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Preface

This report contains the preliminary proceedings of the 8th International
Workshop on Reduction Strategies in Rewriting and Programming (WRS
2008). The workshop was held in the Castle of Hagenberg, Austria on
July 14, 2008 and collocated with the 19th International Conference on
Rewriting Techniques and Applications (RTA 2008).

The workshop promotes and stimulates research and collaboration in
the area of strategies. It encourages the presentation of new directions,
developments, and results as well as surveys and tutorials on existing
knowledge in this area. Previous editions of the workshop were held in
Utrecht (2001), Copenhagen (2002), Valencia (2003), Aachen (2004), Nara
(2005), Seattle (2006), and Paris (2007).

WRS 2008 received 11 submissions. Each submission was assigned to
at least 3 program committee members, who reviewed the papers with
the help of 10 external referees. After careful deliberations the program
committee decided to accept 8 papers, which are contained in this report.
The program also included an invited talk by Ywes Lafont on Diagram
Rewriting: Examples and Theory

Many people helped to make WRS 2008 a success. I am grateful to the
members of the program committee and the external reviewers for their
work. A special thanks to Temur Kutsia, who chaired the organisation
committee of RTA 2008 and affiliated events. The financial support of
the following sponsors is gratefully acknowledged: Linzer Hochschulfonds,
Upper Austrian Government, Austrian Federal Ministry of Science and
Research (BMWF), and Johann Radon Institute for Computational and
Applied Mathematics of the Austrian Academy of Sciences (RICAM)
Finally, the EasyChair system of Andrei Voronkov considerably eased
the task of the program chair.

Innsbruck, June 2008 Aart Middeldorp
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New Developments in Environment Machines

Maribel Fernandez' and Nikolaos Siafakas?

Department of Computer Science, King’s College London, Strand, London WC2R 2LS, U.K.

Abstract

In this paper we discuss and compare abstract machines for the lambda-calculus, implementing various
evaluation strategies. Starting from the well-known Categorical abstract machine (CAM) and Krivine’s
abstract machine (KAM), we develop two families of machines that differ in the way they treat environments.
The first family is inspired by the work on closed reduction strategies, whereas the second is built in the
spirit of the jumping machines based on the work done on Linear Logic

Keywords: A-calculus, environment machines, explicit substitutions, Linear Logic.

1 Introduction

The A-calculus is regarded as the theoretical foundation of functional programming
languages. It can be thought of as a simple, lexically scoped programming language.
Abstract machines are one of the tools one can use to provide a formal operational
semantics to a programming language. Abstract machines are transition systems
that bridge the gap between the specification of a dynamic semantics of a language
and a concrete implementation. They may be considered as rewriting systems,
where the rewriting rules have no superpositions.

There is no measure of the abstractness of an abstract machine, however, we will
adopt some terminology: following [1] we refer to abstract machines as transition
systems that accept abstract syntax-trees (in our case, pure A-terms) as source-
syntax, while machines that work with an instruction set will be called wvirtual
machines, or concrete machines if there exists a hardware implementation that
offers the particular instruction set.

We are interested in a particular kind of abstract machine, called environment
machine. The components that are common to all environment machines are: the
expression being evaluated, a control stack, and the environment which provides
the bindings for the free variables in the expression. Functions are represented via

1 Email: maribel.fernandez@kcl.ac.uk
2 Email: nikolaos.siafakas@kcl.ac.uk
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closures, that is, a piece of syntax coupled with an environment containing the
mappings that provide values for the free variables.

Many of the environment machines that we encounter in the literature are re-
source unconscious: the memory model is often unspecified, yet referential trans-
parency is guaranteed; some external machinery is always assumed (a garbage col-
lector, a cloning device) or is given if the memory-layout is more concrete. This level
of abstraction, although convenient when analyzing properties of the machines, is
not sufficiently detailed from an implementation point of view. Linear Logic [14]
addresses resource management issues in proofs, and the same techniques can be
applied to the A-calculus. Several abstract machines for the A-calculus have been
developed following this approach (see for example [8,21,10]), and also, at a more
abstract level, several reduction strategies have been defined to take into account
the management of resources in the -reduction process (or more specifically, in the
propagation of substitutions), see for example [11,12].

In this paper, starting from (variants of) two well-known abstract machines —
Krivine’s call-by-name machine [17], which we will call KAM, and the Categori-
cal abstract machine [5], called CAM — we develop two families of machines that
exploit recent work on evaluation strategies in the A-calculus. The first family
of machines, which we call A.-machines, is based on the work on closed reduc-
tion [11,12,22] and includes call-by-value and call-by-name machines that can be
seen as a refinement of the CAM and KAM, respectively. More interestingly, this
family of machines includes machines that perform reductions under abstractions,
similarly to the closed-reduction machine discussed in [12,22]. The second family
of machines, which we call J-machines, are designed to facilitate compilation: the
motivation is to have memory management included in the definition. The notion
that we want to make significant here is that of a “virtual copy”. The machines
operate without the need for a garbage collector and each step may be accomplished
in amortised O(1) time.

All the machines described in this paper have been implemented; the prototypes
are available from http://www.dcs.kcl.ac.uk/pg/siafakas/.

2 Background

The first environment machine, the SECD-machine [18], dates back to the 60s. It
is a call-by-value machine, where arguments are evaluated from right-to-left. The
Categorical Abstract Machine [5], also a call-by-value machine, is equipped with an
instruction set and may be regarded as a virtual machine.

Krivine’s call-by-name environment machine [17] is simple and influential. A
lazy (call-by-need) version of the KAM can be found in [13]; the ZINC abstract
machine [19] may be thought of as a call-by-value version of Krivine’s abstract
machine.

There are indeed many machines available in the literature that can be seen as
variants of the KAM or the CAM (see the discussion in [1]). Most of these machines
aim at reducing programs (i.e., closed A-terms) to weak head normal form; they do
not perform reductions under abstractions. A strong reduction version of the ZAM
was studied in [16]. In terms of programming languages, one can think of reduction

2
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under an abstraction as a “specialisation” of a function definition. The standard
approach that is taken to achieve such a specialisation is to define a weak abstract
machine which then calls new instances of itself inside the bodies of abstractions,
using the normalisation by evaluation technique (see e.g. [4,12]).

Thus, environment machines can be classified according to the strategy of eval-
uation they implement (e.g., call-by-name, call-by-value), according to the kind of
reduction performed (e.g., weak reduction, strong reduction), and also according to
the way they associate environments to terms. For instance, in the CAM and the
KAM, environments are associated to sub-terms of the term being evaluated, and
provide information about the terms that should be substituted for the free variables
in the sub-term. Later we will describe machines that will use only one environment
instead of associating environments to sub-terms. To distinguish these two classes
of machines, we say that the first class of machines use local environments whereas
the latter use global environments.

3 Abstract machines with local environments

We start by presenting two weak machines with local environments that use names
for variables, instead of the standard presentation using De Bruijn indices [9]. The
machines are variants of the KAM and the CAM with Lisp-like associative lists to
represent environments. Since we use names, we may have duplicate entries for keys
in the list, however, keys that arise earlier in the list shadow keys that arise later
in the list. In this way, one can implement maps in an non-destructive manner.
We then show how the management of resources (i.e., the environment) can be
improved, using techniques inspired by the work on closed reduction [11,12].

3.1 A call-by-name environment machine with names

We specify the machine as a transition system, with a set of transition rules on
configurations. A configuration of the machine consists of a A-term and an envi-
ronment (i.e., a closure), and a stack of closures. Environments are presented in a
non-standard way as lists of substitutions. We use the infix, right associative (:)
operator and the empty list is denoted by []. Substitutions and closures are repre-
sented as pairs, with a tag ¢ (for closure) or s (for substitution). The machine is
loaded with a term, an empty environment (when no other domain is provided in
advance), and an empty stack; a successful run yields nothing but a closure. The
transition rules for the machine are given in Table 1.

To prove the correctness of the machine we define, following [6], a calculus of
closures with a call-by-name operational semantics. Terms are written ¢[s] where
t is a pure A-term and s is a list of substitutions of the form (u,z) where z is a
variable and u a term in the calculus, that is, each term ¢[s] is a closure.

We can obtain the pure A-term represented by a closure ¢[s] by using s as a
substitution in ¢; we denote the result as Subst(t,s). If Subst(t,s) is a closed
A-term, we say that the closure ¢[s] is closed. The wvalues of closed closures are
abstractions (Az.t)[s]. The relation t[s] —cpn v defines the value v of a closed

3
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Term Env Stack| |Term Env| Stack|Cond|Rule

tu e s|—|t el|(u,e)’:s Push

Azt e|(u,e)C:s|—|t ((u,€)e,x)%:e s Pass

Y ((u, )¢, x)%:e s|l—ly e s|x # y|EntF

y ((u,€e)e,x)% e s|—|u 4 s|z = y|EntT

Azt e lE Halt
Table 1

Call-by-name environment machine

closure ¢[s] in a call-by-name strategy.

v value t —cBN x[s] —cBN v

U —CBN U z[(t,x):s] —cBN v z[(t,y):s] —cBN v

tls] mcpn Mx.t)[s'] t[(uls],z):s'] —cBN v

(tu)[s] —oBN v

Definition 3.1 (Compilation and De-compilation) The de-compilation (or
read-back) of a machine configuration (t,e,[s1...8,]) (n > 0) is a term obtained by

decomp  (t,e,[(u1,€)) .. i (un,el)]) = tle] wile]] ... unlel]
The function comp compiles terms from the calculus of closures into machines
states, using two auziliary functions (compc compiles closures and comps compiles

substitutions; they are mutually recursive):

comp t[s] = (t,(comps s),[])

where
comps ] =]
comps [(u,x):s] = [(compc w,x)®:(comps )]
compe  uls] = (u,comps s)°

We say that a configuration in the abstract machine is closed when decomp(t, e, s)
is a closed term.

The following properties are used in the proof of correctness of the machine with
respect to the call-by-name strategy:

Proposition 3.2 (i) An irreducible, closed configuration in the call-by-name ma-
chine has the form (A\z.t,e,[]).
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Term Env Stack| |Term Env Stack| Cond
tu e s|—|t el (u,e)¥:s

Azt e (u,e)?:s|—|u el Nzt e)l:s

Azt e\’ .t/ &)l 5| — |t (A\z.t,e)¢,x'):€ s

y ((u, €))% e s|—ly e slzZy
y ((u,€)e,x)% e s|—|u 4 slx=y
Azt e |4

Table 2

Call-by-value environment machine

(i) If (t,e,s) — (t',€',s") then (t,e,s08") — (t',€,s" o), where o denotes list
concatenation. Therefore, if (t,e,[]) —* (t',€,[]) also (t,e,s) —* (',€,s) for
any s.

Theorem 3.3 (Correctness of the Call-by-name Environment Machine)
Let t be a closed A-term.

*

(i) If t[] —cBN v using the call-by-name strategy then comp t[] = (¢,[,[]) —
(u,e,[]) final, and (u,e,[]) = comp .

(ii) If comp t[]] = ([],[]) —* (u,e,s), where (u,e,s) is irreducible, then t —»cpn
decomp(u, e, s).

3.2 A call-by-value environment machine with names

We now describe a machine isomorphic to the eager machine given in [10] and closely
related to the Categorical Abstract Machine. The configurations of the machine
consist of a A-term, the environment (a list of substitutions mapping variables to
closures; closures are terms with environments), and a stack that contains closures
tagged either with @ or P. As before, closures and substitutions are represented as
pairs. We attach a tag s to a pair of a variable and a closure to indicate that we are
using it as a substitution; we attach a tag ¢ to the closure part of the substitution.
In the stack, closures are tagged with Q or P. We use the tag ) for arguments, and
mark with a P functions stored in the stack while their arguments are evaluated.
The transition rules for the abstract machine are given in Table 2.

It is easy to see that this machine is exactly the call-by-value machine defined
in [10], but using names of variables instead of De Bruijn indices. The proof of
correctness can be easily adapted from the one in [10].

3.8  Improving the management of resources

In the machines given above, environments carry a lot of useless information during
computation due to the uncontrolled distribution of substitutions. A good rep-
resentation of environments is essential in order to get efficient implementations.

)
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Name Term Variable Constraint Free Variables
Variable - {z}

Abstraction Ax.t x € fyv(t) fv(t) — {z}
Application tu fv(t) Nfv(u) =0 fu(t) U fv(u)

Erase €.t x & fu(t) fv(t) U{z}

Copy o7t g fv(t),y # 24y 2} Siv(t) (V) —{y, 2}) U{z}

Closure tl(u,z)] Tefu(t), Vi#j, o #aj,fv(u) =0 fv(t) -7

Table 3
Ac-terms and variable constraints

Explicit substitution calculi provide a theoretical framework to explain how to deal
with the environments. Linear Logic [14] adds explicit control over the assumptions
in proofs, and some explicit substitution calculi exploit these ideas to improve the
management of substitutions (see for example [20,11]). Thus, an explicit substitu-
tion calculus that controls the distribution of substitutions is a good candidate to
specify environment machines in a resource conscious way. We will use a calculus
of explicit substitutions that we call )., inspired by [11].

Definition 3.4 (Terms in the ).-calculus) We use z,y,z to denote variables,
t,u,v to denote terms, and 0 to denote a sequence of elements o1,...,0,. Table 3
shows the term constructions, together with the variable constraints that must be
satisfied for each construction, and the associated free variables.

The variable constraints imply that each variable occurs free in a term exactly
once. Note that in closures, i.e., A.-terms of the form ¢[s], s contains substitutions
for variables that must occur free in ¢; it may contain several pairs (u, z), or none,
in the latter case we write t[id]. In all the pairs (u, ) occurring in s the term w is
closed. Also, unlike in the previous system, ¢ may also contain closures.

A pure A-term will be compiled into a A.-term by the function defined below.

Definition 3.5 (Compilation) Let t be a A-term. Its compilation [t] into . is
defined as: [x1]...[zp](t) where fv(t) = {z1,...,2n}, n > 0, we assume w.l.o.g. that
the variables are processed in lexicographic order, and {-) is defined by: (z) = =z,
(tu) = (t){(u), and (Mz.t) = Az.[z](t) if x € fv(t), otherwise (\x.t) = Ax.e;.(t). We
define [-]- below, using t[x := u] to denote the usual (implicit) notion of substitution.

[x]z =z [z](Ay.t) = Ay.[z]t
[2](eyt) = €y.[z]t [z](6Y Y #) = ¥ [a)t
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[x](tu) = 5£,’x/,.[x’](t[x =) 2" (u]z = 2"]) x € fv(t),z € fv(u),2’, 2" fresh
= ([z]t)u z € fu(t),z & fulu)
= t([z]u) z € fv(u), x & fv(t)

For example:

[(zy) (z)] = [ y){(zy)(@y)) = 644" 65" («"y ) (@"y") # )= (zy) (zy))

The compilation function returns a A.-term without closures. However, to load the
abstract machine below, we assume there is a further step in the compilation which
adds an empty closure [id] to each sub-term. Although the compilation is defined
on open terms, we demand that sufficient substitutions are provided in advance to
obtain a closed term.

We will now investigate how call-by-name and call-by-value versions of A.-calculi
may improve the KAM and CAM respectively. We start with a traditional opera-
tional semantics and derive the corresponding abstract machines. Next, we exploit
the copying and erasing constructs to mix features from call-by-name and call-by-
value. Finally, we discuss a more powerful strategy inspired by [11].

To define the strategies, we use an external function e to extend environments
that we define via concatenation:

(t[s']) @ [s] = t[s' o 5]

Since substitutions are closed, and each variable occurs at most once in s, the
concatenation is commutative.

Call-by-name

We define first a call-by-name evaluation strategy for A.-terms in Figure 1. The
operational semantics is given by a set of axioms and rules, defining a relation
tls] =& gy v between closed closures and values. Values are A.-terms of the form
(Ay.t)[id], that is, the substitutions will be pushed inside abstractions to compute
values. Usually, this operation is very costly due to the potential renamings to avoid
capture of variables, but we rely on a closed reduction strategy, which does not need
a-conversion [11].

The corresponding abstract machine is defined by the transition rules in Table 4
on configurations containing a A.-term and a stack of A\.-terms.

The correctness of the machine with respect to the operational semantics is easy
to prove, the proof follows the same lines as the correctness proofs mentioned earlier
in this section. We state the main results below:

Proposition 3.6 (i) An irreducible, closed configuration in the call-by-name A,
machine has the form ((Ax.t)[id],[]).

(i) If (t,s) — (t',8") then (t,sos") — (t',s'0s"), where o denotes list concatenation.
Therefore, if (t,[]) —* (t',[]) also (t,s) =* (t',s) for any s.

Theorem 3.7 (Correctness of the Call-by-name \. Environment Machine)
Let t be a closed A\.-term obtained by compiling a closed \-term w.

7
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=gy v ae OQwtellwa))ls) ~epy v
2f(t,0)] ~gpy v A9 =eay Ayt)lid] (A1)l ):8] ~py v

v fo(t) ((te[(w ))u)ls] -y v @€ fo(u) (Hue[(w 2)))[s] =Epy v

(tu)[(v', 2): 5] =Gy v (tu)[(v', ) : 5] =GN v

t =epy Qar)lid] re(u,z)] =gpy v fo(u) =0

(tu)[id] —=¢pn v

Beta

OUY" to[(u,2)]))[s] mEpy v (te[(u,a’), (u,2")]) e [s] =y v

77 c 7 A Delt@
(65Y ) [(u,z) : 8] —=GpN v (07" )(u, ) : s8] —=Gpy v

(ey-t o [(u,2)])[s] =CpN v te[s] =tpn v

(ey O)[(w, ) 2 s] =pn v (eat)[(u, @) : 8] =Cpn v

Fig. 1. Call-by-name evaluation of A.-terms

Term Stack Term Stack| Cond
(tw)[(u/, ) z¢] s| =& | (20 (W) 2)])u)[e] s|@ € fo(t)
(tw)[(, ) z¢] 5| =& pn | (Hu o [, 2)]))[e] s|a € fo(u)
z[(u, )] s|—=oBN|U &
(Az.t)[(u,y) ] s|—6pn | Ozt o [(u,y)])e] s| x#y
(ey-t)[(u,7) v ] s|~&pn| (et o [(w,2)])[e] s| z#y
(€x-t)[(u, ) €] s|—=Gpn|tele] s
@ Dl 2)e]| 5| —Epn |6 o [(u,2)])]e] s| x#y
(02" O 2)zel| 5| =Epy|te[(wa), wa")) el s
(tu)]] s|—opn|t u:s
(Az.1)]] uis| =& gy [te [(u,2)] s
(Az.1)]] I

Table 4

Call-by-name A, abstract machine

() 4]~ v then (2, 0) —* (v,[)) final.
(i) If (¢, [)) —=* (v,[]) final, then t =gy v-

In order to define a call-by-value strategy, —¢ gy, for Ac, we just need to replace

8
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Ay t—esvn Azr)[s] ref(u,x)os] —gpyn v
(Ay-t)[s] =y (Ay-t)ls] (tu)[id] —&Egyn v

Beta'

u—gpyyu te([(u,a"), (W, 2")]os) =Gpyy v

— Deltad’
(62 ° D[(u,z) : s] =cpyn v

Table 5
—»%BVN—evaluation of Ac-terms

the rule Beta in the definition of —¢ 5, by the following rule:

t =Gy (Azr)lid] uw—gpy v re[(W,x)] =ty v fu(u) =10

(tu)[id] =Gy v

Beta

We omit the corresponding call-by-value environment machine.

The right time for evaluating the argument

The relations —¢ 5, and —¢ g, differ in the way the argument is evaluated.
We can take profit of the explicit copy constructs in the A. syntax, and trigger the
evaluation of the argument just before copying. This gives us a reduction strategy
that is in-between call-by-name and call-by-value (but it does not correspond exactly
to a call-by-need strategy, since the existence of a copy construct does not imply
neededness; see [11,12] for a more detailed discussion).

To define a strategy that evaluates substitutions before copying, we use the
rules in Table 5 instead of the corresponding rules of —¢ 5y (see Figure 1). We also
put some laziness in the way substitutions are propagated (we will avoid pushing
substitutions through abstractions). In the corresponding abstract machine, we
use tagged terms, in the same way as in the categorical abstract machine. We do
reduce the substitution just before copying: in the operational semantics, it is easy
to see that a substitution can evaluate only to an abstraction. We use @ to tag
arguments as before, however, P now tags copying constructs instead of functions.
The transition rules for the abstract machine are the rules in rows 1-7 in Table 4
together with the rules in Table 6.

