus. Again, we will leave
the projection to the function type implicit and allow us to write f(x) when
f : X → Y and x : X.
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3.2 Classification of Metric Spaces

There is a hierarchy of classes that metrics can belong to. The strongest class of
metrics are the decidable metrics where

∀xyε.BX
ε (x, y) ∨ ¬BX

ε (x, y).

The constructive disjunction here implies there is an algorithm for computing
whether two points are within ε of each other or not. The metric on Q has this
property; however, the metric on R does not because of the lack of a decidable
equality.

The next strongest class of metrics is what I call located metrics. These
metrics have the property

∀xyεδ.ε < δ ⇒ BX
δ (x, y) ∨ ¬BX

ε (x, y).

This is similar to being decidable, but there is a little extra wiggle room. If x
and y are between ε and δ far apart, then the algorithm has the option of either
return a proof of BX

δ (x, y) or ¬BX
ε (x, y). This extra flexibility allows R to be

a located metric. Every decidable metric is also a located metric. Some metrics
are not located. The standard sup-metric on functions between metric spaces
may not be located.

The weakest class of metrics we will discuss are the stable metrics. A metric
is stable when

∀xyε.¬¬BX
ε (x, y) ⇒ BX

ε (x, y).

Every located metric is stable. Although we will discuss the possibility of non-
stable metrics in section 7, it appears that metric spaces used in practice are
stable. This work relies crucially on stability at one point, so we will be assuming
that metric spaces are stable throughout this paper.

3.3 Complete Metrics

Given a metric space X, one can create a new metric space called the comple-
tion of X, or simply C(X). The type C(X) is defined to be

∃f : Q+ ⇒ X.∀ε1ε2.B
X
ε1+ε2

(f(ε1), f(ε2))

with the ball relation defined to be

BC(X)
ε (x, y) := ∀δ1δ2.B

X
δ1+ε+δ2

(x(δ1), y(δ2)).

The definition of C(X) may look familiar. It is a generalization of the type that
I gave for real numbers in equation 1. In fact, in my actual implementation the
real numbers are defined to be C(Q).

A complete metric comes equipped with an injection from the original space
unit : X → C(X) and a function bind : (X → C(Y )) ⇒ (C(X) → C(Y )) that
lifts uniformly continuous functions with domain X to uniformly continuous
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function with domain C(X). One of the most common way of creating functions
that operate on complete metric spaces is by using bind. One first defines a
function on X, which is easy to work with when X is a discrete space. Then one
proves the function is uniformly continuous. After that, bind does the rest of the
work.

A second, similar way of creating functions with complete domains is by
using map : (X → Y ) ⇒ (C(X) → C(Y )). The function map can be defined by
map(f) := bind(unit ◦f), but in my implementation, map is more fundamental
than bind [7].

I will use the following notation:

x̂ := unit(x)
f̌ := bind(f)
f̄ := map(f)

The completion operation, C, and the functions unit and bind together form a
standard construction called a monad [6]. Monads have been used in functional
programs to capture many different computational notions including exceptions,
mutable state, and input/output [13]. We will see another example of a monad
in section 4.

3.4 Product Metrics

Given two metric spaces X and Y , their Cartesian product X×Y forms a metric
space with the standard sup-metric:

BX×Y
ε ((x1, y1), (x2, y2)) := BX

ε (x1, x2) ∧BY
ε (y1, y2)

The product metric interacts nicely with the completion operation. There is an
isomorphism between C(X × Y ) and C(X)× C(Y ). One direction I call couple.
The other direction is defined by lifting the projection functions:

couple : C(X)× C(Y ) → C(X × Y )
π1 : C(X × Y ) → C(X)
π2 : C(X × Y ) → C(Y )

We denote couple(x, y) by 〈x, y〉. The following lemmas prove that these func-
tions form an isomorphism.

〈π1(z), π2(z)〉 ³ z

(π1〈x, y〉, π2〈x, y〉) ³ (x, y)

3.5 Hausdorff Metrics

Given a metric space X, we can try to put a metric on predicates (subsets) of
X. We start by defining the Hausdorff hemimetric. A hemimetric is a metric
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without the symmetry and identity of indiscernibles requirement. We define the
hemimetric relation over X ⇒ ? as

HX⇒?
ε (A,B) := ∀x ∈ A.∃̃y ∈ B.Bε(x, y).

Notice the use of the classical existential in this definition. In general, we do not
need to know which point in B is close to a given point in A; it is sufficient to
know one exists without knowing which one. Furthermore, there are cases when
we cannot know which point in B is close to a given point in A.

This relation is reflexive and satisfies the triangle inequality. It is not sym-
metric. We define a symmetric relation by

BX⇒?
ε (A,B) := HX⇒?

ε (A,B) ∧HX⇒?
ε (B,A).

This relationship is reflexive, symmetric, and satisfies the triangle inequality.
Notice that if B ⊆ A then Hε(A,B) holds for all ε. The hemimetric captures
the subset relationship. If B ⊆ A and A ⊆ B (i.e. A ³ B), then Bε(A,B) holds
for all ε. However, axiom 5 for metric spaces requires the reverse implication; if
Bε(A,B) holds for all ε, then we want A ³ B. Unfortunately, this does not hold
in general. Neither does the closedness property required by axiom 4 hold. To
make a true metric space, we need to focus on a subclass of predicates that have
more structure.

4 Finite Enumerations

A finite enumeration of points from X is represented by a list. A point x is in a
finite enumeration if there classically exists a point in the list that is equivalent
to x. We are not required to know which point in the list is equivalent to x; we
only need to know that there is one. An equivalent definition can be given by
well-founded recursion on lists:

x ∈ nil := ⊥
x ∈ cons yl := x ³ y∨̃x ∈ l

Two finite enumerations are considered equivalent if they have exactly the same
members:

l1 ³ l2 := ∀x.x ∈ l1 ⇔ x ∈ l2

If X is a metric space, then the space of finite enumerations over X, F(X), is
also a metric space. The Hausdorff metric with the membership predicate defines
the ball relation:

BF(X)
ε (l1, l2) := BX⇒?

ε (λx.x ∈ l1, λy.y ∈ l2)

This ball relation is both closed (axiom 4) and is compatible with our equivalence
relation for finite enumerations (axiom 5), so this truly is a metric space.

Finite enumerations also form a monad (I have yet to verify this in Coq).
The unit : X → F(X) function creates an enumeration with a single member.
The bind : (X → F(Y )) ⇒ (F(X) → F(Y )) function takes an f : X → F(Y ) and
applies it to every element of an enumeration l : F(X) and returns the union of
the results.
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4.1 Mixing Classical and Constructive Reasoning

Proving the ball relation for finite enumerations is closed makes essential use of
classical reasoning. Given ε, suppose B

F(X)
δ (l1, l2) holds whenever ε < δ. We need

to show that B
F(X)
ε (l1, l2) holds. By the definition of the metric, this requires

proving (in part) ∀x ∈ l1.∃̃y ∈ l2.B
X
ε (x, y). From our assumptions, we know

that ∀x ∈ l1.∃̃y ∈ l2.B
X
δ (x, y) holds for every δ greater than ε. If we had used a

constructive existential in the definition of the Hausdorff hemimetric, we would
have a problem. Each different value δ could produce a different y witnessing
BX

δ (x, y). In order to use the closedness property from X to conclude BX
ε (x, y),

we need a single y such that BX
δ (x, y) holds for all δ greater than ε. Classically we

would use the infinite pigeon hole principle to find a single y that occurs infinitely
often in the stream of ys produced from δ ∈ {ε + 1

n |n : N+}. Such reasoning
does not work constructively. Given an infinite stream of elements drawn from
a finite enumeration, there is no algorithm that will determine which one occurs
infinitely often.

Fortunately, because we used classical quantifiers in the definition of the
Hausdorff metric, we can apply the the infinite pigeon hole principle to this
problem. We classically know there is some y that occurs infinitely often when
δ ∈ {ε+ 1

n |n : N+}, even if we do not know which one. For such y, BX
δ (x, y) holds

for δ arbitrarily close to ε, and therefore BX
δ (x, y) must hold for all δ greater

than ε. By the closedness property for X, BX
ε (x, y) holds as required. The other

half of the definition of B
F(X)
ε (l1, l2) is handled similarly.

Recall that the classical fragment of constructive logic requires that proof by
contradiction hold for atomic formulas in order to deduce the rule ¬¬ϕ ⇒ ϕ.
Because BX

ε (x, y) is a parameter, we do not know if it is constructed out of
classical connectives. To use the classical reasoning needed to apply the pigeon
hole principle, we assume that ¬¬BX

ε (x, y) ⇒ BX
ε (x, y) holds. This is the crucial

point where stability of the metric for X is used.

5 Compact Sets

Completing the metric space of finite enumerations yields a metric space of
compact sets:

K(X) := C(F(X))
The idea is that every compact set can be represented as a limit of finite enu-
merations that approximate it. In order for a compact set to be considered a
set, we need to define a membership relation. The membership is not over X
because compact sets are supposed to be complete and X may not be a complete
space itself. Instead, membership is over C(X), and it is defined for x : C(X)
and S : K(X) as

x ∈ S := ∀ε1ε2.∃̃y ∈ S(ε2).BX
ε1+ε2

(x(ε1), y).

A point is considered to be a member of a compact set S if it is arbitrarily close
to being a member of all approximations of S. Thus K(X) represents the space
of compact subsets of C(X).
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5.1 Correctness of Compact Sets

Bishop and Bridges define a compact set in a metric space X as a set that is com-
plete and totally bounded [1]. In our framework, we say a predicate A : X ⇒ ?
is complete if for every x : C(X) made from approximations in A, then x is in
A:

∀x : C(X).(∀ε.x(ε) ∈ A) ⇒ ∃z ∈ A.ẑ ³ x

A set B : X ⇒ ? is totally bounded if there is an ε-net for every ε : Q+. An
ε-net is a list of points l from B such that for every x ∈ B there (constructively)
exists a point z that is constructively in l and Bε(x, z). Bishop and Bridges use
the strong constructive definition of list membership that tells which member of
the list the value is.

∀ε : Q+.∃l : list X.(∀x ∈ l.x ∈ B) ∧ ∀x ∈ B.∃z ∈ l.BY
ε (x, z)

Does our definition of compact sets correspond with Bishop and Bridges’s def-
inition? The short answer is yes, but there is a small caveat. Our definition of
metric space is more general than the one that Bishop and Bridges use. Bishop
and Bridges require a distance function d : X ⇒ X ⇒ R. Our more liberal
definition of metric space does not have this requirement. I have verified that
our definition of compact is the same as Bishop and Bridges’s assuming that X
is a located metric. If a metric space has a distance function, then it is a located
metric. Thus our definition of compact corresponds to Bishop and Bridges’s
definition of compact for those metric spaces that correspond to Bishop and
Bridges’s definition of metric space.