Reduction under abstraction - improving the strategy

It is known [2] that no usual strategy based on environments can achieve Lévy’s
optimality. An efficient operational semantics that relaxes some of the demands of
optimal reduction has been given in [11], where a high degree of sharing may be
achieved. The idea is that we can take advantage of our ability to reduce under
abstractions (since we are in an a-conversion free calculus), but not at the top-level,
since we want to stop on a weak-head normal form. In particular, it is only useful
to perform these extra reductions on a term which will be copied, in order to share
these reductions. We refer the reader to [11] for the definition of an evaluation
strategy for A, that interleaves a weak strategy with a stronger one, called only
before an application of the § rules.



FERNANDEZ, SIAFAKAS

Term Stack Term Stack
(tw)lid] s|=epyN |t (u)®:s
(024" 1) (u,2) : S|y u (02" D))"+ 5
(a)le] ()@ 5| ~Epyy |t e ((w2)] o)
(A (6" )e)?:s|=Epyn|te ((B,2), (B,2")] oe)
B

(Az.t)e] U|#EpvN

Table 6

The Cbvn-machine
4 Abstract machines with global environments

In the latter machines, each environment is coupled with a term whereas the KAM
and CAM machines explicitly define an environment pointer in their transitions.
Yet another way to couple terms with environments is to define a global lookup-
table, an array to be precise, that contains the bindings. Intuitively, we will use each
variable name from a A.-term as an array-index: we work with the previously defined
compilation with the main difference that every variable name appears uniquely in
the compiled term. Additionally, since we work with arrays, we assume that variable
names are natural numbers.

In the rest of this section, we present two experimental machines based on global
environments. First we define a machine that works with linear terms (no instance
of § and e-terms) and then we develop techniques that will allow us to move to the
full case.

The linear J-Machine

Configurations consist of a pure linear term, an array (a) that stores unevaluated
arguments and a stack (s) of pure terms. We write a,, to access the argument at
array index n and a | [(n,u)] to destructively update the element at array index n
with u. The transitions of the machine are given below:

Term| GEnv|Stack Term GEnv|Stack
tu a S —>%1N t al u:s
An.t al uis|—=9 |t all(n,u)] s
n a s|—9 xlan a s
An.t a | 74%11\1

The work-flow of the machine is simple: we jump along a fixed term while we
update and retrieve global variables. Indeed, the machine was first defined in [10] in
order to study the so called “jumping machines” in the context of Linear Logic. It

10
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is easy to see that in the array, we do not overwrite any previously stored arguments
since the machine does not copy any environments. The distinguishing feature of
this machine is that it does not require any external machinery and every transition
takes O(1) time.

The J-machine

The problem is the following: how do we use the previous array design in a
non-linear way? Clearly, we cannot expect to fit all bindings in an array whose size
is bound by the size of the term! Another problematic issue is the following: the
machine does not group environments in lexical scopes and everything in the array
is accessible at any time. In the sequel, we provide an ad-hoc machine that works
with A.-terms in a call-by-value fashion.

In order to deal with the first problem, we assume the same unique name con-
vention; however, since copying will take place, each array-index (variable name)
cannot identify a single binding. Thus, let us look at the environment part of our
configurations in more detail: every array index initially identifies an empty list
structure. Each list contains triples of the form (c,u,t0) where the first and last
elements are strings ¢ := Roc | Soc | e. Their purpose is to construct on the
fly a copy-address such that we can keep a record when we jump into and out of
“virtual copies” of terms. The middle element is reserved for arguments which are

pure A.-terms. We use the auxiliary function (an)zmd, which yields a triple from
the list stored at array index n. The triple is found based on its first element c¢. We

also use the auxiliary function (a,)%!, which yields a list, where the triple identified

by c is removed. Updating a list element of an array is done as before; the difference
is that we may have multiple updates at several lists of the array: a | [(n,l)] where
now o denotes a sequence of several index - element pairs.

Hence our configurations consist of the following:
* pure A .-terms
e the mentioned array of lists that builds the global environment

* a pointer to a current-copy-address: it indicates the current copy in which we
work at a given time.

e a stack of A.-terms tagged with () , P and also with a copy-address; hence we

write: (u)CPIQ

The machine is loaded with a A.-term, the array of lists where each list is ini-
tialised to the empty one and we set the current-copy-address to €. The latter
indicates that initially, we do not work inside a copy. The transitions are defined
in Table 7. There are two external functions, namely copy and cleanup, that deal
with duplicating and cleaning up parts from the global environment. It is not too
difficult to internalise these using a system of marks on the stack, but we prefer to
keep them separate for simplicity. In both cases, we need one of our triples, a stack
(r) to keep track of recursive calls, the free variables of the argument and a pointer
to the global environment. Copying is carried out by the rules in Table 8. Cleaning
up behaves in a similar fashion: all we need to do is to modify the first rule in
Table 8 such that the copies tr' and tr” are omitted in the definition (i.e. nothing

11
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Term |Env|CurC Stack||Term Env|CurC Stack
tu a c s||t a c (u)?:s
An.t a c (u)gs u a d(n.t)P
An.t a cl(An't)E ||t al[(n, (', An.t,c):a,)] d s
n a ¢ s||u al[(n, (ay)%h) to s
where (¢, u,to) = (an)e Jind
vt a c s||t copy((c, u.to), fu(u),a’) c s
where (¢, u,t0) = (a,)I™
(n, (an)Z),
a =al | (W, (c;u, Roto):ay),
(n”, (¢,u, S oto):au)
€n.t a c s||t cleanup((c, u.to), fv(u),a’) c s
where (c, u,to) = (an)(f;md
a = a|[(n, (an)®)]
An.t a ¢ I
-machine transitions
triple fvs|Env stack]| [triple fvs Env stack
(c,u,to)|f':f| a r||(c, u,to) flall(fstr'tr":(ap )| (to, o/, to!) ir
where (to,u,to) = (afr){;nd
tr! = ((S oto),u,(Sotd))
tr” = ((Roto),u,(Rotd))
_ 0l al(c,u,to):r||(c,u,to)| fu(u) a r
. ] @ [
Table 8

Copying in the §-machine

is concatenated). The effect of this is that we simply delete unwanted triples.

Example 4.1 We compile the term (Az.zz)((Az.xz)(Az.x)) into an A.-term and

12
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a-convert variable names as appropriate. For the sake of clarity, we use
names instead of natural numbers. Thus, the result of the compilation is:
(Az.0%" =" 2/ 2" (\y.y)(Ak.E)). Additionally, we write u$, instead of (¢, u,t0). The
transitions are shown in the following page. The essential point of the machine is
to demonstrate how the copy-address is maintained at each transition: the J-terms
generate a copy-address for each copy and if we move inside a copy, we update the
current-copy-address of the machine. The last line in the example shows the final
state of the machine: here, the computation yields the identity function and the
current-copy-address indicates that we jumped into the S-copy of the two copies that
the d-term generates. Notice that in this example, the externally defined systems

are not utilised: this is because the terms that we copy have no free variables.

Discussion

The idea to use copy addresses comes from the Geometry of Interaction inter-
pretation for Linear Logic [15] and the path based realisation in [21]. There, a
A-term is compiled into a reversible automaton whose states describe a traversal
over a fixed Linear Logic proof-net and the configurations of the machine maintain
a stratified representation of the contexts traversed so far. In particular, sharing
in the net is maintained via contraction nodes (fan nodes) whose traversal builds
(R | S)*-strings to discriminate between shared contexts.

In our case, sharable information is represented via d-nodes where we create
copy addresses to discriminate between different copies. Counting copies seems to
give a curious kind of scope, a “copy scope”. From a different point of view, one
may argue that the machine utilises on the fly a-conversion to maintain a unique
variable name invariant: with such an interpretation, our variable names consist of
a fixed part (given at initialisation) and a volatile part (the copy address) where we
use the latter to maintain the invariant when we copy arguments. Notice that the
bindings of each copy are tagged by distinct addresses. However, we have to know
in what copy we are currently in so that we can pick up a correct binding. In a
nutshell, the trick to make this happen is to remember the current copy address at
the point of the call, the callee then creates a binding at the current copy address
where we also remember the copy address of the caller and finally, at the time we
use a binding, we “jump to” the argument and reset the copy address to the one
that was active at the time of the call.

However, the copy addresses that we generate are a source of inefficiency because
they can get quite big! In order to efficiently utilise associative data-structures, a
more compact representation of the addresses would be useful. For instance, one
could draw fresh addresses from a free-list. Finally, notice that there is no garbage
collector involved. There is however a space leak if we do not make full copies of
the copy address.

5 Conclusions

We have presented abstract machines for the A-calculus that differ in the strat-
egy implemented, and in the way the environments are manipulated. Applying
techniques inspired by the work in Linear Logic, we have derived two families of

13



FERNANDEZ, SIAFAKAS

14

B | e T Y e Y e T e Y e S e N e e S e TR e S e Y e S e R e e’
z e Ty T T T By Ty Ty X A
N —~ 5§ % 5§ % SRS
s R 8 8 &8O E B g o«
>SN0 B R A A = =
§:H:HtH:H:R
=< 8 8 8 8 8
=z <X < <X < <
S~ N N N N
@\L}Qi\u
AP
< 2
< D>
= =<
—_
2y @ 2% 2%y % vy 2 w2 ¢
Bl =]t = =~ ~ = = = =
V\Hé \& S— ~— ~—
|~ ~
<l s =
\_/’<
~—
:\
&
8
%
R
<
IS
/<
N~—
O vl v v wv Y W v VW U VW R Vv In | W®n
CAY-J | s ) N s Y s B s (S s B s B s N s B s S s S s B s (R s B s ) [ s
K
—
=
<
/<
S~—
DN == = == e = e e == = = = =
G
—
=
R
/<
N~—
x| ——- — - — — — =/ == == == = — | =
[ U] V5 BRRTLVs BRIV
_—~ —~
2R Rk
N
= < =< =
N~ N~ ~
Bl
—~
2=
< %
< =
N~—
H:::::::::::::::



FERNANDEZ, SIAFAKAS

machines. In the first one, environments associate to each sub-term, locally, the in-
formation needed about the bindings of the free variables. A syntax for terms with
explicit copying and erasing constructs allows us to incorporate some optimisations
in the machines. The second family of machines also benefits from the use of a
syntax with explicit copying and erasing, but uses a global environment. Machines
with global environments are well-suited for compilation. In future work, we plan
to derive a compiler for the A-calculus based on the J-machine and the machines
working with the local environments.
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Strategy-Based Rewrite Semantics for
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Concurrency of Rewrite Actions

Dorel Lucanu®?

Faculty of Computer Science, Alexandru Ioan Cuza University, Iasi, Romania

Abstract

We use a modal logic in order to show that the strategy-based rewrite semantics for membrane systems fully
preserves the maximal concurrency of rewrite actions, whereas the maximal concurrency of communication
actions and structural actions is partially preserved. Consequently, the strategy-based rewrite semantics
describes more faithfully the behavior of the membrane systems than the rewrite logic-based semantics,
which implements the maximal concurrency of the membrane systems only by interleaving concurrency.

Keywords: Rewrite Strategies, Strategy Controller, Membrane System, Modal logic, True Concurrency,
Rewrite Logic.

1 Introduction

Membrane computing [17] deals with distributed and parallel computing models
inspired from the structure and the functioning of living cells, as well as from the
way the cells are organized. Such a model processes multisets of symbol-objects in
a localized manner. The locality of processing refers to the fact that the evolution
rules and evolving objects are encapsulated into compartments delimited by mem-
branes. An essential role is also played by the communication among compartments
and, eventually, with the environment.

There are several approaches [3,1] which describe a rewrite semantics based on
rewriting logic (RL) [14,15]. Even if the use of RL framework seems to be a natural
choice for specifying and analyzing membrane systems, the locality of evolution rules
and the higher degree of the concurrency given by the maximal parallel rewriting
(used in defining the behavior of these systems) is quite challenging. An alternative
approach based on rewrite strategies and strategy controllers is given in [4]. The

L This work is partially supported by the PN II grant ID 393/2007.
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main idea is to separate the implementation of the control mechanisms of regions
from the effective application of the evolution rules.

In [12] we show that RL-based semantics can describe the maximal parallel
rewriting of the membrane systems only by interleaving semantics. In this paper we
show that the strategy-based rewrite semantics defined in [4] preserves the maximal
concurrency expressed by the maximal parallel rewriting. The concurrency degree
of the communications and structural actions is the same in the RL-based semantics
and strategy-based rewrite semantics. Since the two formalisms, membrane systems
and strategy-based rewriting logic, are quite different, we use a simple modal logic
as a common language for comparing the concurrency degrees of the two formalisms.

The paper is structured as follows. Section 2 briefly presents the membrane
systems and rewriting logic. In Section 3 a Hennessy-Milner-like modal logic for
membrane systems is introduced. Section 4 briefly recalls from [4] the strategy-
based rewrite semantics for membrane systems. Section 5 includes the main results
of the paper. The concurrency degree of an evolution step of a membrane system
is compared with that of its implementation as a strategic rewrite using the modal
logic introduced in Section 3. The paper ends with some concluding remarks.

Acknowledgments: The author would like to thank the anonymous referees for
their useful remarks and comments.

2 Preliminaries

2.1 Membrane systems

In this paper we consider a particular case of membrane systems, namely that
known as transition P systems [17]. Informally, a transition P system consists
of: an alphabet of objects (a usual finite non-empty alphabet of abstract symbols
identifying the objects), the membrane structure (it can be represented in many
ways, but the most used one is by a string of labeled matching parentheses), the
multisets of objects present in each region of the system (represented in the most
compact way by strings of symbol-objects), the sets of evolution rules associated
with each region, as well as the indication about the way the output is defined (see,
e.g., Figure 1). Formally, a transition P system (of degree m) is a construct of the
form IT = (O, C, p, w1, wa, .. ., W, R1, Ra, ..., Rm, i), where:

(i) O is the (finite and non-empty) alphabet of objects,
(ii) C C O is the set of catalysts,

(iii) p is a membrane structure, consisting of m membranes, labeled with 1,2,...,m;
one says that the membrane structure, and hence the system, is of degree m,

(iv) wy,wa, ..., wy are multisets over O representing the multisets of objects present
in the regions 1,2,...,m of the membrane structure (contents),

(v) R1,Rs,..., Ry, are finite sets of evolution rules associated with the regions
1,2,...,m of the membrane structure,

(vi) g is either one of the labels 1,2,...,m, and then the respective region is the
output region of the system, or it is 0, and then the result of a computation is
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r11 : ¢ — (a, here)(b, out) r91 2 a — (b, here)(c, inar,)

r12 1 b — (¢, here) 122 b — (a, here)

bbe M, abb

Fig. 1. A P system with two membranes

collected in the environment of the system.

A membrane structure is a hierarchically arranged set of membranes, contained in
a distinguished external membrane called the skin membrane. Several membranes
can be placed inside the skin membrane; a membrane without any other membrane
inside it is said to be elementary. Each membrane determines a compartment, also
called region, the space delimited from above by it and from below by the mem-
branes placed directly inside, if any exists. Clearly, the correspondence membrane-
region is one-to-one, that is why we sometimes use interchangeably these terms.
The hierarchical structure of membranes is a rooted tree symbolically represented
as a string of labeled matching parentheses. The rules have the form r : v — v
or r : u — vd, with u a non-empty multiset over O, v a multiset over O U Tar,
where Tar = {here, out} U {in; | 1 < j < m}, and ¢ a special object called dissolv-
ing action. The elements of Tar are called target indications and have the following
meaning: an object having associated the indication here remains in the same re-
gion, one having associated the indication in; goes immediately into the directly
lower membrane j, and out indicates that the object has to exit the membrane, thus
becoming an element of the region surrounding it. The rules can be cooperative
(with u arbitrary), non-cooperative (with u € O\ C), or catalytic (of the form
ca — cv or ca — cvd, with a € O\ C, ¢ € C, and v a multiset over (O \ C) x Tar);
note that the catalysts never evolve and never change the region, they only help the
other objects to evolve.

In this paper we associate a distinguished name M; to each membrane j and
the name M; and the index j are used interchangeably.

A configuration (p,w1,...,wy,) consists of the membrane structure p and the
multisets w; of objects from its compartments. During the evolution of the system,
both the multisets of objects and the membrane structure can change.

The objects evolve by means of evolution rules. In each time unit a transfor-
mation of a configuration of the system, called transition, takes place by applying
the rules in each region, in a non-deterministic and mazimally parallel manner. An
evolution step in a given region consists in finding a maximal applicable multiset
of rules, removing from the region all objects specified in the left hand sides of the
chosen rules (with the multiplicities as indicated by the rules and by the number of
times each rule is used), producing the objects from the right hand sides of rules,
and then distributing these objects as indicated by the targets associated with them.
If at least one of the rules introduces the dissolving action §, then the membrane
is dissolved, and its content becomes part of the immediately upper membrane,
provided that this membrane was not dissolved at the same time, a case where we
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stop in the first upper membrane which was not dissolved (at least the skin remains
intact). The rules of the dissolved membranes are lost.

There are many extensions of transitional P systems, among which we men-
tion here the use of priority relation over the evolution rules, the use of promoters
and inhibitors, the non-deterministically choosing of the in target. The reader is
invited to see [17] for a detailed presentation. We associate to each membrane a
control mechanism specifying its particular way to evolve. Some examples of such
mechanisms are presented in Section 3.

2.2 Rewriting Logic (RL)

We assume that the reader is familiar with the basic definitions and notations for
many-sorted equational logic [9], term rewriting [5,6], membership equational logic
(MEL) [16,7], and and rewriting logic [8,14,15].

Here we consider only (unconditional) MEL-based rewrite theories R = (X, E, R),
where

* (3,FE) is a MEL theory consisting of a MEL signature ¥ and a set E of MEL
axioms (membership axioms and equations), and

* R is a set of (universally quantified) labeled (unconditional) rewrite rules having
the form (VX)r : v — v, with u,v € Tg(X)s (= the set of terms of sort s and
with variables in X) for some sort s and Var(v) C Var(u) C X.

The rewriting logic of a MEL-based rewrite theory R consists of

* sentences given by rewrite sequents, which are pairs of the form (VX)t — ¢/, with
t,t" € Ty (X)s for some sort s, and

 an entailment relation R b (VX)t — t' defined by a set of inference rules (see,
e.g., [8,14] for details).

We give as examples the rewrite theories describing the control-free membranes
(no restrictions regarding the application of the evolution rules are considered).

The Rewrite Theory Associated to an Elementary Membrane. The static description
of the membranes is represented by the MEL theory (X, Ey,), where %, includes
the sorts Object, Soup, and HotSoup with Object < Soup < HotSoup, (w,tar) :
HotSoup if w : Soup and tar € Tar, ¢ : — HotSoup, the concatenation __ :
HotSoup HotSoup — HotSoup. FE,, includes axioms expressing the associativity
and commutativity of __ with e the identity element. The complete description
of a control-free membrane M is represented by the MEL rewrite theory M =
(X, UO, Ep,, R), where O the set of object constants, and R includes the rewrite
rules corresponding to the evolution rules. For the case of M in Figure 1, O includes
the constants a, b, c and Ry includes the rules 11 and r12. Using the inference rules
for RL, we may deduce, e.g., that the one-step evolution of M; can be described by
an one-step concurrent rewrite:

(V0)e — (a, here)(b, out) (V0)b — (c, here)
(V@)bbe — (c, here)(c, here)(a, here)(b, out)

Note that the above rewrite theory describes M; as an independent membrane. We
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show below that the description of the behavior of M; by the rewrite theory corre-
sponding to the whole system is more complicated.

The Rewrite Theory Associated to a Membrane System. The static description
of membrane systems is represented by the MEL theory (X,,E,) consisting of
(3, Ep) together with:

e a sort MembraneName together with a constant M : MembraneName for each
membrane name M,

e a sort Membrane for states of both simple and composite membranes,

e a sort MembraneBag for multisets of membranes, together with its constructors:
the subsort relation Membrane < MembraneBag, the constant NULL denoting
the empty multiset, and the union of multisets
_,_: MembraneBag MembraneBag — MembraneBag [assoc comm id: NULL]

* the constructors for Membrane: (_|-) : MembraneName HotSoup — Membrane
and (_|_{_}) : MembraneName Soup MembraneBag — Membrane, together with
the axiom (M|w {NULL}) = (M|w).