It may seem impossible that our definition can be equivalent to Bishop and
Bridges’s definition when we sometimes use a classical existential quantifier while
Bishop and Bridges use constructive quantifiers everywhere. How would one
prove Bishop and Bridges version of x ∈ S from our version of x ∈ S? The trick is
to use the constructive disjunction from the definition of located metric. Roughly
speaking, at some point we need to prove ∃z ∈ l.BY

ε (x, z) from ∃̃z ∈ l.BY
ε (x, z).

This can be done by doing a search though the list l using the located metric
property to decide for each element z0 ∈ l whether Bε+δ(x, z0) or ¬Bε(x, z0)
holds. The classical existence is sufficient to prove that this finite search will
successfully find some z such that Bε+δ(x, z) holds. The extra δ can be absorbed
by other parts of the proof. The full proof of the isomorphism is too technical to
be presented here. A detailed description can be found in my forthcoming PhD
thesis or by examining the formal Coq proofs.

5.2 Distribution of F over C

The composition of two monads A◦B forms a monad when there is a distribution
function dist : B(A(X)) → A(B(X)) satisfying certain laws [5]. For compact
sets, K(X) := (C ◦F)(X), the distribution function dist : F(C(X)) → C(F(X)) is
defined by

dist(l)(ε) := map(λx.x(ε))l.
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This function interprets a finite enumeration of points from C(X) as a compact
set. Thus K is also a monad (I have yet to verified this in Coq).

5.3 Compact Image

We define the compact image of a compact set S : K(X) under a uni-
formly continuous function f̌ : C(X) → C(Y ) by first noting that applying
f to every point in a finite enumeration is a uniformly continuous function,
map(f) : F(X) → F(C(Y )). Composing this with dist yields a uniformly contin-
uous function from finite enumeration F(X) to compact sets K(Y ). Using bind,
this function can be lifted to operate on K(X). The result is the compact image
function:

f ¹ S := bind(dist ◦map(f))(S)

Although Bishop and Bridges would agree that the result of this function is
compact, they would not say that it is the image of S because one cannot con-
structively prove

y ∈ f ¹ S ⇒ ∃x ∈ S.f̌(x) ³ y.

However, I believe one can prove (but I have not verified this yet) the classical
statement

y ∈ f ¹ S ⇒ ∃̃x ∈ S.f̌(x) ³ y.

When f̌ is injective, as it will be for our graphing example in section 6.1, the
constructive existential statement holds.

6 Plotting Functions

There are many examples of constructively compact sets. This section illustrates
one application of compacts sets, plotting functions.

6.1 Graphing Functions

Given a uniformly continuous function f̌ : C(X) → C(Y ) and a compact set
D : K(X), the graph of the function over D is the set of points {(x, f̌(x))|x ∈ D}.
This graph can be constructed as a compact set G : K(X × Y ). A single point is
graphed by the function g(x) := 〈x̂, f(x)〉. This function is uniformly continuous,
g : X → C(X × Y ). The graph G is defined as the compact image of D under g.

G := g ¹ D
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6.2 Rasterizing Compact Sets

Given a compact set in the plane S : K(Q×Q), we can draw an image of it, or
rather we can draw an approximation of it. This process consists of two steps.
The first step is to compute an ε-approximation l := S(ε). The finite enumeration
l is a list of rational coordinates. The next step is to move these points around so
that all the points lie on a raster. A raster is simply a two dimensional matrix of
Booleans. Given coordinates for the top-left and bottom-right corners, a raster
can be interpreted as a finite enumeration. Using advanced notation features
in Coq, a raster can be displayed inside the proof assistant. Most importantly,
when the constructed raster is interpreted, it is provably close to the original
compact set.

6.3 Plotting the Exponential Function.

Given a uniformly continuous function f̌ : R → R and an interval [a, b], the
graph of f̌ over this compact interval is a compact set. The graph is an ideal
mathematical curve. This graph can then be plotted yielding a raster that when
interpreted as a finite enumeration is provably close to the ideal mathematical
curve.

Recall figure 1 from section 1. It is a theorem in Coq that states the (ideal
mathematical) graph of the exponential function (which is uniformly continuous
on (−∞, 1]) restricted to the range [0, 3] on the interval [−6, 1] is within 324

2592
(which is equivalent to 1

8 ) of the finite set represented by raster shown with the
top-left corner mapped to (−6, 3) and the bottom-right corner mapped to (1, 0).
The raster is 42 by 18, so, by considering the domain and range of the graph,
each pixel represents a 1

6 by 1
6 square. The error between the plot and the graph

must always be greater than half a pixel. I chose an ε that produces a graph
with an error of 3

4 of a pixel. In this case 3
4 · 1

6 ³ 1
8 , which is the error given in

the theorem.
There is one small objection to this image. Each block in the picture repre-

sents an infinitesimal mathematical point lying at the center of the block, but
the block appears as a square the size of the pixel. This can be fixed by inter-
preting each block as a filled square instead of as a single point. This change
would simply add an additional 1

2 pixel to the error term. This has not been
done yet in this early implementation.

7 Alternative Hausdorff Metric Definitions

There is another possible definition for the Hausdorff metric. One could define
the Hausdorff hemimetric as

H ′
ε(A,B) := ∀x ∈ A.∀δ.∃y ∈ B.BX

ε+δ(x, y).

The extra flexibility given by the δ term also allows one to conclude that there
is some y ∈ B that is within ε of x without telling us which one (again, it may
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be the case that we cannot know which y is the one). Our original definition
Hε(A,B) is implied by H ′

ε(A,B); however, the alternative definition yields more
constructive information.

The two definitions are equivalent under mild assumptions. When X is a
located metric, then H ′

ε(A,B) ⇔ Hε(A,B). This is very common case and allows
us to recover the constructive information in the H ′ version from the H version.

The constructive existential in the definition of H ′ would make the resulting
metric not provably stable. It is somewhat unclear which version is the right
definition for the constructive Hausdorff metric. The key deciding factor for me
was that I had declared the ball relation to be in the Prop universe. Coq has a
Prop/Set distinction where values in the Prop universe are removed during pro-
gram extraction [11]. To make program extraction sound, values outside the Prop
universe cannot depend on information inside the Prop universe. This means that
even if I used the H ′ definition in the Hausdorff metric, its information would
not be allowed by Coq to construct values in Set. For this reason, I chose the H
version with the classical quantifiers for the definition of the Hausdorff metric.
Values with classical existential quantifier type have no information in them and
naturally fit into the Prop universe.

8 Conclusion

This work shows that one can compute with and display constructively compact
sets inside a proof assistant. We showed how to graph uniformly continuous
functions and render the results. We have turned a proof assistant into a graphing
calculator. Moreover, our plots come with proofs of (approximate) correctness.

Even though a classical quantifier in the Hausdorff metric is used, it does not
interfere with the computation of raster images. This development shows that
one can combine classical reasoning with constructive reasoning. The classical
existential quantifier was key in allowing us to use the pigeon hole principle to
prove the closedness property of the Hausdorff metric.

All of the theorems in this paper have been verified by Coq except where
indicated otherwise. Those few theorems that have not been verified in Coq are
not essential and have not been assumed in the rest of the work (the statements
simply do not appear in the Coq formalization). This formalization will be part
of the next version of the CoRN library [3], which will be released when Coq 8.2
is released.

Given my previous work about metric spaces and uniformly continuous func-
tions [8], the work of defining compact sets and plotting functions took only one
and a half months of additional work.

This work provides a foundation for future work. One can construct more
compact sets such as fractals and geometric shapes. Proof assistants could be
modified so that the high resolution display of a monitor could be used instead
of the “ASCII art” notation that is used in this work.
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Abstract. We present an environment for proving partial correctness
of recursive functional programs which contain nested recursive calls. As
usual, correctness is transformed into a set of first-order predicate logic
formulae—verification conditions. As a distinctive feature of our method,
these formulae are not only sufficient, but also necessary for the correct-
ness. We demonstrate our method on the McCarthy 91 function, which
is considered a “challenge problem” for automated program verification.

1 Introduction

We develop a method for the generation of verification conditions for proving
partial correctness of recursive functional programs which contain nested recur-
sive calls. Our focus is on the generation of the conditions, and we do not treat
here the problem of proving them. We assume that the specification and the pro-
gram are provided and our task is to generate sound and complete verification
conditions. (In fact, we believe that specifications should be developed before
the program is written.)

Recursive programs are called nested when an argument to a recursive call
contains another invocation of the main recursive program. For example:

f [x] = If x = 0 then 0 else f [f [x− 1]].

We approach the problem of program verification by studying the most
frequent program schemata. We have studied so far Simple Recursive [6] and
Fibonacci-like [15] schemata.

When deriving necessary (and also sufficient) conditions for program correct-
ness, we actually prove at the meta-level that for any program of a certain class
(defined by a certain schema) it suffices to check only the respective verifica-
tion conditions. This is very important for the automation of the whole process,
because the production of the verification conditions is not expensive from the
computational point of view.
? The Theorema project is supported by FWF (Austrian National Science Foundation)

– SFB project F1302. The program verification project in the frame of e-Austria
Timişoara is supported by BMBWK (Austrian Ministry of Education, Science and
Culture). Additional support comes from INTAS project Ref. Nr 05-1000008-8144.
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In this paper we study, in particular, a class of recursive functional programs
which contain nested recursive definitions and we extract the purely logical con-
ditions which are sufficient for the program correctness.

The logical conditions are inferred using Scott induction [1, 11] in the fixpoint
theory of programs and constitute two meta-theorems which are proven once for
the whole class. The concrete verification conditions for each program are then
provable without having to use the fixpoint theory.

In order to illustrate the method and the class of recursive functions which
may contain nested recursive definitions, we presented here the McCarthy 91
function [13, 12], which is considered a “challenge problem” for automated pro-
gram verification.

We consider the partial correctness problem expressed as follows: given the
program which computes the function F in a domain D and given its specification
by a precondition on the input IF [x] and a postcondition on the input and the
output OF [x, y], generate the verification conditions V C1, ... , V Cn which are
sufficient for the program to satisfy the specification. The function F satisfies
the specification, if: for any input x satisfying IF , if F terminates on x, (we
write F [x] ↓) then the condition OF [x, F [x]] holds. This is also called “partial
correctness” of the program F :

(∀x : IF [x]) (F [x] ↓ =⇒ OF [x, F [x]]). (1)

A Verification Condition Generator (VCG) is a device—normally imple-
mented by a program—which takes a program, actually its source code, and
the specification, and produces verification conditions. These verification con-
ditions do not contain any part of the program text, and are expressed in a
different language, namely they are logical formulae.

Any VCG should come together with its Soundness statement, that is: for a
given program F , defined on a domain D, with a specification IF and OF if the
verification conditions VC1 , . . . ,VCn hold in the theory Th[D ] of the domain
D, then the program F satisfies its specification IF and OF .