A control-free membrane system IT is described by the rewrite theory Ry = (3, U
O, E,, R), where R includes the rewrite rules coming from all the component mem-
branes together with the cooperation (interaction) rules (if any):

in(M,M") : ( M [ wi(wa, inpe) { (M |0 {X }),Y})—
M [wi { (M |[w'wy {X}),Y})
out(M', M) : (M |w { { M | w(wh,out) { X }),Y })—

in-out(M, M") : { M | wy(we,iny) { { M" | wy, (wh, out) { X }),Y }) —
M Jwywy { (M [w'wy { X }), Y })

{

{

{

(M [wwy { (M"|w) { X }),Y'})

{

{
(Mlw{(M'w's{X}),Y})— (M[ww {X,Y})

diss(M', M) :

The first rule describes the transmission of a message from a parent membrane M
to a child membrane M’, the second one the transmission of a message from a child
membrane M’ to the parent membrane M, the third one an exchange of messages
between M and M’, and the fourth one the dissolving of the membrane M’ (this is
triggered by the presence of the object § in the current content of M'). The above
set of rewrite rules describing the possible interactions is not minimal. For instance,
the effect of the rule in-out is equivalent to that of the sequential application of the
rules in and out, in either order.

The rewrite theory Ry does not include information about the locality of the
rewrite rules. For instance, if II is the system described in Figure 1, then logic
defined by Ry allows to apply r12 for both the content of M7 and the content of Ms.
There are different ways for describing the locality of the evolution rules: considering
an operation rules(M) - returning the rules of the membrane M [3,4], encoding the
set of rules in the description of each membrane [1,12] and so on. In either of
these cases the rewriting logic fails to describe an one-step evolution of a membrane
by an one-step concurrent rewrite. For instance, if we encode the rules of M; by
r11: (Mile W) — (Mi|(a, here), (b, out) W) and r12 : (M1|bW) — (M;i|(c, here) W),
then these cannot be concurrently applied because they overlap.
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3 A Modal Logic for Membrane Systems

In this section we define a Hennessy-Milner-like logic [10] able to express the con-
currency degree (and the behavior) of a membrane system. We distinguish three
kinds of actions in this logic:

(i) rewrite actions corresponding to evolution rules of a membrane. Such an action
is denoted by the label of the involved rule. We assume that the rules have
distinguished labels such that there is no ambiguity regarding the rule or the
region the rule belongs to.

(ii) communication actions which describe how two parent-child regions commu-
nicate. Two kinds of communications are possible: in(M, M) - the region M
sends a message to region M’ (M’ is a child of M); and out(M’, M) - the region
M’ sends a message to surrounding region M.

(iii) dissolving actions diss(M’', M), meaning that the region M’ is dissolved and
its contents is sent to surrounding region M; the evolution rules of M’ are lost.
In general, we may consider structural actions meaning all actions aimed to
modify the structure of the system.

We associate a modal language L7 to a membrane system II as follows:

(i) trueis a formula in Lyy;

(ii) if ¢ is a formula in Ly and L a multiset of rewrite actions, then (L)p is a
formula in Ly;

(iii) if ¢ is a formula in L5 and C' a multiset of communication actions, then (C)¢
is a formula in Ly;

(iv) if ¢ is a formula in Ly; and D a multiset of dissolving actions, then (D)y is a
formula in Ly;

(v) if 1 and @9 are formulas in L7, then so are =1 and @1 A pa.

The other propositional connectors are added to L7 in the usual way; e.g., false
is the notation for —true. The modal operator [A]p is defined as —(A)—p, where
A denotes a set of actions of the same type. An elementary formula is a formula
which does not contain a subformula of the form (A)p with A a set of communication
or dissolving actions. The idea is that an elementary membrane can satisfy only
elementary formulas.

We define first the satisfaction relation between elementary membranes and
elementary formulas, where the operations over multisets are denoted in a similar
way to that one used for sets.

(i) M,w [ true for each w;
(il) M,w = 1 Ao ifft M,w | ¢1 and M, w |= ¢3;
(iii) M,w = - iff M, w ~ ¢;
(iv) M,w | (L)p iff there is a transition w — w’ obtained by applying the rules
designated by L according to the control mechanism of M and M,w’ | ¢; in
this case we say that the pair (w,w’) is a witness of (L)true,

where M ranges over the membrane names, w, w’ range over the membrane contents.
We extend now the satisfaction relation to compound membranes. In the fol-
lowing II is a system with the regions M, ..., M,,, u and i’ range over the struc-
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ture of II, w;, w] range over the contents of the membrane M;, W = (w1, ..., wn),
w = (w},...,w),), L ranges over the nonempty sets of rewrite actions, C' over
the nonempty sets of communication actions, and D over the nonempty sets of

dissolving actions.

(i) I, (@, wi, ..., Wiy true for each (u,wq, ..., wpy);

(i) IO, (p, w1, . .., Wiy w1 A o if and only if I, (u,w1,...,wy) FE @1 and
¥2;
(iii) IO, (g, w,y ..y Wiy = iff TT, (py w1, . - .y W) FE @

) =
) =
I, (p, w1, . .., w)
) =
(iv) IL, (g, wi, ..., wm) E (L) iff L = Ly U...U Ly, and there is (u,w},...,w),)
such that
(a) for each i,
if L; = 0, then w] = w;, and
if L # 0, then (w;, w}) is a witness of (L;)true (hence M;, w; = (L;)true)
(b) and II, (u, wi, ..., wl,) = ¢;
we say that ((u,w), (1, W) is a witness of (L)true;
(v) IL (g, wi, . . ., wm) = (C)e iff there is (p, w!, ..., w],,) such that for each i,
wi = (U(u | (u, here) € w;)) U (V" | (F5)(v', inag,) € wj A in(M;, M;) € C))
U (U@" | (v", out) C w; A out(M;, M;) € C));
we say that ((u,w), (u,@')) is a witness of (C)true;
(vi) IO, (p, w1, . .. ,wp) = (D) iff there is (', w], ..., w! ) such that
(a) p' is obtained from p by removing any M; with diss(M;, M;) € D for
certain M;;
(b) if M; is in g/, then w} = w; U (U(wy, | diss(My, M;) € DT)) where Dt is
inductively defined by
D C D,
if diss(M;, M;) € D and diss(My, M;) € DT, then diss(Mj, M;) € DF;
we say that ((u,w), (1, w")) is a witness of (D)true;

Using the modal language L1 with the satisfaction relation previously defined
we are able to express the behavior of the system II. A transition (u,w) = (u/, W)
of a membrane system IT consists of

(i) either only rewrite actions, in that case ¢/ = p and there is a multiset L
of rewrite actions such that II, (u,w) = (L)true and for each multiset C
of communications and multiset D of dissolvings, II, (¢, @) | [C]false and
IL, (u,@0") = [D]false;

(ii) or only rewrite and communication actions, in that case p' = p and there are
a multiset L of rewrite actions and a multiset C of communications such that
I, (u,w) E (L)(C)true and for each multiset D of dissolvings, I, (u,w') E
[D]false;

(iii) or only rewrite and dissolving actions, in that case there are a multiset L of
rewrite actions and a multiset D of dissolvings such that I1, (1, W) | (L){D)true
and for each multiset C of communications, II, (u, w’) = [C]false;

(iv) or rewrite, communication and dissolving actions, in that case there are a
multiset L of rewrite actions, a multiset C' of communications and a multiset
D of dissolvings such that I, (u, w) = (L){C){D)true.
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For instance, if I115 is the membrane system represented in Figure 1, then

Iz, ([2[1]1)2, bbeas,  abbag, ) =

({ri1, 12,112, 721, r22, T2 }) ({in( M2, M1), out(My, Ma)}) true.
The modal logic can be extended in order to handle control mechanisms of the
membranes. Since an evolution step of a membrane is described by a formula
(L)true, we may define a specialized satisfaction relation |=4 for each control ctri:
M, w Ectr (L) true if and only if ctrlis the control of M and L is a set of rules which
can be applied on w according to ctrl. Here are the definitions of some controls in
this logic.

Maximal parallel rewriting (mpr). We use two specialized satisfaction relations to
express that a multiset of rules is applied in a maximal parallel manner: |=yp0 -
for “full maximal parallel rewriting”, when each object of the current content is
assigned to an evolution rule, and =, - for the general case, when some objects
cannot be assigned to any evolution rule.

(i) M,u f=mpro (rytrue if 7 : w — v is an evolution rule of M;
(i) M, ww’ Empro (LU L) true if M, w FEmpro (L) true and M, w' FEmpro (L) true;
(i) M,w Empr (L)true iff w = w'z such that M, w' Enpo (L)true and M,z =
[r]false for each evolution rule r : u — v of M.

Maximal parallel rewriting with priorities (pri). ~ We assume that there is a partial
order < over the evolution rules, where r < r’ stands for “r’ has a greater priority
than r”. The definition of the corresponding satisfaction relation =y is reduced to
that of FEmpr:

M, w Epi (L)true iff M,w Empr (L)true and (Vr,r')(r € L,r < r’ implies
M, w [ (r')true).

Rules with promoters. A rule with promoters, 7 : u — v/, can be applied only if the
promoters p are present in the current content. In the context of maximal parallel
rewriting, the definition of the corresponding specialized satisfaction relation is as
follows:

M, w Eprom (L)true iff M, w Empr (L)true and if r € L is a rule with promoter,
r:u— vlp, then p C w.

Rules with inhibitors. A rule with inhibitors, r : u — v|4, can be applied only if the
inhibitors ¢ are not present in the current content. In the context of maximal parallel
rewriting, the definition of the corresponding specialized satisfaction relation is as
follows:

M, w Einn (L)true iff M, w FEmpr (L)true and if r € L is a rule with inhibitor,
iU — v|-g, then ¢ Nw = ¢ (recall that ¢ is the empty multiset).

Combinations between different controls are also possible, e.g., priorities and pro-
moters.

The modal formulas supply information about the concurrency degree of the
membrane systems. The mazimal concurrency of a set A of actions is expressed by
(A)true and [A’]false for each nonempty set A’ # A: the maximality is expressed by
[A]false for all A" D A, and the concurrency is expressed by [A']false for all A" C A.
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The interleaving concurrency is expressed by a formula of the form (rq)(rq)true A
(roy(r1)true A [{ri,ra}]false, and the true concurrency is expressed by a formula
of the form (ri)(ro)true A (ro)(ri)true A {({r1,rz2})true It is worth noting that the
concurrency of the membrane systems is different from that of standard models of
the true concurrency. For instance, the formula ({r1,ro})true = (r1)(rq)true is
valid for distributed labeled transition systems [11] and unsatisfiable for membranes
having mpr as the control mechanism.

However, the modal language was designated as minimal with respect to the
concurrency of the membrane systems. Besides the concurrency degree, there is
other information which can be of interest regarding the current state: the struc-
ture of the system (relationships between regions), explicit description of the mem-
bership of a content to its own region etc. The description of the whole be-
havior of a membrane system can be obtained by enriching the modal language
with state-based atomic formulas like childOf (M, M"), parentOf (M, M'), skin(M),
contentOf (w, M"), and so on. Using the state-based formulas, we can express the re-
quirement as the communication is possible only between parent-child membranes:
IL (p,w) E ({...in(M,M'")...})true implies II, (u,w) | parentOf (M, M'). Al-
though their study could be interesting, these kind of formulas is out of the goal of
this paper.

4 Strategy-based Rewrite Logic for Membrane Systems

Strategy-based rewrite logic for membrane systems was defined in [4] and specifies a
membrane system II by a triple (R, STRAT, SCTRLp), where Ry is a rewrite the-
ory that specifies the control-free system I and defined as in Section 2.2, STRAT
specifies a strategy language for II, and SCTRLy defines the strategy controllers for
II. A strategy controller is intended to equationally define the control mechanisms
of II. The rewrite strategies are used to guide the rewriting according to the oper-
ational semantics of II. We briefly describe here the last two theories.

The Equational Theory STRAT. We consider a minimal strategy language able to
express the computations of a membrane system.
STRAT defines the syntax for strategies and consisting of:
e a sort RuleLabel for representing rules, together with a membership axiom
r : RuleLabel, for each rule r : v — v in R,
e a sort Strategy for strategies, and the subsort relation RuleLabel < Strategy,
e the strategy constructors for identity, failure, non-deterministic choice, and se-
quential composition respectively

id fail : — Strategy
_+ _: Strategy Strategy — Strategy [assoc comn]
_;_: Strategy Strategy — Strategy [assoc id : id)

e a congruence strategy operator for each of the constructors of Soup, Membrane
and MembraneBag:

__: Strategy Strategy — Strategy [assoc comm)]
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({]-) : MembraneName Strategy — Strategy
(A{-}) : MembraneName Strategy Strategy — Strategy
_,_: Strategy Strategy — Strategy [assoc comm|

The strategy language defined by the above theory was designed having in mind
mainly the control of the evolution rules. This language can be enriched with new
constructs needed for defining other control mechanisms over evolution rules [2] or
to add certain control over the interaction rules. In Section 5 we sketch out an
extension for the case of cooperation rules.

The Equational Theory SCTRLy. SCTRLy is the MEL theory consisting of:

e a sort StrategyController - for strategy controllers, together with the constants
mpr, pri,... — corresponding to membrane controllers, rew — corresponding to
rewrite actions, comm — corresponding to communication actions, and diss —
corresponding to dissolving actions,

e an operation getCtrl : MembraneName — StrategyController which returns the
constant corresponding to the control mechanism of the membrane.

The proof-theoretical semantics of the specification (R, STRAT, SCTRLy) is
given by a MEL-theory Proof(IT) which includes the semantics for strategies and
the semantics for strategy controllers.

The semantics of strategies can be defined in different ways. In this paper we
consider the set-theoretical semantics [13] defined by the following additional oper-
ations:

[-@] : Strategy State — Set{States}

[LQ_] : Strategy Set{States} — Set{States}

together with the following equations:

[idat] =t [fail@t] =0

[r@t] = {t' | t rewritten directly modulo E,, to ¢’ using the rule r at top}
[s1 + s2@t] = [s1@Qt] U [s2@t]

[s1; s2@t] = [s2@[s1@Q¢]]

[s182Quwiws] = {wiwh | w} € [s;Qu;],i =1,2}

(M | Y@M | w)] = (M | w) | of € [s@u]}

[s1, 82Qty, ta] = {t},t5 | t; € [s:Qt;],i = 1,2}

[(M | si{s2H)@(M | wit}h)] = {(M | w'{t'}) | w' € [s1Qu], 1" € [s,01]}
[s@(] =0 [s@(T U {t})] = [sQT] U [s@t]

where State is a supersort of HotSoup, Membrane and MembraneBayg, w;,w} are
variables of sort Soup, t,t',t;,t; are variables of sort State, T a variable of sort
Set{ States}, and s, s; are variables of sort Strategy.

Definition 4.1 We say that two strategy terms s; and sy are equivalent in Proof (I),
written s1 = s, if and only if Proof (II) I [s1@Qt] = [s2@t] for all state terms t.
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Proposition 4.2 The following equivalences are true in Proof (II):

s+s=s id id = d
s; fail = fail;s = fail s+ fail = s
(M|s+s)Yy=(M|s)+(M]s) s fail = fail s = fail

(M | s1+ s1{s2}) = (M | s1{sa}) + (M | s1{s2}) s1(s2 + 85) = 5152 + 51 59
(M | s1{sa +s5}) = (M | si{s2}) + (M | s1{s5}) s1,(s2 + s3) = 51,52 + 51,55

The semantics of the strategy controllers is given by means of a partial function
getStrat : StrategyController State — Strategy.

together with
— a set of equations defining getStrat(ctrl, w) for each strategy controller constant
ctrl corresponding to a control mechanism (like mpr), where w is a variable of sort
Soup, and
— a set of equations defining getStrat(ctrl,t) for each strategy controller constant
ctrl € {rew, comm, diss}.
A transition (evolution step) is defined by ¢ =ew t1 = comm t2 = diss t3 = t iff
Proof (I) + t; € [getStrat(rew,t)@t], Proof (II) F to € [getStrat(comm,t1)Qt4],
and Proof (I) - t' € [getStrat(diss, t2)Qt].

The following result is a direct consequence of definition of getStrat(ctrl, w) (see
[4] for more details).

Proposition 4.3 If w is a term of sort Soup, ctrl a membrane control mechanism,
and Proof (1) b getStrat(ctrl,w) = s with s # fail, then s is equivalent to a sum
of strategy terms s; of the form ry, ...7; id, where v, ...r; is a multiset of rule
labels. Moreover, [s;Quw] # (.

n

5 Concurrency in Strategy-based Rewrite Semantics

Let II be a membrane system and SRy = (R, STRATy, SCTRLyy) its representa-
tion as strategy-based rewrite theory. The static relationship between II and SRy
is given by a function v defined as follows:

(i) if w is a multiset of objects, then 1) (w) is the corresponding ground term of sort
Soup, denoted also by w (recall that each object of II is defined as a constant
of sort Soup in (£, Ep));

(ii) if M is an elementary membrane with the content w, then (M) = (M | w);

(iii) if M is a compound membrane with the content w and the children My, ..., M,

then (M) = (M | w{p(M), ..., (My)});
(iv) Y (u,w) = (M), where M is the skin of II (the relationship between w and
(M) is implicitly given here).

The operational semantics correspondence is given by

(,U,,E) = ctrl (/Llawl) iff ¢(M,W) = ctrl w(ﬂlaml)
iff Proof (I) - (u',w") € [getStrat(ctrl, (u, w))Qu(u, w)]

where ctrl € {rew, comm, diss}.
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We associate a modal formula v’(s) to a strategy term s as follows:

(i) ¥'(id) = true, Y'(fail) = false;

(i) ¢'(r) = (r)true if r is the label of a evolution/comunication/structural rewrite

(iif) ¥'(s1 + s2) = '(s1) AY'(s2);
(iv) ¢'(s1;82) = (A1) if ¥/ (s1) = (A1) true and ¥/ (s2) = @2;
(V) 1/)/(8182) = <A1 U A2>((p1 A 902) if I/JI(SZ') = <Al><,0z fori=1,2;
(vi) ¥'((M | s)) = ¢'(s);
(vii) (M | 51 {323)) = (A1 U As) (o1 A o) i 9/ (50) = (i) For i = 1,2

Viii) wl(Sl,SQ) = <A1 U AQ)((pl N (pz) if wl(sz) = (AZ><,01 fori=1,2.

The function v’ is partial; for instance, ¥’(s1; s2) is not defined for all s;. Moreover,
in order to have defined formulas like v'(s id) we assume that ¢ = ().

5.1 Concurrency of Rewrite Actions

We have all the elements to compare the concurrency degrees of a membrane system
IT and its strategy-based rewrite specification (R, STRAT 1, SCTRLy).

Lemma 5.1 Let M be an elementary membrane and w its content. If Proof (I1) F
getStrat(( M | w )) = s, then ¢'(s) is well-defined and has the form (Lq)true A ...

A (L) true.
The proof of the above result follows directly from Proposition 4.3.

Lemma 5.2 Let M be an elementary membrane and w its content. M,w =
(LYtrue if and only if Proof (1) + getStrat({ M | w)) = s and there is ¢ such
that 1'(s) = ¢ A (L)true.

Proof. We assume that L = {ry,...,r,}. If M,w = (L)true, then s = s’ +
71 ...71d from the definition of getStrat. The converse implication follows by ap-
plying Proposition 4.3 and Lemma 5.1. a

Now we are able to prove the first main result of this paper:

Theorem 5.3 Let L be a multiset of rewrite actions.

1) If T, (u,w) = (L)true then there are the strategy terms s,s such that '(s') =
(L)true and Proof (IT) = getStrat(rew, ¥ (p,w)) = s + §'.

2) Conversely, if Proof (I) & getStrat(rew, v (u,w)) = s then 9'(s) is well-defined

and T1, (1, W) = '(s).

Proof. If Proof (Il) F getStrat(rew,y(u,w)) = s, then s is a sum of strategies by
Proposition 4.2 and each member of the sum defines a transition. The conclusions
of the theorem follows by the operational semantics correspondence and Lemma
5.2. m]

It is worth noting that if Proof(IT) F getStrat(y)(II,w)) = s and s; is a sum
member of s, then s; can be implemented by a one-step concurrent Rp-rewrite.
Therefore Theorem 5.3 says that the maximal concurrency of the rewrite actions is
preserved by the strategy-based rewrite semantics.
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5.2 Concurrency Of Communication Actions

Let us consider first a parent-child pair (M, M’) of membranes. The communi-
cation between M and M’ can be implemented either by interleaving the in and
out rules, in(M,M"); out(M', M) + out(M', M);in(M,M’), or by using directly
in-out(M, M"). Neither of the two options faithfully preserves the maximal concur-
rency of the membrane systems. However, the later option seems to be a better so-
lution if we define ¢’ (in-out(M, M")) = ({in(M, M'), out(M', M)})true. It is worth
noting that for the case of interleaving concurrency we have in(M, M'); out(M', M) =
out(M', M); in(M, M").