Moreover, we are also interested in the following question: What if some of
the verification conditions do not hold? May we conclude that the program is
not correct? In fact, the program may still be correct. However, if the VCG
is complete, then one can be sure that the program is not correct. A VCG
is complete, if whenever the program satisfies its specification, the produced
verification conditions hold.

The notion of Completeness of a VCG is important for the following two
reasons: theoretically, it is the dual of Soundness and practically, it helps de-
bugging. Any counterexample for the failing verification condition would carry
over to a counterexample for the program and the specification, and thus give a
hint on “what is wrong”. Indeed, most books about program verification present
methods for verifying correct programs. However, in practical situations, it is
the failure which occurs more often until the program and the specification are
completely debugged.

This work is performed in the frame of the Theorema system [3], a mathe-
matical computer assistant which aims at supporting all phases of mathematical
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activity: construction and exploration of mathematical theories, definition of
algorithms for problem solving, as well as experimentation and rigorous verifica-
tion of them. Theorema provides both functional and imperative programming
constructs. Moreover, the logical verification conditions which are produced by
the methods presented here can be passed to the automatic provers of the sys-
tem in order to be checked. The system includes a collection of general as well as
specific provers for various interesting domains (e.g., integers, sets, reals, tuples,
etc.). More details about Theorema are available at www.theorema.org.

2 Coherent Programs

In this section we state the general principles we use for writing coherent pro-
grams with the aim of building up a non-contradictory system of verified pro-
grams. Although, these principles are not our invention (similar ideas appear in
[8]), we state them here because we want to emphasize and later formalize them.
Similar ideas appear also in software engineering—they are called there Design
by Contract or Programming by Contract [14].

We build our system such that it preserves the modularity principle, that is,
each concrete implementation of a program may be replaced by another one at
any time.

Building up correct programs: Firstly, we want to ensure that our system of co-
herent programs would contain only correct (verified) programs. This we achieve,
by:

– start from basic (trustful) functions e.g. addition, multiplication, etc.;
– define each new function in terms of already known (defined previously)

functions by giving its source text, the specification (input and output pred-
icates) and prove their correctness with respect to the specification.

This simple inductively defined principle would guarantee that no wrong
program may enter our system. The next property we want to ensure is the easy
exchange (mobility) of our program implementations. This principle is usually
referred as:

Modularity: Once we define the new function and prove its correctness, we “for-
bid” using any knowledge concerning the concrete function definition. The only
knowledge we may use is the specification. This gives us the possibility of easy
replacement of existing functions.

In order to achieve the modularity, we need to ensure that when defining a
new program, all the calls made to the existing (already defined) programs obey
the input restrictions of that programs—we call this: Appropriate values for the
function calls.

We now define the class of coherent programs as those which obey the ap-
propriate values to the function calls principle. The general definition comes in
two parts: for functions defined by composition and for functions defined by
if-then-else.
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Definition 1. Let F be obtained from H, G1, . . . , Gn by composition:

F [x] = H[G1[x], . . . , Gn[x]]. (2)

The program F with the specification (IF and OF ) is coherent with respect to its
auxiliary functions H, Gi and their specifications (IH and OH , IGi

and OGi
),

if and only if
(∀x : IF [x]) =⇒ IG1 [x] ∧ · · · ∧ IGn [x] (3)

and

(∀x : IF [x]) (∀y1 . . . yn) (OG1 [x, y1] ∧ · · · ∧OGn [x, yn] =⇒ IH [y1, . . . , yn]). (4)

Definition 2. Let F be obtained from H, G by if-then-else:

F [x] = If Q[x] then H[x] else G[x]. (5)

The program F with the specification (IF and OF ) is coherent with respect to
its auxiliary functions H, G and their specifications (IH and OH , IG and OG)
if and only if

(∀x : IF [x]) (Q[x] =⇒ IH [x]) (6)

and
(∀x : IF [x]) (¬Q[x] =⇒ IG[x]). (7)

Note that H and G may contain invocations of the main program F in their
definitions, however, this would be treated as a combination of if-then-else and
a composition. The predicate Q does not contain any invocation of F .

As a first step of the verification process, before going to the real verification,
we check if the program is coherent. It is not that programs which are not coher-
ent are necessarily not correct. However, if we want to achieve the modularity
of our system, we need to restrict to dealing only with coherent programs.

3 Generation of Verification Conditions

In order to prove partial correctness, we extract the purely logical conditions
which are sufficient and also necessary for the program to be partially correct.

By the following schema we define the class of programs which may contain
nested recursion, namely we look at programs of the form:

F [x] = If Q[x] then S[x] else C1[x, F [C2[x, F [. . . Ck[x, F [R[x]]]]]]], (8)

where Q is a predicate and S,Ci, R are auxiliary functions (S[x] is a “simple”
function (the bottom of the recursion), C1[x, y], . . . , Ck[x, y] are “combinator”
functions, and R[x] is a “reduction” function).

We assume that the functions S, C1, . . . , Ck and R satisfy their specifications
given by IS [x], OS [x, y], ICi [x, y], OCi [x, y, z], IR[x], OR[x, y].
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3.1 Coherent Nested Recursive Programs

We start up with instantiating the definitions for coherent programs (1) and (2),
namely:

Definition 3. Let for all i, the functions S, Ci, and R satisfy their specifica-
tions (IS , OS), (ICi , OCi), and (IR, OR). Then the program F as defined in (8)
with its specification (IF , OF ) is coherent with respect to S, Ci, R, and their
specifications, if and only if the following conditions hold:

(∀x : IF [x]) (Q[x] =⇒ IS [x]) (9)

(∀x : IF [x]) (¬Q[x] =⇒ IF [R[x]]) (10)

(∀x : IF [x]) (¬Q[x] =⇒ IR[x]) (11)

(∀x, y1, . . . , y2k : IF [x])
(¬Q[x] ∧OF [R[x], y1] ∧OF [y2, y3] ∧ · · · ∧OF [y2k−2, y2k−1]
∧OCk

[x, y1, y2] ∧OCk−1 [x, y3, y4] ∧ · · · ∧OC1 [x, y2k−1, y2k] (12)
=⇒

IC1 [x, y1] ∧ IC2 [x, y3] ∧ · · · ∧ ICk
[x, y2k−1]

∧ IF [y2] ∧ IF [y4] ∧ · · · ∧ IF [y2k−2])

Now the conditions for coherence look a bit complicated, however, in the
example we will see that this is not a case. Moreover, our experience shows
that proving the conditions for coherence of concrete examples is relatively easy,
compared, for example, to proving partial correctness conditions.

Looking closer at the conditions, we see that our intuition about coherent
programs is met, namely:

– (9) treats the special case, that is, Q[x] holds and no recursion is applied,
thus the input x must fulfill the precondition of S.

– (10) treats the general case, that is, ¬Q[x] holds and recursion is applied, thus
the first new input R[x] must fulfill the precondition of the main function F .

– (11) treats the general case, that is, ¬Q[x] holds and recursion is applied,
thus the input x must fulfill the precondition of the reduction function R.

– (12) treats the general case, and expresses in a cascade manner, that all the
inputs to the combinator functions C1, . . . , Ck must be appropriate and also
all the intermediate inputs to the main function F must be appropriate as
well.

After having defined the coherence verification conditions, we go towards
defining the verification conditions for ensuring partial correctness.
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3.2 Partial Correctness Conditions and their Soundness

We introduce the verification conditions for the class of programs with nested
recursion, by providing the relevant Soundness theorem.

Theorem 1. Let for all i, the functions S, Ci, and R satisfy their specifications
(IS , OS), (ICi

, OCi
), and (IR, OR). Let also the program F as defined in (8)

with its specification (IF , OF ) be coherent with respect to S, Ci, R, and their
specifications. Then, F is partially correct with respect to (IF , OF ) if the following
verification conditions hold:

(∀x : IF [x]) (Q[x] =⇒ OF [x, S[x]]) (13)

(∀x, y1, . . . , y2k : IF [x])
(¬Q[x] ∧OF [R[x], y1] ∧OF [y2, y3] ∧ · · · ∧OF [y2k−2, y2k−1]
∧OCk

[x, y1, y2] ∧OCk−1 [x, y3, y4] ∧ · · · ∧OC1 [x, y2k−1, y2k] (14)
=⇒

OF [x, y2k])

The above conditions constitute the following principle:

– (13) prove that the base case is correct.
– (14) prove that the recursive expression is correct under the assumption that

all the reduced calls are correct.

Proof. Using Scott induction, we will show that F is partially correct with re-
spect to its specification, namely:

(∀x : IF [x]) (F [x] ↓ =⇒ OF [x, F [x]]).

We now consider the following partial correctness property φ of functions:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]])).

The first step in Scott induction is to show that φ holds for the nowhere
defined function Ω (that is, there is no x, such that Ω[x] ↓). By the definition of
φ we obtain:

φ[Ω] ⇐⇒ (∀a) (Ω[a] ↓ ∧ IF [a] =⇒ OF [a,Ω[a]])),

and so, φ[Ω] holds, since Ω[a] ↓ never holds.
In the second step of Scott induction, we assume φ[f ] holds for some func-

tion f :
(∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]]), (15)

and show φ[fnew ], where fnew is obtained from f by the main program (8) as
follows:

fnew = If Q[x] then S[x] else C1[x, f [C2[x, f [. . . Ck[x, f [R[x]]]]]]].
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Now, we need to show that for an arbitrary a,

fnew[a] ↓ ∧ IF [a] =⇒ OF [a, fnew[a]].

Assume fnew [a] ↓ and IF [a]. We have now the following two cases:

Case 1: Q[a].
By the definition of fnew we obtain fnew [a] = S[a] and since fnew [a] ↓, we
obtain that S[a] must terminate as well, that is S[a] ↓. Now using verification
condition (13) we may conclude OF [a, S[a]] and hence OF [a, fnew [a]].

Case 2: ¬Q[a].
By the definition of fnew we obtain:

fnew[a] = C1[a, f [C2[a, f [. . . Ck[a, f [R[a]]]]]]]

and since fnew [a] ↓, we obtain that all the programs involved in this compu-
tation also terminate, that is:

C1[a, f [C2[a, f [. . . Ck[a, f [R[a]]]]]]] ↓

and say: C1[a, f [C2[a, f [. . . Ck[a, f [R[a]]]]]]] = y2k,

f [C2[a, f [. . . Ck[a, f [R[a]]]]]] ↓

and say: f [C2[a, f [. . . Ck[a, f [R[a]]]]]] = y2k−1,

C2[a, f [. . . Ck[a, f [R[a]]]]] ↓

and say: C2[a, f [. . . Ck[a, f [R[a]]]]] = y2k−2,

f [C3[a, f [. . . Ck[a, f [R[a]]]]]] ↓

and say: f [C3[a, f [. . . Ck[a, f [R[a]]]]]] = y2k−3,

. . .

f [Ck[a, f [R[a]]]] ↓

and say: f [Ck[a, f [R[a]]]] = y3,

Ck[a, f [R[a]]] ↓

and say: Ck[a, f [R[a]]] = y2,
f [R[a]] ↓

and say: f [R[a]] = y1, and
R[a] ↓ .

From here, by the induction hypothesis, we obtain that

OF [R[a], y1] ∧OF [y2, y3] ∧ · · · ∧OF [y2k−2, y2k−1].
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On the other hand, by knowing that all the programs C1, C2, . . . , Ck are
partially correct with respect to their specifications, we obtain that

OC1 [a, y2k−1, y2k] ∧OC2 [a, y2k−3, y2k−2] ∧ · · ·
∧OCk−1 [a, y3, y4] ∧OCk

[a, y1, y2].

Concerning the verification condition (14), note that all the assumptions
from the left part of the implication are at hand and thus we can conclude:

OF [a, y2k],

and thus OF [a, fnew [a]].

We conclude that the property φ holds for the least fixpoint of (8) and
hence, φ holds for the function computed by (8), which completes the proof of
the soundness theorem (1).

Now we proceed towards the complement of the soundness theorem, namely,
the Completeness theorem.

3.3 Completeness of the Verification Conditions

Now, we formulate the Completeness theorem for the class of programs with
nested recursion.

Theorem 2. Let for all i, the functions S, Ci, and R satisfy their specifications
(IS , OS), (ICi , OCi), and (IR, OR). Let also the program F as defined in (8) with
its specification (IF , OF ) be coherent with respect to S, Ci, R, and their specifi-
cations, and the output specifications (OF ) and (OCI

) of F and Ci, respectively,
be functional ones.

Then, if F is partially correct with respect to (IF , OF ) then the verification
conditions (13) and (14) hold.

Proof. We assume now that:

– The functions S, Ci, and R are partially correct with respect to their speci-
fications (IS , OS), (ICi , OCi), and (IR, OR).

– The program F as defined in (8) with its specification (IF , OF ) is coherent
with respect to S, Ci, R, and their specifications.

– The output specifications OF and OCi of F and Ci, respectively, are func-
tional ones, that is:

(∀x : IF [x])(∃!y) (OF [x, y]),
(∀x, y : ICi [x, y])(∃!z) (OCi [x, y, z]).

– The program F as defined in (8) is partially correct with respect to its
specification, that is, the partial correctness formula holds:

(∀x : IF [x]) (F [x] ↓ =⇒ OF [x, F [x]]). (16)
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We show that (13) and (14) are valid as logical formulae by proving them
simultaneously.

Take arbitrary but fixed x and assume IF [x] and F [x] ↓. We consider the
following two cases:

Case 1: Q[x]
By the definition of F , we have F [x] = S[x], and by using the partial cor-
rectness formula (16) of F , we conclude (13) holds. Proving (14) is trivial,
because we have Q[x].

Case 2: ¬Q[x]
Now, proving (13) is trivial. Assume y1, . . . , y2k are such that:

OF [R[x], y1] ∧OF [y2, y3] ∧ · · · ∧OF [y2k−2, y2k−1]
∧OCk

[x, y1, y2] ∧OCk−1 [x, y3, y4] ∧ · · · ∧OC1 [x, y2k−1, y2k].

Since F is partially correct and F [x] ↓, we obtain that

C1[x, F [C2[x, F [. . . Ck[x, F [R[x]]]]]]] ↓

F [C2[x, F [. . . Ck[x, F [R[x]]]]]] ↓
C2[x, F [. . . Ck[x, F [R[x]]]]] ↓

F [C3[x, F [. . . Ck[x, F [R[x]]]]]] ↓
. . .

F [Ck[x, F [R[x]]]] ↓
Ck[x, F [R[x]]] ↓

F [R[x]] ↓
R[x] ↓ .

From the fact that F is correct follows that it obeys its specification. We
assumed Of [R[x], y1] holds, and since the output specification is functional,
we conclude that F [R[x]] = y1.
Furthermore, since the output specifications of Ci: OCi are functional pred-
icates, we obtain that:

C1[x, f [C2[x, f [. . . Ck[x, f [R[x]]]]]]] = y2k,

f [C2[x, f [. . . Ck[x, f [R[x]]]]]] = y2k−1,

C2[x, f [. . . Ck[x, f [R[x]]]]] = y2k−2,

f [C3[x, f [. . . Ck[x, f [R[x]]]]]] = y2k−3,

. . .

f [Ck[x, f [R[x]]]] = y3,

Ck[x, f [R[x]]] = y2,
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f [R[x]] = y1.

On the other hand, by the definition of F , we have:

F [x] = C1[x, f [C2[x, f [. . . Ck[x, f [R[x]]]]]]]

and hence F [x] = y2k. Again, from the correctness of F , we obtain:

OF [x, y2k],

which had to be proven.

By this we completed our proof of the Completeness theorem.

4 Example and Discussion

In order to illustrate the Soundness and the Completeness theorems, and the
class of recursive functions which may contain nested recursive definitions, we
consider the McCarthy 91 function, which is considered a “challenge problem”
for automated program verification.

The program itself is defined as follows:

M [x] = If x ≥ 101 then x− 10 else M [M [x + 11]], (17)

with the specification:
(∀x) (IM [x] ⇐⇒ x ∈ N) (18)

and

(∀x, y) (OM [x, y] ⇐⇒ (x < 101 ∧ y = 91) ∨ (x ≥ 101 ∧ y = x− 10)). (19)

The (automatically generated) conditions for coherence are:

(∀x : x ∈ N) (x ≥ 101 =⇒ T) (20)

(∀x : x ∈ N) (x � 101 =⇒ x + 11 ∈ N) (21)

(∀x : x ∈ N) (x � 101 =⇒ T) (22)

(∀x, y1, y2, y3, y4 : x ∈ N)
(x � 101 ∧

((x + 11 < 101 ∧ y1 = 91) ∨ (x + 11 ≥ 101 ∧ y1 = x + 11− 10))
∧ ((y2 < 101 ∧ y3 = 91) ∨ (y2 ≥ 101 ∧ y3 = y2 − 10)) (23)

∧ y1 = y2 ∧ y3 = y4

=⇒
T ∧ T ∧ y2 ∈ N ∧ y4 ∈ N)
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One sees that the formulae (20) and (22) are trivially valid, because we have
the logical constant T at the right side of an implication. The origin of these T
come from the preconditions of the x − 10 (S[x] = x − 10) and the projection
functions (C1[x, y] = y and C2[x, y] = y).

The formulae (21) and (23) are easy consequences of the elementary theory
of naturals.

For the further check of correctness the generated conditions are:

(∀x : x ∈ N)(x ≥ 101 (24)
=⇒ (x < 101 ∧ x− 10 = 91) ∨ (x ≥ 101 ∧ x− 10 = x− 10)).

(∀x, y1, y2, y3, y4 : x ∈ N)
(n � 101

∧((x + 11 < 101 ∧ y1 = 91) ∨ (x + 11 ≥ 101 ∧ y1 = x + 11− 10))
∧((y2 < 101 ∧ y3 = 91) ∨ (y2 ≥ 101 ∧ y3 = y2 − 10)) (25)

∧y1 = y2 ∧ y3 = y4

=⇒
(x < 101 ∧ y4 = 91) ∨ (x ≥ 101 ∧ y4 = x− 10)).

The proofs of these verification conditions are straightforward, and thus the
program (17) is partially correct with respect to the specification (18), (19).

Now comes the question: What if the program is not correctly written? Thus,
we introduce now a bug. The program M is now almost the same as the previous
one, but in the base case (when x ≥ 101) the return value is x − 11. The new
(wrong) definition of M is:

M [x] = If x ≥ 101 then x− 11 else M [M [x + 11]], (26)

After generating the verification conditions, we see that all but one are valid,
namely:

(∀x : x ∈ N)(x ≥ 101 (27)
=⇒ (x < 101 ∧ x− 11 = 91) ∨ (x ≥ 101 ∧ x− 11 = x− 10)).

which reduces to proving:
x− 11 = x− 10.

Therefore, according to the completeness of the method, we conclude that
the program M does not satisfy its specification. Moreover, the failed proof gives
a hint for “debugging”: we need to change the return value in the case x ≥ 101
to x− 10.

A similar experiment shows, that in fact, the input condition (19), that is
x ∈ N is too strong, and could be successfully replaced by x ∈ Z.
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5 Related Research

Proving correctness of recursive programs in an automatic manner is considered
as being challenge, even without nested recursive definitions. Studying the be-
havior of such programs begins with classical papers (e.g., [18]) and it is still
under consideration.

Proofs exposed in classical books (e.g., [10, 11]) are very comprehensive, how-
ever, their orientation is theoretical rather than practical and mechanized. On
the other hand, most of the tools for proving program correctness automati-
cally or semiautomatically, do not treat that special case of recursion if they do
recursion at all.

In the PVS system [16] the approach is type theoretical and relies on explo-
ration of certain subtyping properties.

The approach presented in [2] puts additional restrictions, namely, recursive
programs are examined first to satisfy non-nested recursive definitions and then
they may be considered as nested recursion.

In the RRL system [7], a specialized “cover set induction method” is intro-
duced and the nested recursion is treated by it.

In the Lambda system [5], the recursive programs are treated as fixpoint
operators, however, it does not extract automatically the inductive obligations
that would correspond to the general case in our settings.

The paper [17], presents two methods for dealing with nested recursion, in-
cluding termination. However, termination conditions must be provided manu-
ally.

The main (and also very essential) difference of our approach is that we are
able to formulate conditions which are not only sufficient but also necessary in
order for the program to be correct.

6 Conclusions

In this paper, we defined necessary and sufficient conditions for programs which
may contain nested recursion to be partially correct. These are expressed by
two theorems, whose proofs are carried over in the fixpoint theory of programs.
However, the concrete proof obligations (verification conditions) are first order
predicate logic formulae, which are provable in the theory of the domain on
which the program is executed.

Furthermore, the concrete proof problems are used as test cases for the
provers of Theorema and for experimenting with the organization and man-
agement of mathematical knowledge.
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Abstract. It is well known that defining the substitution operation on
λ-terms appropriately and establish basic properties like the substitution
lemma is a subtle task if we wish to do it formally. The main obstacle
here comes from the fact that unsolicited capture of free variables may
occur during the substitution if one defines the operation naively.
We argue that although there are several approaches to cope with this
problem, they are all unsatisfactory since each of them defines the λ-
terms in terms of a single fixed syntax. We propose a new way of defining
λ-terms which uses an external syntax to be used mainly by humans and
an internal syntax which is used to implement λ-terms on computers.
In this setting, we will show that we can define λ-terms and the sub-
stitution operation naturally and can establish basic properties of terms
easily.