Let IT be a system with the structure [1[2[3]3]2]1. Then the interleaving concur-
rency cannot be avoided by the rewrite semantics even if the in-out rewrite rules are
used. In fact, the best we can obtain is the strategy in-out(Mi, Ms); in-out(Ma, M3)+
in-out(Mz, M3); in-out (M1, Ms) (or an equivalent one if at least one communication
is in only one direction).

However, the communications can happen concurrently at disjoint positions in
the structure tree. If IT has the structure [;[2[3]3]2][4[5]5]4]1, then the communication
can be described by the strategy

( My | id { in-out(Ma, M), in-out(My, Ms) } ); in-out (M1, Ma); in-out (M1, My)
or an equivalent one.

The maximum concurrency degree of the communication which can be described
in the rewrite semantics is that given by rewriting logic. This is because the com-
munication rewrite rules are global and not local as it is the case of evolution rules.
In order to capture this concurrency degree in the strategy-based rewrite semantics,
we have to add to the strategy language an operator

ca : Strategy Strategy — Strategy

for each communication action ca € {in(M,M'), out(M,M"), in-out(M,M")}. A
strategy expression ca(s, s’) means that s deals with the communications inside M,
s' deals with the communications inside M’, ca with the communication between
M and M’'. Here is an example:
in-out( My, Ma)(in-out(Ms, My), in-out(Ms, Mg))

where the structure is [1[2]2[3[4]4]3[5[6)6]5]1- These strategies are obtained by apply-
ing the unconditional replace axiom in the definition of RL. The definition of 1’ is
extended by setting ¢/(ca(s, s")) = ({ca} UCUC") (¢ A¢'), where ¢'(s) = (C)p and
P'(s') = (C")¢'. Then, the strategy controller comm together with its semantics
will compute a strategy with maximum concurrency degree.

We conclude now the second main result, namely that the true concurrency
of the communication actions is partially preserved by the strategy-based rewrite
semantics, i.e., it is described by a combination of true concurrency and interleaving
concurrency. This is formalized by the following result:

Theorem 5.4 Let C be a set of communication actions. Then 11, (1, @) = (C)true
if and only if there is a strategy term s, a partition C1 .. . WCy of C, and a bijection
fA{1,... k} — {1,...,k} such that Proof (II) - getStrat(comm,¥(u,w)) = s and
wl(S) = <Cf(1)> R <Cf(k))t7“ue.
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5.8 Concurrency Of Structural Actions

If the structural actions include only dissolvings, then we get a similar conclusion
to that one for the communication actions. However, since the structural actions
change the structure of the system, the maximal concurrency of structural actions
cannot always be described by interleaving concurrency in the strategy-based rewrite
semantics. For instance, the double-dissolving given by

H, ([1 [2[3]3]2]1, w1, w2(5, ’LU35) |: <{diSS(M2, Ml), diSS(M3, Mg)})true

is described either by a strategy s with 1/(s) = (diss(Ma, My))(diss(Ms, My))true
or by a strategy s with ¢/'(s') = (diss(Ms, Ms)){diss(Ma, My))true. Obviously
s = s’ but this equivalence does not define a interleaving concurrency. Therefore
we have a weaker result:

Theorem 5.5 Let D be a set of structural actions. Then 11, (u, @) = (D)true if
and only if there is a strategy term s and a partition D1 W ... Dy of D such that
Proof (1) = getStrat(diss, Y (u,w)) = s and ¢'(s) = (D1) ... (Dg)true.

6 Conclusion

In this paper we give a partial answer to the question if it is possible to define
a rewrite semantics for the membrane systems. It was recently shown [12] that
rewriting logic-based semantics cannot preserve the maximal concurrency of the
rewrite actions. The main reason is the locality of the evolution rules. The rewrite
rules encoding the evolution rules belonging to a region must share this locality and
hence they cannot be applied concurrently.

In this paper we show that the strategy-based rewrite semantics introduced
in [4] preserves the maximal concurrency of the rewrite actions. In the strategy-
based rewrite semantics the control mechanisms of the membranes are modeled by
strategy controllers. A strategy controller analyzes the current state and computes
a strategy term describing all possible transitions from the current state. The
strategy term corresponding to a membrane can be computed in such a way it
preserves the concurrency degree given by the control mechanism. The semantics
of the strategy controllers is equationally defined and therefore it does not affect
the behavior described by the strategy-based theory.

Regarding the concurrency of the cooperation (communication and structural)
actions, the two rewrite semantics are equivalent. Since the rewrite rules governing
these actions are global, the concurrency given by the rewriting logic is the maximum
we can obtain.

In a recent paper, Serbanutd et al. [19] show that the framework K [18] is
suitable to faithfully describe the behavior of the P systems. Their result is based
on the following two facts:

1) a special encoding of the P systems by tagging the rewrite rules and the objects
with the path in the structure-tree from the root to the membrane M, and

2) the rewriting rules in K can be applied concurrently even when they overlap,
assuming that they do not change the overlapped portion of the term (may overlap
on “read only” parts).
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In this paper we consider the particular case of transition P systems [17]. There
is a large variety of P systems. We think that the strategy-based rewrite semantics
can faithfully describe almost all mechanisms used for controlling the evolution
rules. It remains to investigate what happens with the concurrency degree of the
cooperation actions for different more general structures, e.g., tissue-like structures
or neural-like structures.
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Abstract

We use strategies to specify how a wide range of exercises can be solved incrementally, such as bringing a
logic proposition to disjunctive normal form, reducing a matrix, or calculating with fractions. With such a
strategy, we can automatically generate worked-out solutions, track the progress of a student by inspecting
submitted intermediate answers, and report back suggestions in case the student deviates from the strategy.
Because we can calculate all kinds of feedback automatically from a strategy specification, it becomes less
labor-intensive and less ad-hoc to specify new exercise domains and exercises within that domain.

A strategy describes valid sequences of transformation rules that solve the exercise at hand, which turns
tracking intermediate steps into a parsing problem. This is a promising view at the problem because it
allows us to take advantage of many years of experience in parsing sentences of context-free languages, and
transfer this knowledge and technology to the domain of stepwise solving exercises.

In this paper we work out the similarities between parsing and solving exercises incrementally, and we discuss
the implementation of a recognizer for strategies. We present a full implementation of such a recognizer,
and discuss a number of design choices we have made. In particular, we discuss the use of a fixed point
combinator to deal with repetition, and labels to mark positions in the strategy.

Keywords: grammars, parsing, strategies, exercise assistants, combinator languages

1 Introduction

Strategies are used in many domains such as programming, rewriting, compiler
construction, and theorem proving. We recently realized that strategies also play
an important role in exercise assistants that support incrementally solving exercises
in mathematics, logics, physics, etc. [6]. In the intelligent tutoring systems field, a
strategy is called procedural knowledge, a production system, or a procedural plan.
In this field, strategies are not used to rewrite terms, but they are used to check
that a user performs the correct steps towards a solution for an exercise.
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An exercise such as “rewrite the following arithmetic expression containing frac-
tions to its normal form”, consists of the expression to be rewritten, the rules with
which the expression can be rewritten (and possibly also some known buggy rules),
and a strategy to guide or direct the rewriting. If a user solves the exercise incre-
mentally, we can check at each step whether or not the step is a valid rewrite step,
and whether or not this rewrite step is valid according to the strategy. In a way we
check whether or not the sequence of rewrite steps performed by the user is a prefix
of a sentence in the language specified by the strategy.

This paper briefly explains a language for specifying strategies for exercises, and
it shows how we use this language for recognizing valid sequences of rewrite steps.
The paper has two contributions:

e It discusses the design choices when constructing a strategy language for specify-
ing exercises, and a strategy recognizer for such a language.

¢ It shows how we can use the strategy language to check whether or not user-input
is correct with respect to the strategy specified for an exercise.

The information provided by our strategy recognizer is necessary for determin-
ing what kind of feedback to give to a user of an exercise assistant. At the mo-
ment the feedback provided by exercise assistants is almost always limited to cor-
rect /incorrect. Using the diagnosis given by our strategy recognizer we can improve
a lot on this.

This paper is organized as follows. Section 2 introduces our language for speci-
fying strategies for exercises. We illustrate the language with a strategy for adding
fractions: this strategy is used as a running example throughout the paper. Sec-
tion 3 shows how we have implemented the components of our strategy language
to obtain a strategy recognizer, and discusses the main design choices. We then
present three extensions to our strategy recognizer in Section 4. Section 5 shows
how the strategy language can be used for diagnosing possible problems in the user
input. The last two sections (6 and 7) discuss related work and ongoing research,
and draw conclusions.

2 A strategy language

Before we introduce our strategy language, which is inspired by context-free gram-
mars (CFG), we give an example strategy.

Example 2.1 Consider the problem of adding two fractions, for example, % and %:
if the result is an improper fraction (the numerator is larger than or equal to the
denominator), then it should be converted to a mixed number. Figure 1 displays
four rewrite rules on fractions. The three rules on the right (B1 to B3) are buggy
rules that capture common mistakes. A possible strategy to solve this type of
exercise is the following:

e Step 1. Find the least common denominator (led) of the fractions: let this be n

e Step 2. Rename the fractions such that n is the denominator

e Step 8. Add the fractions by adding the numerators

e Step 4. Simplify the fraction if it is improper
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b
242 = [ADD]
c ¢ c a E#G+C (B1]
a ¢ axc b d° b+d
5 d T bxd (Mo b, axb
ax - # [B2]
b axb c axc
- = [RENAME] b b
c aXc a+7¢a+ [B3}
a+b a c c
5 = 1+E [SmPL]

Fig. 1. Transformation rules in the domain of fractions

A context-free grammar distinguishes terminal and non-terminal symbols, and

has a set of production rules. For our strategy language, we take a different approach
and use combinators instead. Strategies are constructed in the following way:

Transformation rule. Such a rule is the smallest building block to construct
composite strategies, and closely corresponds to a terminal symbol in a CFG.
Occasionally, we write symbol r for some transformation rule r to distinguish the
strategy from the transformation rule.

Sequence. We can combine strategies s and ¢ and put them in sequence, for
which we write s <&> t. A production rule in a CFG is a sequence of symbols.

Choice. Another way to combine strategies is by choice: we write s <[> ¢ for
choosing between strategy s and strategy ¢. In CFGs, choice is introduced by
having multiple production rules for a non-terminal symbol.

Unit elements. We introduce two special elements that are the units for se-
quence and choice. The strategy succeed always succeeds (unit element for <x>),
whereas fail always fails (unit element for <>).

Labels. Because our primary interest in the strategy language is to automat-
ically calculate feedback from it, we need some mechanism to mark positions in
the strategy, for example, to encode the hierarchical structure of a strategy, or
to refine the textual feedback that is associated with a certain position in the
strategy. For this purpose, we introduce labels. Labeling a strategy s with some
label ¢ is written as label £ s. The exact representation of a label is irrelevant.

Recursion. We need a way to deal with recursion, and for this we introduce a
fixed point combinator. We write fix f, where f is the function of which we take
the fixed point. Hence, the function f takes a strategy and returns one, and such
that the property fix f = f (fiz f) holds.

Example 2.2 Repetition, zero or more occurrences of something, is a well-known
recursion pattern. We can define this pattern using our fixed point recursion com-
binator:

many s = fix (A\x — succeed <[> (s <> 1))

The strategy that applies transformation rule r zero or more times would thus be:

many (symbol r)
= succeed <[> (symbol r <> many (symbol r))
= succeed <[> (symbol r <> (succeed <|> (symbol r <> many (symbol 1))))
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Example 2.3 We use the strategy combinators to turn the informal strategy de-
scription from Example 2.1 into a strategy specification:

addFractions = label £y (  label {1 ruleLCD
<> label Uy (repeat (somewhere ruleRename))
<%> label {3 ruleAdd
<> label £y (try ruleSimpl)

)

The strategy contains the labels £y to £4, and uses the transformation rules given in
Figure 1. The transformation ruleLCD is somewhat different: it does not change
the term, but it calculates the least common denominator and stores this in an
environment. The rule RENAME for renaming a fraction uses the computed led to
determine the value of @ in its right-hand side. Rules that do not change the term
but only the context in which an exercise is solved are so-called administrative rules.
The definition of addFractions contains the strategy combinators repeat, somewhere,
and try. In an earlier paper [6], we discussed how these combinators, and many
others, can be defined conveniently in terms of the strategy language. The combi-
nator repeat is a variant of the many combinator: it applies its argument strategy
exhaustively. The check that the strategy can no longer be applied is an adminis-
trative rule. The definition of somewhere is another example of an administrative
rule: this combinator changes the focus in the abstract syntax tree before it applies
its argument strategy. The zipper data structure [8] can be used to keep a point of
focus.

2.1 Semantics of the strategy language

Before we move on to the implementation, we make our strategy combinators more
precise by defining the language that is generated by a strategy. Such a language
is a set of sequences of transformation rules.

language (s <> t) = {zy |z € language s,y € language t }
language (s <[> t) = language s U language ¢
language (fix f) = language (f (fiz f))
language (label £ s) = language s

language (symbol r) = {r}

language succeed — = {e}

language fail =0

This definition tells us whether a sequence of rules follows a strategy or not: the
sequence of rules should be a sentence in the language generated by the strategy,
or a prefix of a sentence since we solve exercises incrementally. Not all sequences
make sense, however. An exercise gives us an initial term (say tg), and we are
only interested in sequences of rules that can be applied successively to this term.
Suppose that we have terms (denoted by ¢;) and rules (denoted by r;), and let ¢;41
be the result of applying rule r; to term ¢;. A possible derivation that starts with

to can be depicted in the following way:

to =5 ) — 5 by —2s g 25 .
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To be precise, applying a rule to a term can yield multiple results, but most domain
rules, such as the rules for fractions in Figure 1, return at most one term. Running
a strategy with an initial term returns a set of terms, and is specified by:

run §to = { tp+1 |70 . ™ € language $,Vico..n : tit1 € apply r; t; }

Recognizing a strategy comes down to tracing the steps that a student is taking,
but how would a tool get the sequence of rules? In exercise assistants that offer free
input, users submit intermediate terms. Therefore, the tool first has to determine
which of the known rules has been applied, or even which combination of rules has
been used. Discovering which rule has been used is obviously an important part
of an exercise assistant, and it influences the quality of the generated feedback. It
is, however, not the topic of this paper. An alternative to free input is to let users
select a rule, which is then applied automatically to the current term. In this setup,
it is no longer a problem to detect which rule has been used.

3 Design of a strategy recognizer

In this section we discuss the design of a strategy recognizer. Instead of designing our
own recognizer, we could reuse existing parsing libraries and tools. There are many
excellent parser generators and various parser combinator libraries around [9,13],
and these are often highly optimized and efficient in both their time and space
behavior. However, the problem we are facing is quite different from other parsing
applications. To start with, efficiency is no longer a key concern. Because we are
recognizing applications of rewrite rules applied by a student, the length of the input
is very limited. Our experience until now is that speed poses no serious constraints
on the design of the library. A second difference is that we are not building an
abstract syntax tree.

The following issues are important for a strategy recognizer, but are not (suffi-
ciently) addressed in traditional parsing libraries:

(i) We are only interested in sequences of transformation rules that can be applied
successively to some initial term, and this is hard to express in most libraries.
Parsing approaches that start by analyzing the grammar for constructing a
parsing table will not work in our setting because they can not take the current
term into account.

(ii) The ability to diagnose errors in the input highly influences the quality of the
feedback services. It is not enough to detect that the input is incorrect, but
we also want to know at which point the input deviates from the strategy, and
what is expected at this point. Some of the more advanced parser tools have
error correcting facilities, which helps diagnosing an error to some extent.

(iii) Exercises are solved incrementally, and therefore we do not only have to rec-
ognize full sentences, but also prefixes. Backtracking and look-ahead can not
be used because we want to recognize strategies at each intermediate step.

(iv) Labels help to describe the structure of a strategy in the same way as non-
terminals do in a grammar. For a good diagnosis it is vital that a recognizer
knows at each intermediate step where it is in the strategy.
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(v) A strategy should be serializable, for instance because we want to communicate
with other e-learning tools and environments.

In earlier attempts to design a recognizer library for strategies, we tried to reuse
an existing error-correcting parser combinator library [13], but failed because of the
reasons listed above. The library we develop in this paper is written in the functional
programming language Haskell [12]. The code in this paper is almost complete and
conforms to the Haskell 98 standard. Although the code is relatively short, we want
to emphasize that the library has been tested in practice on different domains. For
instance, strategies implemented for the domain of linear algebra are more complex
than the strategy for fractions reported in this paper. These strategies will be used
in several courses during 2008.

3.1 Representing grammars

Because strategies are grammars, we start by exploring a suitable representation for
grammars. The data type for grammars is based on the alternatives of the strategy
language discussed in Section 2:

data Grammar a = Grammar a x: Grammar a
| Grammar a :: Grammar a
| Rec Int (Grammar a)
| Symbol a | Var Int | Succeed | Fail deriving Show

The type variable ¢ in this definition is an abstraction for the type of the symbols:
for strategies, the symbols are rules. The first design choice is how to represent
recursive grammars, for which we use the constructors Rec and Var. A Rec binds
all the Vars in its scope that have the same integer. We assume that all our
grammars are closed, i.e., there are no free occurrences of variables. This data type
makes it easy to manipulate and analyze grammars. Alternative representations for
recursion are higher-order fixed point functions, or nameless terms using de Bruijn
indices.

Labels are absent and will be added later. Observe that we use the constructors
:+: and :|: for sequence and choice, respectively (instead of the combinators <x> and
<[> introduced earlier). Haskell infix constructors have to start with a colon, but
the real motivation is that we use <&> and <[> as smart constructors.

3.2  Smart constructors

A smart constructor is a normal function that in addition to constructing a value
performs some checks or some simplifications. We use smart constructors for sim-
plifying grammars, and to obtain a normal form. We introduce a smart constructor
for every alternative of the Grammar data type: the functions symbol, var, succeed,
and fail do nothing special, but are introduced for consistency.

The smart constructor <x> for sequences removes the unit element Succeed, and
propagates the absorbing element Fail. Because the input is processed from left to
right, we associate sequences to the right. Pay close attention to the occurrences of
the smart constructors and the actual constructors in the following definition:
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(<&>) :: Grammar a — Grammar a — Grammar a

Succeed <x> t =t

s <> Succeed = s

Fail <> = fail

_ <> Fail = fail

(s *:t) <& u =s:* (t <& u)
s <>t =S5kt

For choices, we remove occurrences of Fail, and we nest alternatives to the right:

(<>) :: Grammar a — Grammar a — Grammar a

Faill <>t =t

s <> Fail = s
(s:t)<>u  =s::(t<>u)
s <>t =sit

The smart constructor for recursive grammars checks that there is at least one free
occurrence of the variable in the body: a Rec is built only if this is the case.

rec :: Int — Grammar a — Grammar a
rec i s =1if © € freeVars s then Rec i s else s

Calculating the set of free variables of a grammar is straightforward, although we
have to take care of shadowing binders.

Finally, we define a constructor function for fixed points on grammars, which
gives us another way to specify recursive grammars:

fiz :: (Grammar a — Grammar a) — Grammar a

This function can be implemented using rec and var: the only difficulty in defining
fix is to discover which integer can be used. We omit the implementation details.