1 Introduction

There is a growing interest in the study of syntactic structure of expressions
equipped with the variable binding mechanism. The importance of this study
can be justified for various reasons, including those of educational, scientific
and engineering reasons. This study is educationally important since in logic
and computer science, we cannot avoid teaching the technique of substitution of
higher order linguistic objects correctly and rigorously. Scientific importance is
obvious as can be seen from the historical facts that correctly defining the sub-
stitution operation was difficult and sometimes resulted in erroneous definitions.
Engineering importance comes from recent developments of proof assistance and
symbolic computation systems which are increasingly used to assist and verify
metamathematical results rather than ordinary mathematical results. We cite
here only Aydemir et al. [1] which contains an extensive list of literature on this
topic.

We share all those reasons above with other researchers in this field as our
motivation to study this subject, but we are especially interested in this subject
because of the following ontological question.

What are syntactic objects as objects of mathematical structures with
variable binding mechanism?

This is a semantical question and cannot be answered by simply manipulating
symbols syntactically. To answer this question, we have to study syntax seman-
tically. Our contribution in this paper is precisely the result of such a study.
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We have already contributed in this study in [23–28] by investigating the
mathematical structure of symbolic expressions. We think that Frege [8], Mc-
Carthy [16, 17], Martin-Löf [19, Chapter 3] and Gabbay-Pitts [9, 10] contributed
very much in the semantical study of syntax. Our work which we report here is
influenced by these works and in particular by the works of Frege and Gabbay-
Pitts.

Frege not only formulated syntax of a logical language with binders for the
first time, he also formulated it by using two disjoint sets of variables, one for
global variables using Latin letters and the other for local variables using German
letters [15, page 25]. Later, Gentzen [11], for instance, followed this approach,
but traditionally both logic and the λ-calculus have been formulated using only
one sort of variables including Gödel [12] and Church [5] perhaps because of the
influence of Whitehead and Russell [32]. McCarthy contributed to semantical
understanding of syntactic objects by introducing Lisp symbolic expressions [16]
and by introducing the concept abstract syntax in [17]. He introduced the term
‘abstract syntax’ by providing functions to analyze and synthesize syntactic ob-
jects hiding details of concrete representations of these syntactic objects. This
approach works well for languages without variable binding mechanism, but it
was difficult to provide abstract syntax (in McCarthy’s sense1 ) for languages
with binders until Gabbay and Pitts [9, 10] invented nominal technique which
implemented abstraction using Fraenkel-Mostowski set theory. They utilized the
equivariance property which holds in FM-set theory over an abstract set of atoms
to deal with α-equivalence and abstraction mechanism on languages with binders
having explicit variable names (rather than languages with nameless variables
based, for instance, on de Bruijn indices).

Our approach is similar to Gabbay-Pitts’ in the sense that the equivariance
property holds for our languages, but, unlike their case, we work in standard
mathematics and develop our theory by introducing a new notion of B-algebra
(‘B’ is for ‘binding’) which is an algebra equipped with the mechanism of vari-
able binding. For a set X of atoms, we can introduce the set S[X] of symbolic
expressions over X as a free B-algebra freely generated from X.

A standard method of defining λ-terms (with explicit names for bound vari-
ables) goes as follows. First the set Λ of λ-terms is inductively defined as the
smallest set satisfying the set equation Λ = X+Λ×Λ+X×Λ where X is a given
set of variables. Unfortunately it is not possible to define substitution operation
on this data structure in a meaningful way due to the possibility of variable
capture. To get out of this situation, the α-equivalence relation =α is defined,
and various notions and properties of λ-terms are established by identifying α-
equivalent terms. However, as pointed out by McKinna-Pollack [18], Pitts [20],
Urban [30], Vestargaard [31] etc., that we have to work modulo α-equivalence
creates many technical difficulties when we reason about properties of λ-terms
by structural induction on λ-terms.

1 The term ‘abstract syntax’ used in ‘HOAS (Higher Order Abstract Syntax)’ has
different sense. For this reason, structural induction/recursion works for syntactic
objects described by abstract syntax in McCarthy’s sense but not in HOAS.
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We wish to solve this problem by proposing a new way of defining λ-terms
which uses an external syntax to be used mainly by humans and an internal
syntax which is used to implement λ-terms on computers. Our motivation for
introducing two kinds of syntax is as follows.

Firstly, we wish to have a syntax which inductively creates the set L of λ-
terms isomorphic to Λ/=α, since by doing so we can constructively grasp each
λ-term through the process of creating the term inductively. Note that in case
of λ-terms as elements of Λ/=α, we cannot grasp each term as above, since
although each element of Λ is inductively created, each element of Λ/=α is
obtained abstractly by identifying α-equivalent elements of Λ. We will call the
syntax which defines L the internal syntax since it can be easily implemented on
a computer.

Secondly, in addition to the internal syntax, we will also introduce the exter-
nal syntax which is intended to be used by humans. The external syntax is the
same as the standard syntax of λ-calculus given for example in Barendregt [2]
and we use Λ as the set of λ-terms but work modulo =α. We can never avoid
having an external syntax, since we need it to read and write λ-terms. So, the
question is the choice of an external syntax which is comfortable for humans to
use as a medium to talk about abstract but real λ-terms as syntactic objects. We
think that for this purpose we are right in choosing the standard syntax as the
external syntax provided that we can work in it comfortably and smoothly. Our
approach achieves this by defining a natural semantic function [[−]] which maps
each λ-term M in the external syntax to a λ-term [[M ]] in the internal syntax in
such a way that [[M ]] = [[N ]] iff M =α N .

This paper is organized as follows. In Section 2 we introduce the system S of
symbolic expressions with binding structure. We also introduce a new notion of
B-algebra and characterize the set of symbolic expressions as a free B-algebra.
We also define substitutions as endomorphisms on S and point out that permu-
tations (i.e., bijective substitutions) are automorphisms and that the group of
permutations naturally acts on S and endow the equivariance property on S.

In Section 3, we introduce the internal syntax for λ-calculus, and define the
set L of λ-terms as a subset of the free B-algebra S generated by the set X of
global variables. The internal syntax has two sorts of variables, global and local
variables. These two sorts of variables have explicit names and hence, in the case
of local variables, these names can be used to directly refer to the corresponding
binders. In contrast with this, if we use de Bruijn indices [6], local variables
become nameless and we need the complex mechanism of lifting so that these
nameless variables can correctly refer to the corresponding binders. Substitution
on L is defined as B-algebra endomorphism. So, there is no need of renaming of
variables while computing substitutions. In this paper, we take up the untyped
λ-calculus as a canonical example of linguistic structure with the mechanism of
variable binding. The system is canonical as it is well-known since Church [4]
that λ-calculus can be used as an implementation language of other languages
with binders.
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In Section 4, we introduce the external syntax by the standard method using
only one sort of variables which are used both as global variables (aka free
variables) and local variables (aka bound variables). The set Λ of λ-terms in this
syntax is also a subset of the same base set S we used to define the internal syntax.
The main difference of the external syntax from the internal syntax is that in the
former syntax only one sort of variables is used while two sorts of variables are
used in the latter syntax. This difference comes from our construction of Λ ⊂ S
without using the binding mechanism of the B-algebra S. The external syntax
and the internal syntax are naturally related by the semantic surjective function
[[−]] : Λ → L which is homomorphic with respect to the application constructor
and collapses α-equality to the equality on L.

Section 5 concludes the paper by comparing our results with Gabbay-Pitts’
approach and with that of Aydemir et al. [1], and finally by remarking that the
data structure of our internal syntax is isomorphic to those of the representations
proposed by Quine [22], Bourbaki [3], Sato and Hagiya [23] and Sato [24, 26].

2 Symbolic expressions

In this section we define the set of symbolic expressions as a free algebra equipped
with a binary operation and a binding operation, and generated by a denumer-
ably infinite set X of atoms. In the construction, we will also use the set N of
natural numbers (which includes 0) as binders.

We will write ‘M : S’, ‘X : X’ and ‘x : N’ for the judgments ‘M is a symbolic
expression’, ‘X is an atom’ and ‘x is a natural number’ respectively, and define
the set S of symbolic expressions over X by the following rules. Since S is defined
depending on X, we will write ‘S[X]’ for S when we wish to emphasize the depen-
dency. Atoms will also be called global variables and natural numbers will also
be called local variables. We will use letters ‘X’, ‘Y ’, ‘Z’ for global variables, ‘x’,
‘y’, ‘z’ for local variables, and ‘M ’, ‘N ’, ‘P ’, ‘Q’ for symbolic expressions and
later elements of B-algebras.

X : X
X : S

x : N
x : S

M : S N : S
(M N) : S

x : N M : S
[x]M : S

The expression ‘(M N)’ is said to be the pair of M and N . The expression
‘[x]M ’ is said to be the abstraction by x of M , ‘x’ is said to be the binder of this
expression and ‘M ’ is said to be the scope of the binder ‘x’. The above definition
of symbolic expressions reflects our idea that local variables may get bound by
a binder but global variables should never get bound.

With each symbolic expression M we assign a set LV(M) called the set of
free local variables in M and a set GV(M) called the set of global variables in
M as follows.

1. LV(X)
4
= {}.

2. LV(x)
4
= {x}.

3. LV((M N))
4
= LV(M) ∪ LV(N).
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4. LV([x]M)
4
= LV(M)− {x}.

Note: In general, the binder x of an expression [x]M may contain x in M again
as a binder. In fact, [x][x]x is an example of such a case, and in this case we
consider that the right-most occurrence of ‘x’ is bound by the inner binder and
not by the left-most binder. We will say that x occurs free in M if x ∈ LV(M).

1. GV(X)
4
= {X}.

2. GV(x)
4
= {}.

3. GV((M N))
4
= GV(M) ∪GV(N).

4. GV([x]M)
4
= GV(M).

Note: The above definition reflects our idea that global variables are never to be
bound. We will say that X occurs in M if X ∈ GV(M).

It is possible to characterize the set S algebraically by introducing the notion
of B-algebra (‘B’ is for ‘binding’). A B-algebra is a triple

〈A, () : A×A → A, [] : N×A → A〉

where A is a set which contains N as its subset. A magma (also called a groupoid)
is an algebraic structure equipped with a single binary operation, and the notion
of B-algebra introduced here is derived from this notion of magma. A B-algebra
is a magma equipped with an additional binding operation.

Note: The notion of B-algebra is different from the notion of binding algebra
introduced in Firore et al. [7, Section 2]. While our B-algebra has an explicit
binding operation [x]M which can bind any x ∈ N in any M ∈ A, a binding
algebra does not have such an explicit algebraic operation of abstraction. Instead,
a binding algebra presupposes the existence of the objects obtained by variable
binding and operate on these objects.

A B-algebra homomorphism is a function h from a B-algebra A to a B-algebra
B such that h(x) = x, h((M N)) = (h(M) h(N)) and h([x]M) = [x]h(M)
hold for all M,N ∈ A and x ∈ N. It is then easy to see that

〈S[X], () : S× S→ S, [] : N× S→ S〉

is a free B-algebra with the free generating set X. In fact, let B be an B-algebra
and consider any ρ : X→ B. Then this ρ can be uniquely extended to a B-algebra
homomorphism [ρ] : S[X] → B as follows:

1. [ρ]X
4
= ρ(X).

2. [ρ]x
4
= x.

3. [ρ](M N)
4
= ([ρ]M [ρ]N).

4. [ρ][x]M
4
= [x][ρ]M .
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Here, we are interested in the case where B is S and ρ : X → S is a finite
map. We will call such a map a finite simultaneous substitution, or simply a
substitution. If ρ sends Xi to Pi (1 ≤ i ≤ n, and Xi are distinct) and fixes the
rest, [ρ] : S → S is an endomorphism and we will write ‘[Pi/Xi]M ’ for [ρ]M
and call it ‘the result of (simultaneously) substituting Pi for Xi in M ’. The
substitution operation satisfies the following equations.

1. [Pi/Xi]X =
{

Pi if X = Xi for some i,
X if X 6= Xi for all i.

2. [Pi/Xi]x = x.
3. [Pi/Xi](M N) = ([Pi/Xi]M [Pi/Xi]N).
4. [Pi/Xi][x]M = [x][Pi/Xi]M .

It should be noted that, since substitution is an endomorphism, the substitution
operation commutes with the operations of B-algebra smoothly. We note that if
ρ and σ are substitutions, then their composition ρ◦σ is also a substitution sat-
isfying the identity [ρ◦σ]M = [ρ][σ]M . This is a useful property of substitutions
as first-class objects.

An endoporhism [ρ] becomes an automorphism if and only if ρ is a permuta-
tion, that is, the image of ρ is X and ρ : X→ X is a bijecton. We write ‘GX’ for
the group of finite permutations on X. The group GX naturally acts on the B-
algebra S[X] by defining the group action of π ∈ GX on M as [π]M . In particular,
we have [/]M = M and [π ◦ σ]M = [π][σ]M . When π = X, Y/Y, X is a trans-
position which transposes X and Y , we will write ‘X//Y ’ for π. A transposition
is its own inverse since we have [X//Y ] ◦ [X//Y ] = [X, Y/Y, X] ◦ [X, Y/Y, X] =
[X,Y/X, Y ] = [/]. For each π ∈ GX the group action [π](−) determines a B-
algebra automorphism on S[X].

We can apply the general notion of equivariance to the group GX. Suppose
that GX acts on two sets U, V and consider a map f : U → V . The map f is
said to be an equivariant map if f commutes with all π ∈ G and u ∈ U , namely,
f([π]u) = [π]f(u). An equivariant map for an n-ary function can be defined
similarly. For example, let P : U × V → B be a binary relation whose values are
taken in the set B = {t, f} of truth values and define the action of GX on B to
be a trivial one which fixes the two truth values. Then, that P is an equivariant
map means that P ([π]u, [π]v) = P (u, v) holds for all u ∈ U, v ∈ V and π ∈ GX.
This means that an equivariant relation preserves the validity of the relation
under permutations, and for this reason, we may call an equivariant relation
an equivariance. Thus, the action of GX provides a useful tool for establishing
properties about symbolic expressions since all the statements we make about
symbolic expressions enjoy the equivariance property. Importance of the notion
of equivariance in the abstract treatment of syntax seems to be first emphasized
by Gabbay and Pitts [9, 20]. We will apply the notion of equivariance in Section
3 and in Section 4, Theorem 3.

We need to define another form of substitution operation on S which substi-
tutes a symbolic expression P for free occurrences of a local variable y in M . We
will write ‘[P/y]M ’ for the result of the operation and define it as follows.
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1. [P/y]X
4
= X.

2. [P/y]x
4
=

{
P if x = y,
x if x 6= y.

3. [P/y](M N)
4
= ([P/y]M [P/y]N).

4. [P/y][x]M
4
=

{
[x]M if x = y,
[x][P/y]M if x 6= y.

Note that [P/y] is a function from S to S but, unless P is y, it is not a B-algebra
homomorphism since it neither preserves y nor commutes with the abstraction
operation [y](−).

The intended meaning of the fourth clause of the above definition is as follows.
According to our definition of the substitution [P/y] we have [P/y][x]M =
[x]M if x = y. This is natural since LV([x]M) does not contain y in this
case. If x 6= y, then the definition is again natural since it is defined so that the
substitution will commute with the abstraction operation. However, it should be
noted that, in this case, if P contains free occurrences of x then these occurrences
of x will be bound after the substitution. This is an unsolicited situation and
known ways to avoid this is either to rename x in [x]M or to rename x in P . The
first way is so called α-renaming and the second is called lifting. In Section 3, we
will introduce a third way in which we only consider a subset of S which is rich
enough to define λ-terms and at the same time does not create this unsolicited
situation. The third way solves the problem by not creating the problem. The
height function we define below plays an important role in achieving this.

We can readily show, by induction on the construction of M , the following
useful lemmas. We note in passing that, although we can prove it inductively,
the Permutation Lemma below follows as an instance of equivariance which says
that the substitution function commutes with the action of permutations.

Lemma 1 (GV Lemma). GV([P/X]M) ⊆ (GV(M)− {X}) ∪GV(P ).

Lemma 2 (Permutation Lemma). If π is a finite permutation on X, then
we have [π][P/Y ]M = [[π]P/[π]Y ][π]M .

Lemma 3 (Substitution Lemma). If X 6= Y and X 6∈ GV(Q), then we have
[Q/Y ][P/X]M = [[Q/Y ]P/X][Q/Y ]M .

We conclude this section by defining two functions, namely, the height func-
tion H : X× S→ N and the birthday function | − | : S→ N as follows.

1. HX(Y )
4
=

{
1 if X = Y ,
0 if X 6= Y .

2. HX(x)
4
= 0.

3. HX((M N))
4
= max(HX(M),HX(N)).

4. HX([x]M)
4
=





0 if HX(M) = 0,
HX(M) if x = 0 or HX(M) > x,
x + 1 otherwise.



External and Internal Syntax of the λ-calculus 183

We will call HX(M) the height of X in M . We note that HX(M) is 0 if and only if
X is not used in the construction of M , that is, X 6∈ GV(M). If HX(M) = n+1,
then it means that (if we write M in tree form) either n = 0 and X occurs as
a leaf at least once in the tree and all the paths from the root to X do not go
through a binder, or n is the largest binder among all the binders we encounter
if we go down the tree from the root to all the occurrences of X.

We can easily prove the following lemmas.

Lemma 4. If X 6= Y and X 6∈ GV(Q), then HX([Q/Y ]M) = HX(M).

Lemma 5 (Height Lemma). If x = HX(M), then [X/x][x/X]M = M .

The birthday function | − | is defined as follows.

1. |X| 4= 1.
2. |x| 4= 1.
3. |(M N)| 4= max(|M |, |N |) + 1.
4. |[x]M | 4= |M |+ 1.

The birthday function is defined by reflecting our ontological view of mathemat-
ical objects according to which each mathematical object must be constructed
by applying a constructor function to already constructed objects. By assigning
the birthday of a symbolic expression as above, we can see that all the four rules
we used in our formation rules of symbolic expressions do enjoy this property.
The construction, therefore, proceeds as follows. We observe that among the four
rules of symbolic expressions, the first two are unary constructors and the last
two are binary constructors. We assume that we have no symbolic expressions
on day 0 but global variables and local variables are already constructed so that
we have them all on day 0. So, on day 1, only the first two constructors are
applicable. Hence, on day 1, all the global and local variables are recognized as
symbolic expressions. On day 2, all the four rules are applicable, but only the last
two rules produce new symbolic expressions, and they are: (M N) where M,N
are both variables, or [x]M where x is a local variable and M is a variable, be
it global or local. The construction of symbolic expressions continues in this way
day by day, and every symbolic expression shall be born on its birthday.

This construction suggests the following induction principle which can be
used to establish general properties about symbolic expressions:

(∀N : S. |N | < |M | ⇒ Φ(N)) ⇒ Φ(M)
Φ(M) .

By using this rule, we can see the validity of the following structural induction
rule.

If we can derive the following four judgments
1. ∀X : X. Φ(X),
2. ∀x : N. Φ(x),
3. ∀M, N : S. Φ(M) ∧ Φ(N) ⇒ Φ((M M)),
4. ∀x : N.∀M : S. Φ(M) ⇒ Φ([x]M),

then we may conclude the judgment: ∀M : S. Φ(M).
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3 The internal syntax

In this section, we define the internal syntax for the λ-calculus. The internal
syntax is more basic than the external syntax we introduce in Section 4. It is
so for the following two reasons. Firstly, each λ-term defined by the internal
syntax directly corresponds to a λ-term as an abstract mathematical object.
Namely, the equality relation on the λ-terms defined by the internal syntax is the
syntactical identity relation, while the equality on the external λ-terms must be
defined modulo α-equivalence. Secondly, we can later define the equality relation
on external λ-terms by giving an interpretation of them in terms of internal
terms. For these reasons, we will find internal λ-terms easier to implement on a
computer than external terms.

As the domain for representing the λ-terms of the internal syntax, we use the
free B-algebra S[X∪{app, lam}], where X is a denumerably infinite set containing
neither app nor lam and disjoint from the set N. We will write ‘L’ for the set
of λ-terms in this syntax. Although L is not a subalgebra of S, it enjoys the
nice property of being closed under the substitution operation. Namely, for any
X ∈ X and M, N ∈ L, we will have [N/X]M ∈ L (Theorem 1).

We define the set L inductively by the following rules. The judgment ‘M : L’
means that M is a λ-expression. We will write ‘(app M N)’ as an abbreviation
of ‘(app (M N))’.

X : X
X : L

M : L N : L
(app M N) : L

X : X M : L
(lam [x][x/X]M) : L

(∗)

Note: In the third rule (∗), the height of X in M must be x. We see that in case
x = 0, then the conclusion of the rule becomes (lam [0]M).

A λ-term is called an application if it is defined by the second rule above, and
an abstract if defined by the third rule. Each abstract M = (lam [x]P) defines
a function fM : S→ S by putting fM (N)

4
= [N/x]P for all N ∈ S. We will write

‘M(N)’ for fM (N) and call it the instantiation of the abstract M by N .
We explain the notion of equivariance for the set S = S[X∪{app, lam}]. Here,

the equivariance property is the property which reflects the intrinsic internal
symmetry of the set S with respect to the group action [σ](−) : GX × S → S
which sends any M ∈ S to [σ]M ∈ S where σ is any finite permutation on S. Let
Φ(M) be a statement about M ∈ S. Then the statement has the equivariance
property if, for any M ∈ S and σ ∈ GX, Φ(M) holds if and only Φ([σ]M) holds.
(See also [10].)