3.8  Empty and firsts

For recognizing sentences, we have to define the functions empty and firsts. The
function empty tests whether the empty sentence is part of the language.

empty :: Grammar a — Bool

empty (s % t) = empty s A empty t
empty (s t) = empty sV empty t
empty (Rec i s) = empty s

empty Succeed = True

empty _ = Fulse

The last definition covers the cases for Fail, Symbol, and Var. The most interesting
definition is for the pattern (Rec i s): it calls empty recursively on s as there is no
need to inspect recursive occurrences.
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The function firsts returns a list with all symbols that can appear as the first
symbol of a sentence. For each symbol, the function also returns the remaining
grammar, i.e., the sentences that can appear after that symbol.

firsts :: Grammar a — [(a, Grammar a)]

firsts (s = t)  =[(a,s" <& t)| (a,s) — firsts s]
(if empty s then firsts t else [])
firsts (s i|: t) = firsts s H firsts t

firsts (Rec i s) = firsts (replaceVar i (Rec i s) s)
firsts (Symbol a) = [(a, succeed)]
firsts _ =]

For a sequence (s : t), we determine which symbols can appear first for s, and we
change the results to reflect that t is part of the remaining grammar. Furthermore,
if s can be empty, then we also have to look at the firsts for t. For choices, we
simply combine the results for both operands. If the grammar is a single symbol,
then this symbol appears first, and the remaining strategy is succeed (we are done).
To find the firsts for (Rec i s), we have to look inside the body s. All occurrences of
this recursion point are replaced by the grammar itself before we call firsts again.
The replacement is performed by a helper-function: replaceVar i s t replaces all
free occurrences of (Var i) in ¢ by s.

The function monempty removes the empty sentence from a grammar, and is
defined using firsts:

nonempty :: Grammar a — Grammar a
nonempty s = foldr (<|>) fail [symbol a <> t | (a,t) < firsts s]

Example 3.1 The repetition combinator many can be defined in the following way:

many :: Grammar a — Grammar a
many s = rec 0 (succeed <[> (nonempty s <> var 0))

It can also be expressed using the function fiz, resulting in the definition given in
Example 2.2. We have to apply nonempty to strategy s to avoid a left-recursive
grammar specification: this also holds when we use fix. In Section 4.2 we explain
how left recursion can be avoided by analyzing the grammar that is constructed.

3.4  Running a strategy

So far, nothing specific about recognizing strategies has been discussed. A strategy
is a grammar over rewrite rules: with the functions empty and firsts we can run a
strategy with an initial term:

run :: Grammar (Rule a) — a — [a]
run s a = [a | empty s| + [c| (r,t) « firsts s,b « apply r a,c < Tun t b]

The list of results returned by run consists of two parts: the first part tests whether
empty s holds, and if so, it yields the singleton list containing the term a. The
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second part takes care of the non-empty alternatives. Let r be one of the symbols
that can appear first in strategy s (r is a rewrite rule). We are only interested in
r if it can be applied to the current term a. It is irrelevant how the type Rule is
defined, except that applying a rule to a term returns a list of results. We run the
remainder of the strategy (that is, ¢) with the result of the application of rule 7.

The function run can produce an infinite list. In most cases, however, we are only
interested in a single result (and rely on lazy evaluation). The part that considers
the empty sentence is put at the front to return sentences with few rewrite rules
early. Nonetheless, the definition returns results in a depth-first manner. We define
a variant of run which exposes breadth-first behavior:

run’ :: Grammar (Rule a) — a — [[a]]
run’ s a = [a | empty s]: merge [run’ ¢t b | (r,t) < firsts s,b «— apply T a]
where merge = map concat o transpose

The function run’ produces a list of lists: results are grouped by the number of
rewrite steps that have been applied, thus making explicit the breadth-first nature
of the function. The helper-function merge merges the results of the recursive calls:
by transposing the list of results, we combine results with the same number of steps.

3.5 Labels

Labels are not included in the Grammar data type. We introduce two mutually
recursive types for strategies that can have labeled parts:

data LabeledStrategy | a = Label | (Strategy | a)
type Strategy I a = Grammar (Fither (Rule a) (LabeledStrategy [ a))

A labeled strategy is a strategy with a label (of type [). A strategy is a grammar
where the symbols are either rules or labeled strategies. For this choice, we use the
Either data type: rules are tagged with the Left constructor, labeled strategies are
tagged with Right. With the type definitions above, we can have grammars over
other grammars, and the nesting can be arbitrarily deep.

Excluding labels from the Grammar data type is a design choice. Functions that
work on the Grammar data type don’t have to deal with labels, which makes it, for
example, simpler to manipulate grammars. A disadvantage of our solution is that
symbols in a strategy must be tagged Left or Right. In our actual implementation
we circumvent the tagging by overloading the strategy combinators. As a result,
strategies can really be defined as the specification in Example 2.3.

Now that we can label parts of a strategy, we want to keep track at which point
in the strategy we are, and we do so without changing the underlying machinery.
We start with defining the Step helper data type:

data Step | a = Enter [ | Step (Rule a) | Exit | deriving Show

A step is a rewrite rule (constructor Step), or a constructor to indicate that we
entered (or left) a labeled part of the strategy. A labeled strategy can be turned
into a grammar over steps in the following way:
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withSteps :: LabeledStrategy 1 a — Grammar (Step | a)

withSteps (Label 1 s) = symbol (Enter 1)
<> mapSymbol (either (symbol o Step) withSteps) s
<> symbol (Exit 1)

For each label, we introduce symbols that mark the beginning and the end of that
label. We use the function mapSymbol to transform strategy s to a grammar of
steps. The function mapSymbol :: (a — Grammar b) — Grammar a — Grammar b
applies its argument function f to all symbols in a grammar. Note that f returns a
grammar, and therefore can be used to change symbols and to flatten a grammar
of grammars in one traversal. Each symbol of s is either a rewrite rule or a labeled
strategy (see the type definition of Strategy): a rewrite rule becomes a symbol with a
step, and a labeled strategy is handled by calling the function withSteps recursively.
To run a grammar with steps, we first have to overload the function apply such
that it also works on Step, and generalize the types of run and run’ accordingly.
The step data type gives us more information, as we show in our next example.

Example 3.2 Suppose that we run the strategy of Example 2.3 on the term % + %:
what would be the result? Of course, we would expect to get the derivation:
2 2 6 2 6 10 16 1

— - = — - = — —:—:1—
5+3 15+3 15+15 15 15

The final answer, 111—5, is indeed what we get. In fact, this term is returned twice
because the strategy does not specify which of the fractions should be renamed
first, which results in two different derivations. It is much more informative to step

through the above derivation and see the intermediate steps.

[Enter £y, Enter {1, Step ruleLCD, Exit {1, Enter {o,

Step down, Step ruleRename, Step up, Step down, Step ruleRename,
Step up, Step not, Exit {5, Enter 3, Step ruleAdd,
Exit 03, Enter 0y, Step ruleSimpl, Fxit Ly, Ezit £y]

The list has twenty steps, but only four correspond to actual steps from the deriva-
tion: the rules of those steps are underlined. The other rules are administrative:
the rules up and down are introduced by the somewhere combinator, whereas not
comes from the use of repeat. Also observe that each Enter step has a matching
Ezit step. In principle, a label can be visited multiple times by a strategy.

4 Extensions

The previous section presents the core of our work on recognizing strategies: strate-
gies can be labeled, and with the functions empty and firsts we can run a strategy. In
this section we present three extensions to illustrate the flexibility of our approach.

4.1 Parallel strategies

Suppose that we want to run the strategies s and ¢ in parallel, denoted by s <||> ¢.
This operation makes sense in the domain of rewriting: for example, two parts have
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to be reduced, and steps to reduce any of the two parts can be interleaved until
we are done with both sides. In theory, we can express two strategies that run in
parallel in terms of sequences and choices. In practice, however, such a translation
does not scale because the grammar will grow tremendously.

In our setup, it is relatively easy to add a new constructor for parallel strategies
to the Grammar data type, and we will further explore this approach.

data Grammar a = ... | Grammar a :||: Grammar a

Just as we did for sequences and choices, we first introduce a smart constructor for
parallel strategies, which expresses that it has Succeed as its unit element, Fail as
its absorbing element, and that the combinator is associative:

(<>) :: Grammar a — Grammar a — Grammar a

Succeed <|[> t =t

s <||> Succeed = s

Fail <> - = fail

_ <> Fail = fail

(s t) <> u =s: (<> u)

s <>t st

Next, we extend the definitions of empty and firsts with a new case:

empty (s | t) = empty s A\ empty t
firsts (s|: t) =[(a,s <|[>t)]| (a,s") < firsts s] #
[(a,s <|[> 1) [ (a,t) — firsts t]

Other functions that operate on the Grammar data type (such as freeVars and
mapSymbol) have to be extended as well, but these changes are minimal. Using a
generic traversal library [10] can further reduce the impact of adding a constructor.

In a similar way, we can define useful variants on this combinator, such as a left-
biased parallel combinator (which continues with its left operand strategy whenever
this is possible), or a parallel combinator that stops as soon as one of its operand
strategies is finished.

4.2 Removing left recursion

Because we can inspect the grammar, we can detect and remove left recursion in
a grammar. Left-recursive definitions cause the function firsts to loop, and are
therefore not desirable. Fortunately, removing left recursion from a context-free
grammar is a standard procedure, and we can transfer this knowledge directly to our
combinator approach. Consider the following left-recursive context-free grammar:

X = Xb|Xclale

We proceed by grouping the left-recursive alternatives (Xb and X¢) and the remain-
ing alternatives (a and €), and arrive at the following grammar:

X == alaY|e|Y Y o= b|bY |c|cY
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We briefly sketch how this procedure can be used for our Grammar data type.
Given a Rec constructor, we want to make sure that none of its Vars appears
first. We replace all variables of the Rec in question by a special symbol. Then,
we use firsts to analyze the grammar, and we divide the alternatives in the left-
recursive cases and the remaining cases. With the function empty we check for
the € alternative. In the last step, we combine all alternatives as we did for the
context-free grammar. If necessary, we repeat the procedure until the left recursion
has disappeared. Other existing grammar analyses can be reused in a similar way.

Example 4.1 We extend the smart constructors for recursive grammars (rec and
fiz) and let them check for left recursion. It is now safe to apply the function firsts
to the left-recursive grammar fix (Axz — (z <> symbol *a’) <[> succeed). Another
example is fiz (Ax — z), which is simplified to fail.

4.8 Serializing the remaining strategy

In a recent project, we offered strategies as a service to the MathDox system [3].
For this binding, we designed a stateless protocol for diagnosing intermediate an-
swers submitted by students. One obstacle in establishing this binding was how to
communicate the remaining strategy, which is part of the state of an exercise, back
and forth. The representation of a strategy is finite and can be serialized. This is
not very appealing because strategies can become quite large, which means that it
takes longer to process a request.

The remainder of a strategy can also be encoded as a list of integers, with the
extra benefit that the rewrite rules applied so far can be recovered. The encoding
is rather simple: the integers in the list only encode which element of the firsts set
has to be used. A Prefiz associates symbols (rewrite rules) with the integers from
the encoding, and contains the remaining grammar we are interested in:

data Prefir a = Prefiz [(Int, a)] (Grammar a)

This data type is called Prefir because we are in the middle of a derivation, which
means that we have a prefix of a sentence. The following function constructs a
prefix from a list of integers and a labeled strategy:

makePrefix :: [Int] — LabeledStrategy | a — Prefiz (Step | a)
makePrefix is = f [] is o withSteps
where f acc [] s = Prefix (reverse acc) s
f ace (i:1is) s = case drop i (firsts s) of
(a,t): —— f ((4,a):acc) is t
— — error "invalid prefix"

The local function f has an accumulating argument which builds up a list in reverse
order for efficiency reasons. This explains why the list acc has to be reversed in the
case for the empty list. Each integer ¢ from the list is used to select the ith element
of the list returned by the function firsts.

Example 4.2 Let us compute the list of integers that encodes the full derivation
of our running example (see Example 3.2):
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[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]

The list contains twenty elements, just like the list of steps. The list is dominated
by zeros, which is not a coincident. At most places in our grammar, there is just
one path that can be followed, witnessed by the fact that firsts returns a singleton
list at these positions. A simple optimization is to not add an integer for the cases
where firsts offers no choice.

5 Error diagnosis and hints

In this section, we explain how strategies can help in diagnosing student errors and
reporting useful feedback and hints. We have implemented several kinds of feedback
for our own exercise assistants, but also for other e-learning systems that use our
feedback services as a back-end. The simplest form of feedback is correct/incorrect
for the final answer, which is the kind of feedback that is offered by several online
tools. A useful extension to this categorization is to check for equivalence between
the submitted term and the initial term. With this, we can distinguish a correct
but not yet final answer from an incorrect answer. In the rest of this section we
present a number of scenarios in the fraction domain to illustrate the possibilities.

Example 5.1 A student submits % as the final answer. The exercise assistant

reports back to the student that his answer is correct, but with a gentle reminder
that the exercise is not yet finished. In this scenario, the strategy tells exactly which
step needs to be done: the improper fraction should be simplified.

Example 5.2 A term is submitted as an intermediate step: the rule used is recog-
nized, but according to the strategy it shouldn’t have been applied. For instance,
[RENAME] is recognized, but the denominators of the fractions are already equal.
The student can be warned that although the step is correct, it is better to do
something else.

Worked-out problems can be generated from a strategy, showing all the steps
to go from the initial term to the expected answer. A worked-out problem is the
presentation of a sentence that is generated by the strategy. The next step in a
derivation can be calculated with the function firsts. The information computed
with firsts can be presented in different ways: the hints can be very general or very
specific, for instance by using the levels of the labels in the strategy. A strategy can
complete the exercise, and therefore, progress information, such as the number of
steps remaining, is available.

Example 5.3 A student has no clue how to add the fractions % and %, and presses

the hint button. The system reports the hint: “make the denominators equal”. The

fact that the denominators are not yet equal can be concluded from the strategy. If

this does not help the student, the system can emit a more specific message stating

that the fractions should be renamed such that the denominators become 15. This

number is calculated and present in the environment in which the strategy is run.
6

A final hint could suggest to rewrite the part % into z.

Strategies can work together with buggy rules: these rules capture common
mistakes, and help to report specialized messages for specific (but often occurring)
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errors. In addition to the buggy rules, it is also possible to formulate buggy strate-
gies, i.e., common procedural mistakes. In our fraction domain, for example, a
buggy strategy would be to make the numerators equal before adding fractions.

Example 5.4 A student submits % as the solution to the exercise %—F% Because the
terms are not equivalent, the buggy rules are considered (B1 to B3 from Figure 1),
and in this case, rule B1 matches. A special message associated with this rule
(e.g., “it is not sound to add the numerators and the denominators of the fractions:
rename the fractions first”) is reported to the student.

Strategies and rules are essentially the same, except that the structure of a
strategy is made explicit. Hence, it is straightforward to turn a strategy into a
rule, or a part of a strategy with a certain label. This is convenient if following
a strategy becomes routine, and a step-wise approach is no longer helpful to the
student. Similarly, a tool can ask a student to solve the entire problem first, and
decompose the problem in steps if the submitted answer is not correct.

Example 5.5 A student is asked to provide the final answer to a question, and in
case it is incorrect, the exercise tool poses sub-problems to the student. These sub-
problems can be calculated automatically from the strategy by looking at the labels.
The strategy for adding fractions, for instance, can be decomposed in 4 steps.

6 Related work

There are many tools that offer students an environment in which they can solve
exercises incrementally, such as MathDox [3] and ActiveMath [5]. Most of these tools
are limited to correct/incorrect feedback, because it is often difficult and laborious
in these systems to diagnose mistakes. However, some tools use external domain
reasoners for making a diagnosis, which is exactly what our strategy recognizer has
to offer. Some work has been done on diagnosing student mistakes on the level of
rewrite rules [2,7,15].

In this paper, we discuss the design and implementation of a strategy recognizer,
which makes it possible to use strategies for improving error diagnosis. Strategies
for specifying exercises are introduced in a different paper [6]. By viewing strategy
recognition as a parsing problem, we take advantage of almost 50 years of experience
in parsing sentences of context-free languages. The strategy language on which our
work is based is very similar to languages that are used in parser libraries [9,13],
but also to strategic programming languages such as Stratego [11,14] and Elan [1],
data conversion libraries [4], and languages in other domains.

7 Conclusions

This paper presents a complete implementation of a recognizer for strategies. A
strategy describes valid sequences of rewrite rules, and is very similar to context-
free grammars. Knowledge and experience from the field of parsing sentences can
be transferred to the domain of stepwise solving exercises. One example of such a
transfer is the grammar transformation to remove left recursion.
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Although it is tempting to reuse existing parsing tools and libraries, a closer look
at the problem reveals subtle differences that make the existing tools unsuitable for
dealing with the problem we are facing. Nevertheless, the strategy combinators
that we selected as our starting point are inspired by context-free grammars. Some
design choices were discussed, in particular how to deal with recursion, and how
to mark positions in a strategy. In Section 5 we have shown how strategies can be
used to report improved feedback.

We will continue our research on strategy recognizers in several directions. We
are working on creating bindings with a number of existing tutoring tools, such
as ActiveMath [5]. Protocols are needed to exchange information with such an
environment, and we are working on developing and standardizing these protocols.
Our tool has a binding with MathDox [3], and has recently been used in a classroom
setting. We have collected data from these session, and preliminary analyses show
that providing feedback on the strategy level improves far transfer: students that
received feedback on the strategic level did better in advanced exercises. A final
area that requires further investigation is how to make strategies (and the associated
feedback messages) more accessible to teachers.
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Abstract

While ordinary conditional rewrite systems are more elegant than unconditional ones, they still have limited
expressive power since semantic data structures, such as sets or multisets, cannot be modeled elegantly.
Extending our work presented at RTA 2008 [9], the present paper defines a class of conditional rewrite
systems that allows the use of semantic data structures and supports built-in natural numbers, including
constraints taken from Presburger arithmetic. The framework is both expressive and natural. Rewriting is
performed using a combination of normalized equational rewriting with recursive evaluation of conditions
and validity checking of instantiated constraints.

Termination is one of the most important properties of any kind of rewriting. For conditional systems, it is
not sufficient to only show well-foundedness of the rewrite relation, but it also has to be ensured that evalu-
ation of the conditions terminates. These properties are captured by the notion of operational termination.
In this work, we show that operational termination for the class of conditional rewrite systems discussed
above can be reduced to (regular) termination of unconditional systems using a syntactic transformation.

Powerful methods for showing termination of unconditional systems are presented in [9].

Keywords: Conditional term rewriting, operational termination, semantic data structures

1 Introduction

Conditional term rewrite systems operating on free data structures provide a pow-
erful framework for specifying algorithms. This approach has successfully been
taken by the system Maude [4]. Many algorithms, however, operate on semantic
data structures like finite sets, multisets, or sorted lists (e.g., using Java’s collection
classes or the OCaml extension Moca [3]). Constructors used to generate such data
structures satisfy certain properties, i.e., they are not free. For example, finite sets
can be generated using the empty set, singleton sets, and set union. Set union is
associative, commutative, idempotent, and has the empty set as unit element. Such
semantic data structures can be modeled using equational axioms.

* Partially supported by NSF grant CCF-0541315.
I Email: spf@cs.unm.edu
2 Email: kapur@cs.unm.edu
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Extending our work presented at CADE 2007 and RTA 2008 [7,9], the present
paper introduces conditional constrained equational rewrite systems (CCESs) which
have three components: (i) R, a set of conditional constrained rewrite rules for
specifying algorithms on semantic data structures, (i) S, a set of constrained rewrite
rules on constructors, and (iii) &, a set of equations on constructors. Here, (ii) and
(iii) are used for modeling semantic data structures where normalization with S
yields normal forms that are unique up to equivalence w.r.t. £. The constraints for
R and S are Boolean combinations of atomic formulas of the form s ~ ¢t and s > ¢
from Presburger arithmetic. Rewriting with such a system is performed using a
combination of normalized rewriting [12] with evaluation of conditions and validity
checking of instantiated constraints. Before matching a redex with the left side of
a rule, the redex is first normalized with S. Additionally, the rewrite step is only
performed if the instantiated conditions of the rule can be established by recursively
rewriting them and if the instantiated constraint of the rule is valid. The difference
between conditions and constraints in a rule is thus operational.

Example 1.1 This example shows a quicksort algorithm that takes a set and re-
turns a list. It is a modification of an example from [2] that is widely used in the
literature on conditional rewriting. Sets are constructed using O and ins, where ins
adds an element to a set. The semantics of sets is modeled using S and £ as follows.

E: ins(z,ins(y,zs)) = ins(y,ins(z, zs))
S: ins(z,ins(x,ys)) — ins(x,ys)
Quicksort is specified by the following conditional constrained rewrite rules.

app(nil,zs) — zs

app(cons(z,ys), zs) — cons(x,app(ys, 2s))
split(z,0) — (0,0)
split(z, zs) —* (21, zh) | split(z,ins(y,zs)) — (ins(y, zl), zh) [x > y]
split(z, zs) —* (21, zh) | split(x,ins(y, 2zs)) — (zl,ins(y, zh)) [z # v]
gsort(d) — nil

split(z, ys) —* (yl,yh) | gsort(ins(x,ys)) —  app(gsort(yl),cons(z,gsort(yh)))

Here, split(x,ys) returns a pair of sets (yl,yh) where yl contains all y € ys such
that x >y and yh contains all y € ys such that x % y. &

One of the most important properties of a CCES is that a rewrite engine operat-
ing with it always terminates. For this, it has to be shown that the rewrite relation is
well-founded and that the evaluation of the conditions terminates. These properties
can be characterized by the notion of operational termination [11].% The recursive
nature of conditional rewriting is reflected in an inference systems for proving that
a term s can be reduced to a term ¢, and operational termination is the property
that this inference system does not allow infinite derivations.

3 Another commonly used characterization is effective termination, see, e.g., [13]. However, as argued in
[11], operational termination better captures the behaviour of actual rewrite engines.
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The present paper shows that operational termination of a conditional system
can be reduced to termination of an unconditional system using a syntactic trans-
formation. This transformation is similar to the transformation used for ordinary
conditional rewriting, see, e.g., [13, Definition 7.2.48]. Powerful methods based on
dependency pairs for showing termination of unconditional systems are presented
in [9], and in combination with the current paper these methods can be used for
showing operational termination of CCESs as well.

This paper is organized as follows. In Section 2, the rewrite relation is defined.
In Section 3, we formally define the notion of operational termination and show
that termination and operational termination coincide for unconditional systems.
Section 4 introduces a transformation from conditional systems into unconditional
ones. We show that termination of the transformed system implies operational ter-
mination of the original system. The omitted proofs may be found in the full version
of this paper [8], and [6] contains several nontrivial conditional systems whose oper-
ational termination can be shown by applying the transformation presented in this
paper and using the termination techniques presented in [9)].

2 Conditional Normalized Rewriting with Constraints

We assume familiarity with the concepts and notations of term rewriting [1]. We
consider terms over two sorts, nat and univ, and we use an initial signature Fpyq =
{0,1,+} using only sort nat. Properties of natural numbers are modelled using the
set PA={z+(y+2)~(r+y)+2 z+y=~y+z, v+ 0=z} of equations. For
each k € N — {0}, we denote the term 14 ...+ 1 (with k occurrences of 1) by k.

We then extend Fpy by a finite sorted signature F. We omit stating the sorts
explicitly in examples if they can be inferred. In the following we assume that all
terms, contexts, context replacements, substitutions, rewrite rules, equations, etc.
are sort correct. For any syntactic construct ¢ we let V(¢) denote the set of variables
occurring in ¢. The root symbol of a term s is denoted by root(s). The root position
of a term is denoted by A. For an arbitrary set £ of equations and terms s,t we
write s —¢ t iff there exist an equation u = v € £, a substitution o, and a position
p € Pos(s) such that s|, = uo and ¢t = s[vo],. The symmetric closure of —¢ is
denoted by Heg, and the reflexive transitive closure of Hg is denoted by ~¢. For
two terms s,t we write s Ng)‘ tiff s= f(s1,...,8,) and t = f(t1,...,t,) such that
s; ~g t; for all 1 <4 < mn, i.e., if equations are only applied below the root.

An atomic PA-constraint has the form T (truth), s ~ ¢ (equality) or s > ¢
(greater) for terms s,t € T (Fpu, V). The set of PA-constraints is defined to be the
closure of the set of atomic PA-constraints under — (negation) and A (conjunction).
Validity (the constraint is true for all assignments) and satisfiability (the constraint
is true for some assignment) of PA-constraints are defined as usual, where we take
the set of natural numbers as universe of concern. We also speak of PA-validity and
PA-satisfiability. These properties are decidable [15].

The rewrite rules that we consider are ordinary conditional rewrite rules together
with a PA-constraint C.

Definition 2.1 (Conditional Constrained Rewrite Rule) A conditional con-
strained rewrite rule has the form s; —* t1,...,s, =" t, | | = r[C] such that
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(i) l,r € T(FUFpa,V) such that root(l) € F,
(ii) siyti € T(FUFpa,V),
(iii) C is a PA-constraint,
) V(r) SV VUi, V(E)), and
) V(si) SV U V() for all 1 < i <n.*

The difference between conditions and constraints in a rule is operational. Con-

(iv

(v

ditions need to be evaluated by recursively rewriting them, while constraints are
checked using a decision procedure for PA-validity. This distinction will be for-
malized in Definition 2.7. In a rule I — r[T] the constraint T will be omitted.
For a set R of constrained rewrite rules, the set of defined symbols is given by
D(R) ={f | f = root(l) for some s; —* t1,...,8, =" t, | | — r[C] € R}. The
set of constructors is C(R) = F — D(R). Note that according to this definition, the
symbols from Fpy are considered to be neither defined symbols nor constructors.

Properties of non-free data structures are modelled using constructor equations
and constructor rules. Constructor equations need to be linear and regular.

Definition 2.2 (Constructor Equations) A constructor equation has the form
u v for terms u,v € T(C(R),V) such that u ~ v has identical unique variables
(is iu.v.), i.e., u and v are linear and V(u) = V(v).

Similar to conditional constrained rewrite rules, constructor rules have a PA-
constraint that will guard when a rule is applicable.

Definition 2.3 (Constructor Rules) A constructor rule is a rule | — r[C] with
l,r e T(C(R),V) and a PA-constraint C where root(l) € C(R) and V(r) C V(I).

Again, constraints C' of the form T will be omitted in constructor rules. Con-
structor rules and equations give rise to the following rewrite relation. It is based
on extended rewriting [14] but requires that the PA-constraint of the constructor
rule is PA-valid after being instantiated by the matcher. For this, we require that
variables of sort nat are instantiated by terms over Fpy in order to ensure that PA-
validity of the instantiated P.A-constraint can be decided by a decision procedure
for PA-validity.

Definition 2.4 (PA-based Substitutions) Let o be a substitution. Then o is
PA-based iff o(x) € T(Fpa,V) for all variables x of sort nat.

Definition 2.5 (Constructor Rewrite Relation) Let £ be a finite set of con-
structor equations and let S be a finite set of constructor rules. Then s —py|e\s t iff
there exist a constructor rule | — r[C] € S, a position p € Pos(s), and a PA-based
substitution o such that

(i) slp ~eupa lo,®
(ii) Co is PA-valid, and
(iii) ¢ = s[ro]p.

4 Using the notation of [13], the last two conditions yield deterministic type 3 rules.

5 This requirement can be relaxed slighlty by requiring that only those variables of sort nat that occur in
the PA-constraint need to be instantiated by terms over Fp4.

6 Recall that PA also denotes the set of equations introduced above.
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. >>\ . oy ! >>\ .
We write s —paje\s t iff s =pye\s t at a position p # A, and S =paest iff s
: >A : >\
reduces to t in zero or more —PAIE\S steps and ¢ is a normal form w.r.t. —PAIE\S

We combine conditional constrained rewrite rules and constructor rules and
equations into a conditional constrained equational system (CCES).

Definition 2.6 (CCES) A CCES has the form (R,S,E) for a finite set R of
conditional constrained rewrite rules, a finite set S of constructor rules, and a finite
set £ of constructor equations such that

(i) S is right-linear, i.e., variables occur at most once in r for alll — r[C] € S,

(ii) ~eupa commutes over —paje\s; i-€., ~EUPA © —PAIE\S C TPAE\S © VEUPA,
and
(iii) —?'pA”g\S is convergent modulo ~gupA, i.€., —pa|e\s S terminating and we
have —paje\ns © “Paje\s € TRAE\s © VEUPA C “pgje\s
The commutation property intuitively states that if s ~gupq 8" and s" —p AIE\S
t', then s —p A|lE\s t for some t ~eupa t'. If S does not already satisfy this property
then it can be achieved by adding extended rules [14,10]. It might be hard to check
the conditions on —pyje\s automatically and an implementation might thus be
restricted to some commonly used data structures for which these properties have
been established manually. Several examples are listed in Figure 1. The rule “(x)”
is needed in order to make ~gupa commute over —pye\s- The constructor (-)
creates a singleton set or multiset, respectively.
If R is unconditional (i.e., n = 0 for all s; —* t1,...,8, =" t, | | — r[C] in
R), a CCES will also be called a CES [9]. The rewrite relation corresponding to a
CCES is an extension of the rewrite relation considered in [9].

Definition 2.7 (Conditional Rewrite Relation) Let (R,S,E) be a CCES. The

rewrite relation i'pA”g\R is the least relation satisfying s i'pA”g\R t iff there exist
a conditional constraint rewrite rule s1 —* t1,...,8, —=* t, | I = r[C] in R, a
position p € Pos(s), and a PA-based substitution o such that

(i

5|p 7),4\|5\s o ~gipalo,
(ii) Co is PA-valid,

)
)

(iil) s;o 'pA”g\RO ~eupA tio for all1 < i <n, and
)

(iv) t = slrol,.

Notice that the restriction to PA-based substitution enforces a kind of innermost
rewriting for function symbols with resulting sort nat. The least relation satisfying
Definition 2.7 can be obtained by an inductive construction, similarly to ordinary
conditional rewriting (see, e.g., [13]).

Example 2.8 Continuing Example 1.1 we now illustrate g'pAHg\R. Consider t =
gsort(ins(1,ins(3,ins(1,0)))) and the PA-based substitution o = {x — 3,ys +—

ins(1,0),yl — ins(1,0),yh — 0}. We have t—!>7>3j4‘”g\5 gsort(ins(1,ins(3,0))) ~Z)pa
gsort(ins(z,ys))o and thus t ipA”g\R app(gsort(ins(1,0)), cons(3, gsort(0))) using
the third rule for qsort, provided split(3,ins(1,0)) i?;-AHg\R o ~gupa (ins(1,0),0). In
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Constructors ) S
Sorted nil, cons cons(z, cons(y, zs)) —
lists cons(y, cons(z, zs)) [z > y]
Multi- 0,ins ins(x, ins(y, zs)) ~
sets ins(y, ins(x, zs))
Multi- 0,(-),u rU(U2)~(zUy)Uz | zUD > x
sets rUy~yUx
Sets (,ins ins(z,ins(y, zs)) ~ ins(z,ins(z,ys)) —
ins(y, ins(x, zs)) ins(x,ys)
Sets 0,(-),u rU(U2)=(zUy)Uz | zUD > x
rUy~yUx rUr —x
(zUz)Uy —xUy (%)
Sorted 0,ins ins(zx,ins(y, zs) —
sets ins(y, ins(z, z8)) [z > y]
ins(x,ins(y, zs)) —
ins(z, zs)[x ~ y]

Fig. 1. Commonly used data structures.

order to verify this, we use the second split-rule. For this, we first need to check that
the instantiated constraint 3 % 1 is PA-valid. Furthermore we need to show that

split(3,0) ié‘yA”g\R o ~eupa (0,0), which is established by the first split-rule. Reduc-
ing app(qsort(ins(1,)), cons(3, gsort(D))) eventually produces cons(1,cons(3,nil)). &
It can be shown [8] that whenever s ~gupq " and s ipA”g\R t, then s’ gpAHg\'R

. S
t’ for some t' ~gupa t, i.e., ~gupa commutes over TPA|E\R-

Lemma 2.9 For any CCES (R,S,E) we have ~gupy © iPAHE\R - ﬁ)pAHg\R

o ~eupa. Furthermore, the i'p_AHé‘\R steps can be performed using the same condi-
tional constrained rewrite rule and PA-based substitution.

3 Termination and Operational Termination

Termination of a CCES means that there is no term that starts an infinite ip AE\R

reduction, i.e., that the relation i’PAHE\R is well-founded. As is well-known, ter-
mination is not the only crucial property of conditional rewriting. In order to get
a decidable rewrite relation it additionally has to be ensured that evaluation of the
conditions terminates. As argued in [11], the notion of operational termination is a
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(Refl) if s ~veupat

S —

s —t t—"u
(Tran) -

s —%u

s10 =" tio Spo — " tho

(Repl) 1 1 n n
s —t

if 51 2%t1,...,8, ="ty | L > r[C] € R,
p € Pos(s),
o is PA-based,

1

L>a >\
slp =paje\s © ~eopa Lo
Co is PA-valid, and

t = s[rolp.

Fig. 2. Derivation rules.

natural choice for this since it better captures the behavior of actual rewrite engines
than other commonly used notions like effective termination [13].

Asin [11], the recursive nature of conditional rewriting is reflected in an inference
system that aims at proving s iPA”g\R tors g%‘pAug\R t. Operational termination
is then characterized by the absence of infinite proof trees for this inference system.

Definition 3.1 (Proof Trees) Let (R,S,E) be a CCES. The set of (finite) proof
trees for (R,S,&) and the head of a proof tree are inductively defined as follows.

(i) An open goal G, where G is either s — t or s —* t for some terms s,t, is a
proof tree. In this case head(G) = G is the head of the proof tree.

(ii) A derivation tree, denoted by
) . T,

T- —

18 a proof tree, where G is as in the first case, A is one of the derivation rules
in Figure 2, and 11, ..., T, are proof trees such that

head(71) e head(7},)
G

is an instance of A. In this case, head(T) = G.

A proof tree is closed iff it does not contain any open goals.
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Example 3.2 We again consider the CCES for quicksort from Examples 1.1 and
2.8. Then gsort(ins(1,ins(3,ins(1,0)))) — app(gsort(ins(1,0)), cons(3, gsort(?))) is
an open goal and

split(3,0) — (0, 0) (Repl) m (Refl)
split(3,0) —* (0, 0) (Tran)
split(3,ins(L,0)) — (ins(L,0),0) ) Tins(L,0),0) —* (ins(L,0),0) "
split(3,ins(1,0)) —* (ins(1,0), 0) (Tran)
gsort(ins(1,ins(3,ins(1,0)))) — app(gsort(ins(1,)), cons(3, gsort(}))) (Repl)
is a closed proof tree with this goal as its head. o

An infinite proof tree is a sequence of proof trees such that each member of the
sequence is obtained from its immediate predecessor by expanding open goals.

Definition 3.3 (Prefixes of Proof Trees, Infinite Proof Trees) A proof tree
T is a prefix of a proof tree T', written T C T', if there are one or more open
goals G1,...,Gyn in T such that T' is obtained from T by replacing each G; by a
derivation tree T; with head(T;) = G;. An infinite proof tree is an infinite sequence
{T;}i>0 of finite proof trees such that T; C Tiy1 for all i > 0.

The notion of well-formed proof trees captures the operational behavior of a
rewrite engine that evaluates the conditions of a rewrite rule from left to right.

Definition 3.4 (Well-formed Proof Trees) A proof tree T is well-formed if it
is either an open goal, a closed proof tree, or a derivation tree of the form
T . T,
G

(A)

where T} is a well-formed proof tree for all 1 < j < n and there is an i < n such
that T; is not closed, Tj is closed for all j <1, and T}, is an open goal for all k > 1.
An infinite proof tree is well-formed if it consists of well-formed proof trees.

As mentioned above, operational termination is characterized by the absence of
infinite well-formed proof trees.

Definition 3.5 (Operational Termination) 4 CCES (R,S,€) is operationally
terminating iff there are no infinite well-formed proof trees.

It can be shown that the notions of termination and operational termination
coincide for unconditional systems [8].

Lemma 3.6 Let (R,S,E) be a CES. Then (R,S,€) is operationally terminating
iff (R,S,E) is terminating.

4 Elimination of Conditions

In order to show operational termination of a CCES (R, S, £), we transform it into a
CES (U(R), S, E) such that operational termination of (R, S, ) is implied by oper-
ational termination of (U(R),S,E). We then check for termination of (U(R), S, E),
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which, by Lemma 3.6, is equivalent to operational termination of (U(R),S,E). The
transformation generalizes the classical one for ordinary conditional rewriting (see,
e.g., [13, Definition 7.2.48]) to rewriting with equations, normalization, and con-
straints. An extension of the classical transformation to context-sensitive rewriting
with equations was proposed in [5]. Our presentation is influenced by that paper.

Definition 4.1 (Transformation U) Let p : s1 —* t1,...,8, =" t, | | — r[C]

be a conditional constrained rewrite rule. Then U(p) is defined by

ifn=0thenU(p) = {p}

ifn>0thenU(p) = {1 —Uf(s1,27)[C] } U (1)
{ UL (timr,2iy) = U (siy2a)[C] [ 2<i<n } U (2)
{ Un(tn, ;) — r[C] } 3)

Here, the U! are fresh function symbols and, for 1 < i < n, the expression
denotes the sorted list of variables in the set V(1) UV(t1) U...UV(ti—1) according
to some fized order on the set V of all variables. For a finite set R of conditional
constrained rewrite rules we let U(R) = U e U(p)-

Example 4.2 Continuing Examples 1.1, 2.8, and 3.2 we get the following uncon-
ditional constrained rewrite rules.

app(nil, zs) — =zs
app(cons(z,ys),zs) — cons(z,app(ys, zs))
split(z,0) —  (0,0)
split(z, ins(y, zs)

U1(<Zl, Zh>7 x,Y,zs

—  Uq(split(z, zs), x,y,28) [z > 9]
) [z >yl

—  Ua(split(z, zs), z,y,2s) [z # y]
)

)

)

) —  (ins(y, z2l), zh

)
Ua((zl,zh),z,y,zs) — (zl,ins(y, zh) [z # v]

)

)

)

split(z, ins(y, zs)

gsort(d) — nil
gsort(ins(z,ys)) —  Us(split(x,ys),z,ys)
U3(<yl,yh>,w,y5

In order to ease readability we used simplified names for the function symbols U
from Definition 4.1. Termination of this system is shown in [6, Appendiz D.3]. <

In order to show that (R,S,€&) is operationally terminating if (U(R),S,E) is
operationally terminating we make use of the following lemma.

— app(gsort(yl), cons(z, gsort(yh)))

Lemma 4.3 For any well-formed proof tree T for (R, S, E) whose head goal is either
s — t or s =* t, there exists a well-formed proof tree 3(T) for (U(R),S,E) whose
head goal is s —* t. Furthermore, if T C T' for some T', then B3(T) C B(T").

Before proving Lemma 4.3 we make two preliminary remarks about proof trees.
These properties will be used freely in the following.
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Property 4.4 Given the proof tree
T . T,

s—t

and a term s’ ~gupa s, it is possible to construct the proof tree

T T,

/ !
s —t

where t' ~gupa t s given by Lemma 2.9. a

Property 4.5 Given the proof tree

T,
— (Refl)
T Sp—1 — Sn Sp —
2 (Tran)
T 81— S2
" (Tran)
S — S1 S1 — t
S 7 (Tran)
N

with sg = s and a term s’ ~gupa s, it is possible to construct the proof tree

Ty
—— —  ——— (Refl)
T Sp—1—8n Sp— T
2 (Tran)
T 51— S2 :

— — — " (Tran)

S — S1 s1— t
O (Tran)

where 59 = s’ and 5; ~gupa s; for all 0 < i < n. Here, the s; are given by Lemma
2.9. Notice that 8, ~gupa t since S, ~gupA Sn and Sp ~ecupA t. O

Proof of Lemma 4.3
Assume that T is a well-formed proof tree for (R, S, E) whose head goal is either
s — t or s —* t. The construction of 3(T) is done by induction on the structure
of T. There are two cases, depending on whether the head goal of T is of the form
s —=*tors—t.
I. The head goal is s —* t:
If the inference rule (Refl) is applied to s —* ¢t then we are immediately done.
Otherwise, the inference rule (Tran) is applied to s —* . First, we assume that
T is closed. Then, T has the shape

T
7 (Refl)
T Sn—1 — Sn Sp t
2 (Tran)
T 51 — 52
" (Tran)
Sg — S1 s1— "t

s 1 (Tran)
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where sg = s and s, ~cupa t. By the inductive hypothesis we can assume that
each subtree

T;

Si—1 = i

U, =

has a transformed tree §(U;) of the form

k

in 7
1 k. ; . (Refl)

T? S TS S Si
i (Tran)
7 I o2 :
i i i
1 1 * (Tran)
Si—1 — S; S; — S

(Tran)

si—1 —" s

The proof tree 3(T') is now built by suitably “gluing” the S(U;) together.

k
Tnn
—— — (Refl)
sl R hn ey
— (Tran)
kp—1
S —*t
2
1 Tn
T, 1 2
n st — s2
T ;f = (Tran)
n—1 n Sn t (Tran)
/k—\_/ *
Sty — 1
Ty
k
't s’fl — sl :
e — — (Tran)
sllcl 1 — slfl sk1 —*t
— (Tran)
ki—1 x
2 s —"t
Ty 1
1 1 2 :
T S S — (Tran)
50 — st st ="t (Tran)
s—"t

If T is not closed since some leftmost TJ’ is not closed, then 3(T') needs to be
cut at the level of T7. In either case, B(T) is a well-formed proof tree if T is
well-formed and 3(T) C g(T") if T C T".