We can see, albeit informally, that all the statements we prove in this paper
have the equivariance property as follows. Suppose that we have a derivation D
of Φ(M). We can formalize this derivation in a formal language whose syntax is
based on S′ = S[X∪{app, lam}∪C] where C is a set of constants, such as logical
symbols, necessary to formalize our derivation. Then we have D ∈ S′ and Φ(M) ∈
S′. Here, the functionality of the group action is [σ](−) : GX × S′ → S′ and we
have [σ]Φ(M) = Φ([σ]M). Now, since D proves Φ(M), we have [σ]D proves
[σ]Φ(M) = Φ([σ]M) since all the axioms and inference rules of our formalized
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system are closed under the group action on S′. For example, the result of group
action by σ ∈ GX on the three rules defining the set L is:

[σ]X : X
[σ]X : L

[σ]M : L [σ]N : L
(app [σ]M [σ]N) : L

[σ]X : X [σ]M : L
(lam [x][x/[σ]X][σ]M) : L

(∗)

They are all instances of the same rules including the side condition (∗) since
we have H[σ]X([σ]M) = HX(M).

The essential reason for the validity of the equivariance property is the in-
distinguishability of elements in X. Namely, all we know about X is that it is
disjoint from N and does not contain app or lam, and hence we are not able to
state in our language a property which holds for a particular element of X but
does not hold for some other elements in X. In contrast with this, consider the
transposition τ which transposes app and lam. Then τ induces an automorphism
[τ ] on S′, but this automorphism sends a true statement ‘(app X X) : L’ to a
false statement ‘(lam X X) : L’ for any X ∈ X.

Given any M ∈ S, we can decide whether M ∈ L or not by induction on |M |.
For example, if M is of the form (lam [x]N), then,

M ∈ L ⇐⇒ N = [x/X]P for some X and P ∈ L
⇐⇒ [X/x]N ∈ L for some X 6∈ GV(N)
⇐⇒ [X/x]N ∈ L for any X 6∈ GV(N).

The last equivalence is an instance of some/any property (Pitts [20]) whose proof
we omit here. So, to decide if M ∈ L, we have only to take an X 6∈ GV(N) and
decide if [X/x]N ∈ L. We can decide this, since |[X/x]N | = |N | < |M |. The
decision for other cases can be made similarly.

We have the following theorems which guarantee that λ-terms are closed
under substitution and instantiation.

Theorem 1. If P, Q are λ-terms and Y is a global variable, then [Q/Y ]P is a
λ-term.

Proof. We argue by induction on the birthday of P and prove by the case of the
last rule applied to obtain the derivation of P : L. The only nontrivial case is
when P is of the form (lam [x][x/X]M) and it is derived by the rule:

X : X M : L
(lam [x][x/X]M) : L .

where x = HX(M).
In this case, by induction hypothesis, we have [Q/Y ]M : L and since

[Q/Y ](lam [x][x/X]M) = (lam [x][Q/Y ][x/X]M),

our goal is to prove:

(lam [x][Q/Y ][x/X]M) : L.
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Here, we have the following three possible cases.
Case 1: X = Y . In this case, we have

(lam [x][Q/Y ][x/X]M) = (lam [x][Q/X][x/X]M) = (lam [x][x/X]M).

So, our goal becomes (lam [x][x/X]M) : L, which we already know to hold.
Case 2: X 6= Y and X 6∈ GV(Q). In this case, by the Substitution Lemma 3,

we have
(lam [x][Q/Y ][x/X]M) = (lam [x][x/X][Q/Y ]M)

since [Q/Y ]x = x. Moreover, since X 6= Y and X 6∈ GV(Q), we have

HX([Q/Y ]M) = HX(M) = x

by Lemma 5. Hence we can apply the rule:

X : X [Q/Y ]M : L
(lam [x][x/X][Q/Y ]M) : L

and obtain the desired result: [Q/Y ](lam [x][x/X]M) : L.
Case 3: X 6= Y and X ∈ GV(Q). In this case, we choose a fresh global

variable Z such that Z 6= X, Z 6= Y , Z 6∈ GV(M) and Z 6∈ GV(Q). Then, we
can easily see that [x/X]M = [x/Z][Z/X]M by the freshness of Z. Hence, by
the Substitution Lemma, we have

[Q/Y ][x/X]M = [Q/Y ][x/Z][Z/X]M
= [[Q/Y ]x/Z][Q/Y ][Z/X]M
= [x/Z][Q/Y ][Z/X]M.

So, our goal now becomes:

(lam [x][x/Z][Q/Y ][Z/X]M) : L.

Since |[Z/X]M | = |M |, we have [Q/Y ][Z/X]M : L by induction hypothesis.
Moreover we have

HZ([Q/Y ][Z/X]M) = HX([Q/Y ]M) = HX(M) = x.

Hence, we can now apply the following rule to obtain the desired goal:

Z : X [Q/Y ][Z/X]M : L
(lam [x][x/Z][Q/Y ][Z/X]M) : L .

ut

Theorem 2. If (lam M) and N are λ-terms, then so is (lam M)(N).
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We are now ready to define the λβ-calculus on the set L of λ-terms. First we
have the following β-reduction rule.

(lam M) : L N : L
(app (lam M) N)→β (lam M)(N)

We recall that (lam M)(N) is the instantiation of (lam M) by N . Since (lam M) :
L implies that M is of the form [x]P , we have (lam M)(N) = [N/x]P .

The reduction relation M → N of the λβ-calculus is defined here as the
binary relation on S inductively generated by the following rules.

M →β N

M → N
X : X

X → X

M → P N → Q

(app M N)→ (app P Q)

X : X M → N
(lam [x][x/X]M)→ (lam [y][y/X]N)

(∗) M → N N → P
M → P

Note: The fourth rule (∗) may be applied only when the following side condition
is met:

The height of X is x in M and y in N .

We need this conditition to ensure that the conclusion of the rule indeed becomes
a relation on λ-terms. Since the height of X may be different in M and N we
have to use maybe different binders x and y as the binders of M and N .

We have the following lemma which is useful when we compute a β-redex
inside the scope of a binder.

Lemma 6. If (lam [x]M) is a λ-term, X,Y are global variables such that
X 6∈ GV(M) and Y 6∈ GV(M), and Q is a λ-term, then [Q/X][X/x]M =
[Q/Y ][Y/x]M .

Example 1. We give an example of reduction by considering the reduction of a
λ-term which corresponds to the λ-term:

(λz. (λx. (λy. zy)(xz)))y

in traditional notation. In the traditional language, this term is reduced as fol-
lows.

(λz. (λx. (λy. zy)(xz)))y → λx. (λw. yw)(xy) → λx. y(xy)

Note that we renamed the bound variable y to w to avoid capturing of the free
variable y.

In order to translate this into our λ-term smoothly, we use the following two
functions, app : L× L→ L and lam : X× L→ L defined by:

– app(M, N)
4
= (app M N).

– lam(X, M)
4
= (lam [x][x/X]M) where x = HX(M) and
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Now, the above term corresponds to the following λ-term.

app(lam(Z, lam(X, app(lam(Y, app(X,Y )), app(X,Z)))), Y )
= app(lam(Z, lam(X, app(lam(Y, (app X Y )), (app X Z)))), Y )
= app(lam(Z, lam(X, app((lam [1](app X 1)), (app X Z)))), Y )
= app(lam(Z, (lam [2](app (lam [1](app 2 1)) (app 2 Z)))), Y )
= app((lam [1](lam [2](app (lam [1](app 2 1)) (app 2 1)))), Y )
= (app (lam [1](lam [2](app (lam [1](app 2 1)) (app 2 1)))) Y )

We can compute this term as follows.

(app (lam [1](lam [2](app (lam [1](app 2 1)) (app 2 1)))) Y )

→ (lam [2](app (lam [1](app 2 1)) (app 2 Y )))

= lam(X, (app (lam [1](app X 1)) (app X Y )))
→ lam(X, (app X (app X Y )))
= (lam [1](app 1 (app 1 Y )))

We will use the functions app and lam in the next section to interpret λ-terms
in the external syntax by the internal language. ut

4 The external syntax

The data structure of the external syntax we introduce in this section is essen-
tially the same as that of the traditional syntax of λ-terms with named variables.
In our formulation of the external syntax we will use only global variables and
will not use local variables. Also we do not use the binding structure of B-
algebra. The mathematical structure of the external syntax is a simple binary
tree structure, and as a price for the simplicity of the structure, the definition
of substitution involving α-renaming is much more complex than that for the
internal syntax. So, in this section, we will not directly work in the language of
the external syntax, but instead we will introduce various notions indirectly by
translating the syntactic objects of the external language into the objects of the
internal language.

We use the same set S = S[X ∪ {app, lam}] of symbolic expressions as the
base set for defining the set Λ of λ-terms in the external syntax. The set Λ is
defined inductively as follows.

X : X
X : Λ

M : Λ N : Λ
(app M N) : Λ

X : X M : Λ
(lam X M) : Λ

In this section, to distinguish λ-terms in the external syntax from λ-terms in the
internal syntax, we will call M ∈ Λ a Λ-term and M ∈ L an L-term.

We define an onto function [[−]] : Λ → L which, for each M ∈ Λ, defines its
denotation [[M ]] ∈ L as follows.
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1. [[X]]
4
= X.

2. [[(app M N)]]
4
= app([[M ]], [[N ]]).

3. [[(lam X M)]]
4
= lam(X, [[M ]]).

Note: The surjectivity of [[−]] can be verified by induction on the construction of
M ∈ L.

Our view is that each M ∈ Λ is simply a name of the λ-term [[M ]] ∈ L. It is
therefore natural to define notions about M in terms of notions about [[M ]]. As
an example, for any M ∈ Λ, we can define FV(M), the set of free variables in

M , simply by putting: FV(M)
4
= GV([[M ]]). After defining FV(M) this way, we

can prove the following equations which characterize the set FV(M) in terms of
the language of the external syntax.

1. FV(X) = {X}.
2. FV((app M N)) = FV(M) ∪ FV(N).
3. FV((lam X M)) = FV(M)− {X}.

A Λ-term M is closed if FV(M) = {}.
Defining the α-equivalence relation on Λ is also straightforward. Given M, N ∈

Λ, we define M and N to be α-equivalent, written ‘M =α N ’, if [[M ]] = [[N ]]. For
example, we have

(lam X (lam Y (app X Y ))) =α (lam Y (lam X (app Y X))),

since

[[(lam X (lam Y (app X Y )))]] = lam(X, lam(Y, app(X, Y )))
= lam(X, lam(Y, (app X Y )))
= lam(X, (lam [1](app X 1)))
= (lam [2](lam [1](app 2 1)))

and we have the same result for [[(lam X (lam Y (app X Y )))]].
We now verify the adequacy (see Harper et al. [14]) of our definition of the

α-equivalence against the definition of the α-equivalence due to Gabbay and
Pitts [10, 20]. Their definition, in our notation, is as follows.