II. The head goal is s — t:
Again, we first assume that T is closed. Then, it has the shape

St Sn
s10 =" to Sp0 — " tho
(Repl)
s —1
for some rule p : s1 —* t1,...,8, —* t, | I — 7[C] from R. In order to

ease notation, we assume that the position in the (Repl) rule is p = A, i.e.,
!
s ;)7>>2|\ £\ © ~EUPA lo and t = ro. If the constrained rewrite rule that is used is
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unconditional, then this rule is also present in ¢/(R) and we obtain the following
proof tree for (U(R),S,E):

Refl
s — 1 iy (Ref)

(Tran)

Otherwise, U(R) contains rules of the form (1), (2) and (3) from Definition 4.1.
We construct proof trees for ((R),S,E) with the following head goals:

UR(tn,xt)o —* ro (Gp)
(sn,m Jo =% ro (Hp)
Ul (tn—1,2i_y)o —* 10 (Gn-1)
Ul (sp-1,25_1)0 —* ro (Hp-1)
Ul(t1,x3)0 —* ro (G1)
Ul(s1,23)0 —* ro (Hy)
s —=* t (K)

For the following, notice that C'o is PA-valid by assumption.
(i) Proof tree for (G,): We can construct the proof tree

(Repl) —— (Refl)
Ub(tn,z))o — ro ro —"ro

(Tran)
Ub(tn,x))o —" ro

using rule (3) from Definition 4.1.

(ii) Proof tree for (Hy) using the proof tree for (Gy): We assume that we have
already constructed a proof tree T}, for the goal (Gy) = U (tyo, zj0) —* ro.
By induction on the tree structure, we can assume that the subtree

Sk

T
spo —" tpo

has a transformed tree 5(Py) of the form

l
Tk:
- (Refl)
T2 U—1 — U U — txo
k (Tran)
Tkl UL — Uy
" (Tran)
Uy — UL Uy — o

(Tran)

spo —" tpo

where ug = sipo and u; ~gupa tro. Then, we can construct a proof tree for
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the goal Ul (sxo,z50) —* ro as follows:

T! Ty
w_y —up  UL(w,zjo) =" ro
(Tran)
T? u_y = ro

1 !/ /
Ty, Uy — Uy

/ / 7 m (Tran)

UO — ul ul — Tro
(Tran)

Ul (sko, xj0) =" ro

where u} = Uf (u;, x}0).

(iii) Proof tree for (Gi_1) using the proof tree for (Hy): We assume that we have
already constructed a proof tree T}, for the goal (Hy) = U (sko, xj0) —* ro.
Then, we can construct a proof tree for the goal U | (ty—10,2}_,0) —* ro
as follows:

" 7 (Repl)
Ul (tgi—10,35_10) — Ul (g0, z0) "

") " - (Tran)
Up_i(tg—r0,25_10) =" ro

where the (Repl) step uses rule (2) from Definition 4.1.

(iv) Proof tree for (K') using the proof tree for (H;): We assume that we have
already constructed a proof tree T for the goal (Hy) = Uf(s10,x}0) —* ro.
Then, we can construct a proof tree for the goal s —* ¢ as follows:

Repl
s — Uf(s10,z70) (ReoD Ty

T
P (Tran)

where the (Repl) step uses rule (1) from Definition 4.1.

As in case 1., if the original proof tree is not closed, then the transformed tree
is cut at some level. In either case, 3(T) is well-formed if T is well-formed and
BT)yCpIT)ET CT. O
Lemma 4.3 now easily implies the following result.

Theorem 4.6 (R,S, &) is operationally terminating if (U(R), S, E) is operationally
terminating.

In combination with Lemma 3.6 we get the key result of the present paper.
Corollary 4.7 (R,S,&) is operationally terminating if (U(R), S, E) is terminating.

Example 4.8 The following CCES specifies the sieve of Eratosthenes. primes(x)
returns a list containing the prime numbers up to x. In this example we have

S=£=0.
primes(z) — sieve(nats(2, z))

nats(z,y) — nil [z > y]
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nats(x,y) — cons(x, nats(xz + 1, %)) [z # ]
sieve(nil) — nil
sieve(cons(z, ys)) — cons(:Jc sieve(filter(z, ys)))
filter(x, nil)
isdiv(z,y) —* true | filter(z, cons(y, zs)) — filter(z, zs)
isdiv(x,y) —* false | filter(z, cons(y, zs)) — cons(y, filter(z, zs))
isdiv(z, 0) — true [z > 0]
isdiv(x, y) — false [x >yAy>0]
isdiv(z, z + y) — isdiv(z, y) [x > 0]
Using Definition 4.1 we obtain the following U(R).
primes(z) — sieve(nats(2,x))
nats(z,y) — il [z > v
nats(z,y) — cons(x,nats(x +1,y)) [z # v]
sieve(nil)  —  nil
sieve(cons(z,ys)) —  cons(z,sieve(filter(x,ys)))
filter(x,nil) — nil
filter(z, cons(y, zs)) —  Ui(isdiv(z,y), z,y, 2s)
Up(true,z,y,zs) — filter(x, zs)
filter(x, cons(y, zs)) —  Us(isdiv(z,y), x,y, 2s)

isdiv(z, 0

)
)
)

Ua(false, z,y,2s) —  cons(y, filter(x, zs))
) — true [z > 0]
)

isdiv(z,y) — false [x >yAy>0]

isdiviz,z +y) — isdiv(z,y) [x > 0]
By Corollary 4.7 the CCES (R,0,0) is operationally terminating if the uncondi-

tional CES (U(R),0,0) is terminating. Termination of (U(R),D,0) is shown in [6,
Appendiz F.2]. &

5 Conclusions and Future Work

We have presented conditional constrained equational rewrite systems for specifying
algorithms. Rewriting with these systems is based on normalized equational rewrit-
ing combined with evaluation of conditions and validity checking of instantiated
constraints. Semantic data structures like finite sets, multisets, and sorted lists are
modeled using constructor rules and equations. Natural numbers are built-in and
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constraints are taken from Presburger arithmetic.

We have shown that operational termination of such conditional systems can be
reduced to termination of unconditional systems using a syntactic transformation.
Powerful methods based on dependency pairs for showing termination of uncondi-
tional systems are presented in [9]. These methods can thus be used for showing
operational termination of conditional systems as well. Using this approach, oper-
ational termination of several nontrivial conditional systems is shown in [6].

We will next study properties apart from operational termination. In particular,
we will investigate confluence and sufficient completeness. Orthogonal to this, we
plan to generalize the rewrite relation by considering other built-in theories, most
importantly integers instead of natural numbers.
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Completion as Post-Process in Program
Inversion of Injective Functions
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Abstract

Given a constructor term rewriting system defining injective functions, the inversion compiler in [19,20]
generates a confluent conditional term rewriting system defining completely the inverse relations of the
injective functions, and then the compiler unravels the conditional system into an unconditional term
rewriting system. In general, the unconditional system is not confluent and thus not computationally
equivalent to the conditional system. In this paper, we propose a modification of Knuth-Bendix completion
procedure as a post-process of the inversion compiler. Given a confluent and operationally terminating
conditional system, the procedure takes the unraveled one of the conditional system as input, and it returns
a convergent system that is computationally equivalent to the conditional system if it halts successfully. We
also adapt the modification to the conditional systems that are not confluent but innermost-confluent. The
implementation of our method succeeds in generating innermost-convergent inverse systems for all examples
shown by Kawabe et al. where all main and axillary functions are injective.

Keywords: unraveling, convergence, functional programming, conditional term rewriting system

1 Introduction

Given a constructor TRS (term rewriting system), the inversion compiler proposed
in [19,20] first generates a CTRS (conditional TRS) as an intermediate result, and
then transforms the CTRS into a TRS that is equivalent to the CTRS with respect
to inverse computation. The first phase of the compiler is local inversion; for every
constructor TRS, the first phase generates a CTRS, called an inverse system, that
completely represents the inverse relation of the reduction relation represented by
the constructor TRS. The second phase employs (a variant of) Ohlebusch’s unravel-
ing [21]. Unravelings are transformations based on Marchiori’s approach [14], that
transform CTRSs into TRSs. Note that we call all variants of Marchiori’s unravel-
ings unravelings because they satisfy the condition [14,15] of being unravelings.
Unfortunately, the compiler cannot always generate TRSs that are computation-
ally equivalent to the intermediate CTRSs due to a character of unravelings, that

! Email: nishida@is.nagoya-u.ac.jp
2 Email: sakai@is.nagoya-u.ac.jp
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partial inversion compiler [20]
convergent

injective TRS . . unravelin VES inverse TRS
S avi v 2S .
g eon £ g ™ completion w
Inv U
NO
U(Znv(R))

non-terminating inverse TRS
Fig. 1. Overview of the partial inversion with the completion.

is, the unraveled TRSs of CTRSs may have unexpected normal forms that repre-
sent dead ends of wrong choices at branches of evaluating conditional parts of the
CTRSs. These wrong choices are captured by critical pairs of the unraveled TRSs,
each of which originates two rewrite rules corresponding to the ‘correct’ and ‘wrong’
choices, where any rules looking like ‘wrong choice’ must be necessary elsewhere.
Note that it is decidable whether a normal form is desired or unexpected: a normal
form of the unraveled TRSs is an unexpected one if it contains an extra defined
symbol introduced by the unraveling.

In program inversion by the compiler, this problem arises even if functions de-
fined in given constructor TRSs are injective. For this reason, the resultant TRSs
do not define functions and thus the inversion compiler is less applicable to injective
functions in practical functional programming languages — it is easy to translate
the functional programs to constructor TRSs, but difficult to translate the resultant
TRSs of the compiler back into functional programs.

In this paper, we propose a modification of the Knuth-Bendix completion pro-
cedure in order to transform the unraveled TRSs of confluent and operationally
terminating CTRSs into convergent (and possibly non-overlapping) TRSs that are
computationally equivalent to the CTRSs. Unfortunately, the procedure does not
always halt. However, if the procedure halts successfully and the resultant conver-
gent TRSs are non-overlapping, then the resultant systems can be easily translated
back into functional programs due to non-overlappingness. We takes the modified
completion procedure as a post-process into the program inversion of injective func-
tions (Fig. 1 and Section 4). Through this approach, we show that unravelings are
useful not only in analyzing properties but also in modifying programs (unraveled
TRSs, especially inverse programs).

Consider the following functional program in Standard ML where Snoc(xs,y)
produces the list obtained from xs by adding y as the last element:

fun Snoc( [1, y ) = [yl
| Snoc( (x::xs8), y ) = x :: Snoc( xs, y );
We can easily translate the above program into the following constructor TRS:
Ry = { Snoc(nil;y) — (y::nil), Snoc((z::zs),y) — (x::Snoc(zs,y)) }

where (t :: ts) abbreviates the list cons(t,¢s). The compiler inverts R; into the
following CTRS in the first phase?®:

InvSnoc([y]) — (nil, y)

Inv(Ry) =
' InvSnoc((z::ys)) — ((z::xs),y) < InvSnoc(ys) — (zs,y)

3 To simplify discussions, we omit describing special rules in the form of InvEF(F(z1,...,2n)) — (Z1,--.,2n)
[20,19]I because they are meaningless for inverse computation in dealing with call-by-value systems. The
special rules are necessary only for inverse computation of normalizing computation in term rewriting.
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where [t1,t9,...,t,] abbreviates the list cons(¢1,cons(¢a, -+, cons(t,,nil)--+)) and
each tuple of n terms ti,...,t, is denoted by (t1,...,t,) that can be represented
as terms by introducing an n-ary constructor. The compiler unravels the CTRS
Inv(R;y) into the following TRS in the second phase:

InvSnoc([y]) — (nil,y),
U(Znv(R1)) = q InvSnoc((x::ys)) — Uy (InvSnoc(ys), z,ys),
Ur({xs,y), z,ys) — ((z::xs),y)

The introduced symbol Uy is used for evaluating the conditional part InvSnoc(ys) —
(xs,y) of the second rule in Znv(Ry). The term Snoc([a,b],c) has a
unique normal form [a,b,c] but InvSnoc([a,b,c]) has two normal forms, a
solution ([a,b],c) of inverse computation and an unexpected normal form
U1(U1 (Ui (InvSnoc(nil), ¢, nil), b, [c]), a, [b, c]). In this example, it appears to be easy
to translate from the CTRS Znwv(R;) into a functional program directly because
we can easily determine an appropriate priority of conditional rules in Znv(Ry).
However, such a direct translation is difficult in general because we cannot decide
which rules have priority of the application to terms. The restricted compiler in
[1] is useless for this case because R; is out of the scope. It is probably impossible
that one transforms input systems into equivalent systems from which the compiler
generates the inverse systems without overlapping. To avoid this problem, it has
been shown in [18] that the transformation in [24] is suitable as the second phase of
the compiler, in the sense of producing convergent systems. However, the generated
systems contain some special symbols and overlapping rules. For this reason, it is
difficult to translate the convergent but overlapping TRS into a functional program
(see Section 5).

Roughly speaking, non-confluence of U(Znv(R1)) comes from the critical pair
((nil, z), U1 (InvSnoc(nil), z, nil)) between the first and second rules in U(Znv(Ry)).
In this case, the application of the first rule is the correct choice and that of the
second is the wrong, that is, (nil, z) is the correct result and Uj (InvSnoc(nil), z, nil) is
the wrong recursive call of U; containing the dead end InvSnoc(nil). From this obser-
vation, by adding the rule Uj(InvSnoc(nil), z, nil) — (nil, ), the unexpected normal
form of InvSnoc([a, b, c]) can be reduced to the solution. This added rule provides a
path from the wrong branch of inverse computation to the correct branch. Due to
this rule, the new TRS is confluent. This process just corresponds to the behavior of
completion. Therefore, completion is expected to solve the non-confluence of TRSs
obtained by the inversion compiler.

This paper illustrates all of the following;:

e under the call-by-value evaluation of operationally terminating deterministic
CTRSs, simulation-soundness on the innermost reduction is preserved by Ohle-
busch’s unraveling (Subsection 3.2);

* given a (innermost-)confluent and operationally terminating CTRS, the comple-
tion procedure takes the unraveled TRS (evaluated by the innermost reduction)
as input, and returns a (innermost-)convergent TRSs that are computationally
equivalent to the CTRSs if the procedure halts successfully (Subsection 3.3);
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* to deal with TRSs whose termination is not provable by any reduction orders with-
out dependency analysis (e.g., lexicographic path orders), we employ the comple-
tion with termination provers, following the approach in [28] (Subsection 3.5).

We also show that an implementation of the completion procedure succeeds in
generating convergent TRSs from all the unraveled TRSs of CTRSs obtained by
the inversion compiler [19] from injective functions shown by Kawabe et al. [§]
where all axillary functions are also injective, and we show an informal translation
of the non-overlapping TRSs obtained by the procedure into functional programs
(Subsection 3.4). Note that we do not consider sorts; however, the framework in
this paper is easily extended to many-sorted systems.

2 Preliminaries

Here, we will review the following basic notations of term rewriting [2,22].

Throughout this paper, we use V as a countably infinite set of variables. The
set of all terms over a signature F and V is denoted by 7 (F,V). The set of all
variables appearing in either of terms t1,...,t, is represented by Var(ty,...,t,).
The identity of terms s and ¢ is denoted by s = ¢t. For a term ¢ and a position p of
t, the notation t|, represents the subterm of ¢ at p. The function symbol at the root
position € of t is denoted by root(t). The notation C[t1,...,tn]p,... p, represents
the term obtained by replacing each [J at position p; of an n-hole context C' with
term t; for 1 < i < n. The domain and range of a substitution o are denoted by
Dom(o) and Ran(co), respectively. The application o(¢) of substitution o to ¢ is
abbreviated to to.

An (oriented) conditional rewrite rule over F is a triple (I,r,c), denoted by
I — r < ¢, such that [ is a non-variable term in 7 (F,V), r is a term in 7 (F, V),
and c is of form of s — ¢4 A -+ A 8 — &, (n > 0) of terms s; and ¢; in 7 (F, V). In
particular, the conditional rewrite rule [ — r < ¢ is said to be an (unconditional)
rewrite Tule if n = 0, and we may abbreviate it to [ — r. We sometimes attach
a unique label p to a rule [ — r < ¢ by denoting p : | — r < ¢, and we use the
label to refer to the rule. To simplify notations, we may write labels instead of the
corresponding rules. An (oriented) conditional rewriting system (CTRS, for short)
R over a signature F is a finite set of conditional rewrite rules over F. The rewrite

relation of R is denoted by — . To specify the applied position p and rule p, we

write —>1}C or —>[Rp’p]. A conditional rewrite rule p : | — r <= 51 — t1--- s — t is

called deterministic if Var(r) C Var(l,t1,...,t;) and Var(s;) C Var(l,t1,...,ti—1)
for 1 <4 < k. The CTRS R is called a deterministic CTRS (a DCTRS for short) if
all rules in R are deterministic. Operational termination of DCTRSs is such that no
infinite reductions exist in existing rewrite engines [13]: a CTRS R is operationally
terminating (OP-SN, for short) if for any terms s and ¢, any proof tree attempting
to prove that s LR t cannot be infinite.

Throughout this paper, we assume that a signature F consists of a set D of
defined symbols and a set C of constructors: F = D W C. Let R be a CTRS over F.
The sets Dgr and Cr of all defined symbols and all constructors of R are defined as
Dr = {root(l) |l = r < c € R} and Cr = F \ Dg, respectively. We suppose that
Dr € D and Cg C C. Terms in 7(C,V) are called constructor terms. The CTRS
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R is called a constructor system if every rule f(t1,...,t,) — r < ¢ in R satisfies
{t1,....t.} CT(C,V).

We use the notion of context-sensitive reduction in [12]. Let F be a signature. A
context-sensitive condition (replacement mapping) p is a mapping from F to a set of
natural numbers such that u(f) C {1,...,n} for n-ary symbols f in F. When u(f)
is not defined explicitly, we assume that u(f) = {1,...,n}. The context-sensitive
reduction of the context-sensitive TRS (R, 1) of a TRS R and a replacement map p is
denoted by — ¢ =g ) = {(s,t) | s =% t,p € Ou(s)}. The innermost reduction
of =g, is denoted by —p v = = {(s,t) | s —ht,pe Ous),(Yg>p. g€
O(s) implies that s|, is irreducible)}.

Let I; — r; (i = 1,2) be two rules whose variables have been renamed such that
Var(ly,r1) NVar(la,m2) = 0. Let p be a position in I such that {1, is not a variable
and let 6 be a most general unifier of /;|, and l5. This determines a critical pair
(110, (110)[r20]p). If p = ¢, then the critical pair is called an overlay. If two rules
give rise to a critical pair, we say that they overlap. We denote the set of critical
pairs constructed by rules in a TRS R by CP(R). We also denote the set of critical
pairs between rules in R and another TRS R’ by CP(R, R'). Moreover, CP.(R)
denotes the set of overlays of R.

Let R and R’ be CTRSs such that normal forms are computable (i.e., —p
and —p, are well-defined), and T be a set of terms. Roughly speaking, R’ is
computationally equivalent to R with respect to T if there exist mappings ¢ and
such that if R terminates on a term s € T admitting a unique normal form ¢, then
R’ also terminates on ¢(s) and for any of its normal forms ', we have ¢ (t') = ¢ [24].
In this paper, we assume that ¢ and v are the identity mappings.

Let — and —» two binary relations on terms, and T’ and T” be sets of terms.
We say that — = — in T"xT" (> 2 - in T"xT", respectively) if —N(T"xT")
=N (T xT") (¢ N (T"xT") 2 - N (T" x T"), respectively). Especially, we
say that — = — in 7" (and - 2 - n T")if T" = T".

3 Completion to Unraveled TRSs

In this section, we show that the completion of the unraveled TRSs produces con-
vergent TRSs that are computationally equivalent to the corresponding CTRSs. To
adapt to call-by-value computation, we show simulation-soundness of the unraveling
for DCTRSs with respect to innermost reduction.