M : Λ
M =α M

M =α P N =α Q

(app M N) =α (app P Q)

[X//Z]M =α [Y//Z]N
(lam X M) =α (lam Y N)

(∗)

The rule (∗) may be applied only when Z 6∈ GV(M) ∪ GV(N). The adequacy
is established by interpreting these rules in our internal syntax and showing
the Soundness and Completeness Theorem 3 below, which is preceded by the
following lemma.

Lemma 7. If M =α N , then HX(M) = HX([[M ]]) = HX([[N ]]) = HX(N) for
all X ∈ X.
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Proof. By induction on the derivation of M =α N . ut

Theorem 3. The judgment M =α N is derivable by using the above rules if
and only if [[M ]] = [[N ]].

Proof. We show the soundness part by induction on |M |. We only consider the
third rule. Suppose that [X//Z]M =α [Y//Z]N and Z 6∈ GV(M) ∪ GV(N). By
induction hypothesis, we have [[[X//Z]M ]] = [[[Y//Z]N ]]. Our goal is to show that
[[(lam X M)]] = [[(lam Y N)]]. We have

[[(lam X M)]] = lam(X, [[M ]]) = (lam [x][x/X][[M ]]),

and
[[(lam Y N)]] = lam(Y, [[N ]]) = (lam [y][y/Y ][[N ]]),

where x = HX([[M ]]) and y = HY ([[N ]]). Now, by the freshness of Z and by
Lemma 7, we have x = HX([[M ]]) = HZ([X//Z][[M ]]) = HZ([Y//Z][[N ]]) =
HY ([[N ]]) = y. So, letting z = x = y, we will be done if we can show that
[x/X][[M ]] = [y/Y ][[N ]]. This is indeed the case since:

[[[X//Z]M ]] = [[[Y//Z]N ]]
=⇒ [X//Z][[M ]] = [Y//Z][[N ]] (by equivariance)
=⇒ [z/Z][X//Z][[M ]] = [z/Z][Y//Z][[N ]] (by freshness of Z)
=⇒ [X//Z][x/X][[M ]] = [Y//Z][y/Y ][[N ]] (by Permutation Lemma)
=⇒ [x/X][[M ]] = [y/Y ][[N ]] (by GV Lemma, freshness of Z).

The completeness part is also proved by induction on |M |. We consider only
the case where [[M ]] = [[N ]] is of the form (lam [z][z/Z]P) with P ∈ L and
z = HZ(P ).

In this case, M = (lam X M ′) for some X,M ′ and N = (lam Y N ′) for some
Y,N ′. Hence, [[M ]] = (lam [z][z/X][[M ′]]) and [[N ]] = (lam [z][z/Y ][[N ′]]), so
that we have [z/X][[M ′]] = [z/Y ][[N ′]]. Hence, we have

[z/X][[M ′]] = [z/Y ][[N ′]]
=⇒ [X//Z][z/X][[M ′]] = [Y//Z][z/Y ][[N ′]]
=⇒ [z/Z][[[X//Z]M ′]] = [z/Z][[[Y//Z]N ′]]
=⇒ [Z/z][z/Z][[[X//Z]M ′]] = [Z/z][z/Z][[[Y//Z]N ′]]
=⇒ [[[X//Z]M ′]] = [[[Y//Z]N ′]] (by Height Lemma)
=⇒ [X//Z]M ′ =α [Y//Z]N ′ (by induction hypothesis)
=⇒ M =α N.

ut

We can at once obtain the transitivity of the α-equivalence relation by this
theorem. This gives a semantical proof of a syntactical property of Λ-terms.
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We now turn to the definition of substitution on Λ-terms. Since we can define
substitution only modulo =α, we define substitution not as a function but as a
relation

[N/X]M ⇓ P

on Λ × X × Λ × Λ which we read ‘the result (modulo =α) of substituting N for
X in M is P ’. The substitution relation is defined by the following rules. The
fifth rule (∗) below may be applied when Y 6∈ FV(P ).

P : Λ
[P/X]X ⇓ P

P : Λ X 6= Y

[P/X]Y ⇓ Y

[P/X]M ⇓ M ′ [P/X]N ⇓ N ′

[P/X](app M N) ⇓ (app M ′ N ′)

[P/X](lam X M) ⇓ (lam X M)

[P/X]M ⇓ N X 6= Y

[P/X](lam Y M) ⇓ (lam Y N)
(∗)

(lam Y M) =α (lam Z N) [P/Z](lam Z N) ⇓ Q

[P/X](lam Y M) ⇓ Q

The substitution relation we just defined enjoys the following soundness and
completeness theorems.

Theorem 4 (Soundness of Substitution).
If [N/X]M ⇓ P , then [[[N ]]/X][[M ]] = [[P ]].

Theorem 5 (Completeness of Substitution). If [N ′/X]M ′ = P ′ in L, then
[N/X]M ⇓ P , [[M ]] = M ′, [[N ]] = N ′ and [[P ]] = P ′ for some N,M,P ∈ Λ.

By these theorems, we can see that for any N,X, M we can always find a P
such that [N/X]M ⇓ P and all such P s are α-equivalent with each other.

We omit the development of =αβ relation on Λ which is a routine work by
now.

5 Conclusion

We have introduced the notion of a B-algebra as a magma with an additional
operation of local variable binding, and defined the set S = S[X] of symbolic
expressions over a set X of global variables as the free B-algebra with the free
generating set X. This setting allowed us to define (simultaneous) substitutions
as endomorphisms on S and permutations as automorphisms on S. As far as we
know, this is the first algebraic formulation of substitution as homomorphism
applicable to symbolic expressions with a variable binding mechanism.

We conclude the paper by comparing our formulation with that by Gabbay-
Pitts [10], that by Aydemir et al. [1] and finally those by Quine [22], Bourbaki
[3], Sato-Hagiya [23] and Sato [24].

The formulation by Gabbay-Pitts uses FM-set theory over a set of atoms and
atoms play the role of variables when they implement λ-terms in FM-set theory.
Since FM-set theory is close to standard ZFC-set theory except for the indis-
tinguishability of atoms and failure of the axiom of choice, their construction of
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λ-terms is set-theoretic and non-constructive, although induction principle for
so constructed λ-terms can be introduced and proven to be correct. The λ-terms
defined in this way is shown to be isomorphic to the standard λ-terms in Λ
modulo α-equivalence. A good point of this formulation is that capture avoiding
substitution can be manipulated rigorously using arguments similar to standard
informal arguments on λ-terms modulo α-equivalence. As pointed out in Section
1, standard informal arguments are often very difficult to formalize rigorously.
They use the equivariance property under finite permutations of atoms exten-
sively. Pitts later introduced the notion of nominal sets [20, 21] and showed that
essentially the same results can be obtained within the framework of standard
mathematics.

In contrast with this, our formulation of λ-terms in the internal syntax use
two sorts of variables, and define λ-terms constructively by inductive rules of
construction. We also use the equivariance property of permutations extensively,
but, for us, a permutation is just a special instance of more general notion of the
simultaneous substitution. In our setting, substitutions and permutations are
endomorphisms and automorphisms on S, respectively, and all the substitutions
on λ-terms are always capture avoiding with no need of renaming local variables.

The formulation by Aydemir et al. uses two sorts of variables, one for global
variables and the other for local variables just like our internal syntax. However,
they use de Bruijn indices for local variables, so that their local variables are
nameless while ours have explicit names (natural numbers are names!). Their
binders do not have names but ours have names. In spite of this difference,
substitution of a term for a global variable goes as smoothly as our case since both
formulations use two sorts of variables. However, their subsitution operations are
not characterized as homomorphisms due to the lack of algebraic structure on
their terms.

Another difference concerns the formation rules of abstraction. To explain
the difference, we note that our introduction rule of abstracts could equivalently
formulated, in a backward way so to speak, as follows.

X : X [X/x]M : L
(lam [x]M) : L (∗)

Note: The rule (∗) may be applied only if X 6∈ GV(M) and x = HX([X/x]M).

Although this is a technically correct rule, we must say that this rule is unnatural
from our ontological point of view. This is because in order to apply this rule and
obtain a new λ-term as the result of the application, we must somehow know the
very λ-term we wish to construct. As we already stressed in [27], we believe that
every mathematical object, including of course every λ-term, must be constructed
by applying a constructor function to already created objects. But, this rule does
not follow this ontological condition, and this is why we did not adopt the above
rule but instead adopted the abstraction formation rule in Section 3. Now, if
formulated in the style of Aydemir et al. [1], the rule for constructing abstracts
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in L would become like this (cf. the typing-abs rule in [1, Figure 1]):

X : X MX : L
(lam M) : L (∗∗)

Just like our rule (∗), the rule (∗∗) may be applied only when X 6∈ GV(M). In
this rule, local variables are represented by de Bruijn indices, and λx. xλy. yx,
for instance, becomes

(lam (app 0 (lam (app 0 1))))

while it becomes

(lam [2](app 2 (lam [1](app 1 2))))

in our formulation. The term MX in the second premise of the rule (∗∗) is the
opening up of M by X which corresponds to our instantiation of (lam [x]M)
by X, namely, [X/x]M . So continuing our example, opening up by X and in-
stantiation by X, respectively, becomes

(app X (lam (app 0 X))) and (app X (lam [1](app 1 X))).

Note that in opening up (app 0 (lam (app 0 1))) by X we had to replace 0 by X
in one place and 1 by X in another place while [2](app 2 (lam [1](app 1 2)))
could be instantiated by X just by substituting X for two occurrences of 2.

We may thus say that the representation of λ-terms by the method of [1] is
more complex than our method and that what we presume to be their rule for
introducing a new λ-term is ontologically unnatural as it requires us to mentally
construct the term beforehand. We note, however, that it is possible to replace
the rule (∗∗) with an ontologically natural rule which parallels our rule we gave
in Section 3. See 4.5 of Aydemir et al. [1] for such a rule where they examine
a rule given by Gordon [13]. They did not adopt this rule for technical reasons.
We also remark that our internal syntax is more human friendly than that of
[1] and hence, if we so wish, can be used as an external syntax replacing the
external syntax we gave in Section 4.

Finally, we remark that, as a data structure, our representation of expressions
with binders is, in a sense, isomorphic to those by Quine [22, page 70], Bourbaki
[3], Sato-Hagiya [23] and Sato [24, 26]. Their representations are nameless since
abstraction is realized by providing links between the binding node and the nodes
which refer back to the binding node. These representations are usually imple-
mented on a computer by realizing links in terms of pointers. However, except
for Sato and Hagiya [23] and Sato [24, 26], these data structures do not admit
well-founded induction principle, since these data structures contain cycles. Un-
like these, our representation admits reasoning by induction on the birthday of
each expression, and has a nice algebraic structure.
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