3.1 Unraveling for DCTRSSs

We first give the definition of Ohlebusch’s unraveling [21]. Given a finite set X of
variables, we denote by X the sequence of variables in X without repetitions (in
some fixed order).

Definition 3.1 Let R be a DCTRS over a signature 7. For every conditional
rewrite rule p: ] — r < s1 — 1 A+ - A sp — tg, let |p| denote the number k of con-
ditions in p. For every conditional rule p € R, we prepare k ‘fresh’ function symbols
uf,..., U"; | not in F, called U symbols, in the transformation. We transform p into
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a set U(p) of k + 1 unconditional rewrite rules as follows:
U(p) = { 1 = Uf(s1, X1). UP(h1, X0) = Uf(s0, X3), -+, UR(tr X0) =7 }

where X; = Var(l, t1,...,t;—1). The system U(R) = |J,cz U(p) is an unconditional
TRS over the extended signature Fy = F U {Uf | p € R,1 <1 < |p|}.

Note that the definition of U is essentially equivalent to that in [21,23].

An unraveling U is simulation-sound (simulation-preserving and simulation-
complete, respectively) for a DCTRS R over F if the following holds: for all s and t €
T(F, V), s LR t if (‘only if” and ‘iff’, respectively) s LU(R) t. Note that simulation-
preservingness is a necessary condition of being unravelings. Roughly speaking,
the computational equivalence is equivalent to the combination of simulation-
completeness and normal-form uniqueness. The unraveling U is not simulation-
sound for every DCTRS [22]. To avoid this difficulty of non-‘simulation-soundness’
of U, a restriction to the rewrite relations of the unraveled TRSs is shown in [23],
which is done by the context-sensitive condition given by the replacement map u
such that p(Uf) = {1} for every U/ in Definition 3.1. We denote the context-
sensitive TRS (U(R), 1) by Ues(R). We consider Ugs as an unraveling from CTRSs
to context-sensitive TRSs.

Theorem 3.2 ([23]) For every DCTRS R over F, = = LUCS(R) in T(F,V).

3.2 Call-by-Value Fvaluation

To adapt computation of DCTRSs to call-by-value evaluation of functional pro-
grams, we define an ‘innermost-like’ reduction of DCTRSs, called operationally
innermost reduction. This notion removes the context-sensitivity for simulation-
soundness from the corresponding reduction.

For a binary relation — on terms, the binary relation ' is defined as { (s, 1) |
s 5 t,t € NF_, } where NF_, is the set of normal forms with respect to —. Let
R be an OP-SN DCTRS. The n-level operationally innermost reduction WR is
(n+1),i R — (n),i R U { (C[ZULC[TU]) ‘ [ —
r<s — A8y — by € R, Ran(o) C NFWR,W. ;0 W'R t;oc }. The

operationally innermost reduction —R of R is defined as (J; iR Note that
= 7)1

defined as follows: Wik~ 0, and

if R is a TRS, then the operationally innermost reduction of R is equivalent to
the ordinary innermost reduction. Note that the ordinary innermost reduction is
not well-defined for every CTRS [6]. However, both the ordinary and operationally
innermost reductions of OP-SN CTRSs are well-defined.

For OP-SN DCTRSs, Theorem 3.2 holds for —R and Uee(R)"

Theorem 3.3 For every OP-SN DCTRS R over F, —?»R = ’?)UCS(R) in T(F,V).

The proof of Theorem 3.3 follows the proof of Theorem 3.2 (see the appendix of
[17]). The context-sensitive constraint is not necessary for the innermost reduction.

Theorem 3.4 For every DCTRS R over F, _T’U(R) = _?)UCS(R) in T(F,V).
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Proof. It is clear that —?U(R) 2 ‘?’UCS(R) in 7(F,V). It follows from the notion
of innermost and context-sensitive reductions that for a term reachable from terms
in T(F,V), every term in any irreducible positions determined by the replacement
map is a normal form. Thus, “UR) € TULR) in 7(F,V), and hence %U(R) C
* .

U (R) I T(F,V). O

According to Theorem 3.4, when evaluating terms by innermost reductions of
Ues(R), we can treat U(R) without the context-sensitive constraint determined by U.
For OP-SN DCTRSs, we have the following simulation-completeness.

Corollary 3.5 For every OP-SN DCTRS R over F, —T>R = %U(R) in T(F,V).

3.8  Applying Completion to Unraveled TRSs

In this subsection, we apply the completion procedure to the unraveled TRSs of
CTRSs in order to transform them into convergent TRSs that are computationally
equivalent to the CTRSs.

First, we introduce the Knuth-Bendix completion procedure [10,25]. Since we
add an automated post-process into the inversion compiler, we here use the auto-
mated procedure instead of the ordinary completion based on inference rules [2].

Definition 3.6 Let F be a finite set of equations over F, and > be a reduction
order. Let Eqg = E, R = () and 7 = 0, we apply the following steps:

1. (ORIENTATION) select s ~ t € Ej;) such that s >~ ¢;
2. (COMPOSITION) R’ := {l =1/ |l =1 € Ry, 7 —?JRU)U{S_%} s
3. (DEDUCTION) E' := (E) \ {s = t}) U CP({s — t}, R' U {s — t});
4. (COLLAPSE) R(jy1) :={s =t} U{l =7 |l —rc Rl 4s};
5. (SIMPLIFICATION & DELETION)
* | * |

E(i+1) — {S” ~ I d~te EI,SI _i).R(iH) " £ <1_R(i+1) t };

6. if 1) # 0 then i := i+ 1 and go to step 1.

Note that | J s if there are some C| | and € such that I = C[sf]. Note that the
procedure does not always halt. Suppose that the procedure halts successfully at
i = k (hence E(xy = 0). Then, Ry is convergent, and Ry, satisfies <, = &g [2].
Note that when there is no rule to select at the ORIENTATION step, the procedure
halts in failure.

The usual purpose of the completion is to generate TRSs that are equivalent to
given equation sets. In contrast to the usual purpose, we would like the completion
to transform unraveled TRSs U(R) into convergent TRSs as executable programs
that are computationally equivalent to the original CTRSs R. For this reason, we
start the completion procedure from (CP(U(R)),{l — r € UR) | Al' — ' €
U(R),l 91U }) where U(R) C ». Moreover, consistency of the normal forms of
U(R) (that is, they are also normal forms of the modified system) is necessary for
preserving computational equivalence of R. For this requirement, we add the side
condition ‘root(s) is a U symbol’ to the ORIENTATION step:

1. (ORrIENTATION') select s ~ t € E;y such that s =t and root(s) is a U symbol;
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Due to the side condition of the ORIENTATION step, and the basic character of the
completion procedure [2], the completion procedure produces convergent TRSs that
are computationally equivalent to the input TRSs.

Theorem 3.7 Let R be an OP-SN DCTRS over F, and > be a reduction order such
that U(R) C . Let Ey = CP(U(R)), Ry={l—r € U(R) | Al' > r e UR),IJU'},
and R’ be a TRS obtained by the completion procedure from (Ey, Ry) with . Then,
(1) R is convergent and (2) i’I!U(R) = S in T(F,V).

Proof. It follows from the side condition ‘root(s) is a U symbol’ of the ORIEN-
TATION that NFyp)(F,V) = NFp(F,V). It also follows from the correctness of
the completion (Theorem 7.3.5 in [2]) that R’ is convergent and i>CP(U( R)UU(R) S

*

S p - <. Let - ={(s,?) | s,t € T(F,V), s i>!1—‘c th and — = {(s,t) | s,t €
T(F,V), s i>!R/ t}. Then, we have % C %, confluence of - termination of -
and NF| = NF5 where NF'; is the set of normal forms with respect to —. There-

fore, it follows from Theorem 3.3 in [26] that % = % in 7(F,V), and hence =%
= 5L in T(F,V). O

Note that (2) implies NFy(r)(F,V) = NFr/(F,V).

As we have already described, we would like to modify systems on a call-by-value
interpretation. The innermost reduction is necessary for modeling some primitive
functions used in some examples of program inversion (Rg, in Subsection 4.2).
Since such TRSs are not confluent but innermost-confluent, the completion proce-
dure possibly fails in modifying those TRSs. To solve this problem and to obtain
innermost-convergent TRSs instead of convergent TRSs, we show an initial setting
of the completion to unraveled TRSs.

Theorem 3.8 Let R be an OP-SN DCTRS over F, and > be a reduction order such
that U(R) C ». Let Eg = CP.(U(R)), Ro={l —r € U(R) | Al' = r € UR),IJU'},
and R’ be a TRS obtained by the completion procedure from (Ey, Ry) with . Then,
(1) R is innermost-convergent and (2) %ﬁU(R) = —?>!}%, in T(F,V).

Proof. We here show the sketch of the proof. The full proof will be found in the
appendix of [17]. It follows from the side condition ‘root(s) is a U symbol’ of the
ORIENTATION that NFyg)(F,V) = NFr/(F,V). Following the correctness proof
of the ordinary completion (Section 7.3 and 7.4 in [2]), it can be shown that %U(R)
- % R % r and R’ is innermost-convergent. The remainder of the proof is similar
to the corresponding part of the proof of Theorem 3.7. a

Note that (2) implies NFy(r)(F,V) = NFr/(F,V).

The following condition is necessary for the completion procedure to halt
‘successfully’*: for every term s € 7(F,V), its normal form over F with respect
to the innermost reduction is unique, that is, for all normal forms t; and ty €
NFypy(F, V), if t1 ‘?_U(R) s %U(R) to, then ¢t; = t9. Note that if R is confluent,
then U(R) satisfies this property. If #; (T—U(R) s —?»U(R) to and t; # to, then the
added side condition ‘root(s) is a U symbol’ prevents ¢; and ¢5 from being joinable.

4 Notice that this condition is not sufficient for the procedure to halt; In other words, the procedure halts
(or keeps running) ‘unsuccessfully’ if the input system does not satisfy this condition.
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Example 3.9 Consider the non-convergent TRS U(Znv(R;)) in Section 1 again.
Given the lexicographic path order (LPO) >|po determined by the precedence >
with InvSnoc > U; > cons > nil > ( ), we obtain the following convergent and
non-overlapping TRS by the completion procedure (in 4 cycles):

InvSnoc((z::ys)) — Ui(InvSnoc(ys), z,ys),

[\
|

Ur({zs,y), z,ys) — ((z::xs),y), U1 (InvSnoc(nil), z, nil) — (nil, z)

The completion removes the rule InvSnoc(cons(y, nil)) — (nil,y) from U(Znv(R;))
and the resultant TRS Ry are non-overlapping. This removal is effective in trans-
lating the TRS into a functional program.

Unfortunately, the completion procedure does not always halt even if the inputs
are restricted to unraveled TRSs. For example, the completion does not halt for
the unraveled TRS obtained from Example 7.1.5 in [22] although there exists an
appropriate convergent TRS which is equivalent to the unraveled TRS.

3.4 Translation Back into Functional Programs

In this subsection, we informally discuss translations from convergent and non-
overlapping TRS Ry into functional programs in Standard ML. The translations
have not been automated yet but we believe that the automation is neither so
difficult nor so surprising. It is difficult to translate Znv(R;) or U(Znv(R1)) into
functional programs because deciding a priority of rewrite rules is difficult in gen-
eral. On the other hand, we do not have to consider such a priority for Ry that is
computationally equivalent to Znv(R;1) because Rz is not only confluent but also
non-overlapping.

The U symbols U/ introduced by the unraveling are often considered to express
let, if or case clauses in functional programming languages. In the rewrite rules
of Ry, the U symbol U; plays the role of a case clause as follows:

case InvSnoc( ys ) of (xs,y) => ( x::xs, y )
| InvSnoc( [1 ) => ([, y)

where InvSnoc( [] ) is not well-formed in the syntax of Standard ML. It is natural
to write this fragment by introducing the extra case clause for ys as follows:

case ys of [1 => ( [1, y)
| _ => (case InvSmnoc( ys ) of (xs,y) => ( x::xs, y ) )

Thus, we translate the TRS Ry into the following program:

fun InvSnoc( (x::ys) ) =
case ys of [1 => ( [1, x)
| _ => (case InvSnoc(ys) of (xs,y) => (x::xs,y) );

Other approaches to translations are possible. For example, we can consider U; as

the composition of if and let clauses or as a ‘local function’ defined in InvSnoc.

3.5  Completion with Termination Provers

In this subsection, we show an example where the completion consults with termi-
nation provers. This idea is firstly introduced in [28].
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Consider the following unraveled TRS:

InvSnocRev(nil

) — o),
InvSnocRev(y) — Uz (InvSnoc(y), y),
Y)

Ua((z, z),
Us({(z1),,y,2) — {(cons(z,x1))

In contrast to the case of InvSnoc, there is no LPO =5, with R3 C >~|50. Detecting
such a path-based reduction order (e.g., LPO and recursive path order) in advance
may be impossible or there might be no such path-based order. Thus, analyzing
the dependencies of defined symbols is necessary to prove the termination of Rs.

R3 = U(ITLU(Rl)) U
— Us(InvSnocRev(z2), z, y, 2),

To achieve this kind of analysis, we introduce termination provers to the com-
pletion procedure. We modify ORIENTATION, following the approach shown in [28]:

1. (ORIENTATION?) select s =t € E;y such that Ué':o RjyU{s — t} is terminat-
ing, and root(s) is a U symbol;

In the case of innermost reduction, it is enough to check innermost-termination of
U;:O R(jyU{s — t}. This setting enables us to employ existing termination provers
at each ORIENTATION step.

In this mechanism, the TRS Rj is transformed by the procedure (in 2 cycles)
into the following convergent and non-overlapping TRS:

InvSnocRev(v) — Uz (InvSnoc(v), v),
Ry U Uz ((w, z),v) — Us(Uz(InvSnoc(w), w), v, w, x),

Us((zs),v,w,x) — (cons(x,zs)), Us(InvSnoc(nil), z, nil) — (nil, z)

4 Completion as Post-Process in Program Inversion

In this section, we apply the unraveling U and the completion procedure to CTRSs
generated by the partial inversion compiler [20], that is, we apply the completion
as a post-process of U(Znwv(-)) to the unraveled TRSs. First, we briefly introduce
the feature of inverse systems for injective functions. Next, we show the results
of experiments by an implementation of the framework. We employ the partial
inversion Znv in [20] that generates a partial inverse CTRS from a pair of a given
constructor TRS and a specification that we do not describe in detail here. For
a defined symbol F', the defined symbol InvE introduced by Znwv represents a full
inverse of F'. We assume that a constructor TRS defines a main injective function,
and that the specification requires a full inverse of the main function.

4.1 Inverse CTRSs of Injective Functions

We first define injectivity of TRSs [18], and then give sufficient condition for input
constructor TRSs whose inverse CTRSs generated by Znv are convergent.

Definition 4.1 Let R be a convergent constructor TRS. A defined symbol F'
of R is called injective (with respect to normal forms) if the binary relation
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{((s1,-8n)st) | S15..o,8nt € NFR(F,V),F(s1,...,8,) —p t} is an injective
mapping. The TRS R is called injective (with respect to normal forms) if all of its
defined symbols are injective.

For example, the TRS R; in Section 1 is injective. Note that every injective TRS
is non-erasing [18].
The following defined symbol Reverse computes the reverses of given lists:
R Reverse(zs) — Rev(zs, nil), Rev(nil, ys) — ys,
4 =
Rev(cons(z, zs),ys) — Rev(xs, cons(z,ys))

The inverse TRS of the above TRS is generated as follows:
U(Znv(Ry)) ={---, InvRev(z) — Uy(InvRev(2), z), - -+ }.

Reverse is injective but Rev is not. Thus, R4 is not injective. In this case, the TRS
U(Znv(Ry)) is not terminating. For this reason, we restrict ourselves to injective
functions whose inverse TRSs are terminating. In [18], a sufficient condition has
been shown for the full inversion compiler in [19] to generate convergent inverse
CTRSs from injective TRSs. The condition is also effective for the partial inversion
compiler Znv [20].

Theorem 4.2 Let R be a non-erasing innermost-convergent constructor TRS. If F
E*DR is injective, then for all s, t1 and ty € NF 1,,(r)(F, V), t1 “U(Tnu(R)) InvF(s)
—U@Eno(R)) 2 implies t1 = ta. Suppose that for every rule F(us,...,uy) — r in R,
if 7 is not a variable, then the root symbol of r does not depend ® on F. Then, the
CTRS Inv(R) is OP-SN, and the TRS U(Znv(R)) is terminating.

The proof of Theorem 4.2 follows the proof of Theorem 4 in [18] (see the appendix of
[17]). Note that U(Znv(R)) is not always confluent even if Znv(R) is confluent. The
first claim in Theorem 4.2 shows that given an injective TRS R, U(Znv(R)) satisfies
the necessary condition (described above Example 3.9) for successful run of the
completion. When a constructor TRS R does not satisfy the condition in Theorem
4.2 for preserving termination, we directly check the (innermost-)termination of
U(Znv(R)). In other words, when R satisfies the second assumption in Theorem
4.2, we are free of the termination check of U(Znv(R)) that is less efficient than the
check of satisfying the second assumption.

4.2  Experiments

In this section, we report the results of applying an implementation of our approach
based on Theorem 3.8 and the ORIENTATION? step to several samples.

The implementation of the completion procedure is based on the ML programs
shown in [2]. In our implementation, we use the following weight w for equations:
w(s =~ t) = (size(s) + depth(s)) x 2+ (size(t) + depth(t)) where s > t, and size(u)
and depth(u) are the term-size and term-depth of u, respectively. The weight w is
one of weights that come from experience. At every ORIENTATION step, the im-
plementation selects an equation whose weight is the minimum in equations s ~ t

5 An n-ary symbol G of R depends on a symbol F if (G, F) is in the transitive closure of the relation
(@ F)IG() = ClF' ()] eR}
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such that (Uézo R(;)) U{s — t} is innermost terminating. The implementation is
written in Standard ML of New Jersey, and it was executed under OS Vine Linux
4.2, on an Intel Pentium 4 CPU at 3 GHz and 1 GByte of primary memory. The
implementation consults with AProVE 1.2 [4] by system call in SML/NJ as a ter-
mination prover at the ORIENTATIONS step that checks the innermost termination.
The implementation checks the innermost termination of input TRSs in advance.
The timeout for checking termination is 300 seconds in every call of the prover.

In [8], the results of the experiments for the inversion compiler LRinv [8,9]
running on 15 samples® are shown where LRinv succeeds in inverting all of the
examples. Those examples are written in the scheme script Gauche: 5 scripts on
‘list manipulation’ (snoc.fct, snocrev.fct, reverse.fct, and so on), 3 on ‘num-
ber manipulation’, 4 on ‘encoding and decoding’ (treelist.fct, and so on), and 2
on ‘printing and parsing’. The inverse TRSs of the scripts snoc.fct, snocrev.fct
and reverse.fct correspond to the TRSs U(Znv(Ry)), Rs and U(Znv(Ry)), re-
spectively. None of the constructor TRSs corresponding to the scripts reverse. fct,
unbin.fct, treepath.fct, pack.fct and pack-bin.fct are injective. The CTRSs
obtained by Znv from them are not OP-SN. We excluded those non-‘OP-SN’ exam-
ples from experiments.

In the examples, there is a special primitive operator du defined as follows:
du((z)) = (z,z), du({z,z)) = (x), and du({z,y)) = (z,y) if z # y. We encode this
operator as the following terminating TRS:

Du((z)) — (z, ), Du((z,y)) — EqChk(EQ(z,y)),
EqChk((z)) — (z), EqChk(EQ(z,y)) — (z,y), EQ(z,z) — (z)

Since Ry, has no overlay, Ry, is locally innermost-confluent, and hence, Ry, is
innermost-confluent [11]. Under the innermost reduction, the TRS can simulate
computation of du. The operator du is an inverse of itself [8,9]. Thus, the TRS
Ry, is also an inverse system of itself. For this reason, exceptionally, the inversion
compiler does not produce any rules of InvDup but introduces Du instead of InvDup.

Rdu =

Table 1 summarizes the results of the experiments for our approach running on
10 of the 15 examples previously mentioned, which are easily translated to TRSs” .
The second column labeled with ‘CR by [1]” shows whether the input TRS of the
example is in the class shown in [1], in which the corresponding inverse TRS is
orthogonal and thus confluent. In that case, the implemented procedure only checks
innermost-termination of the inverse TRS. The third column labeled with ‘SN by
Th. 4.2’ shows whether the input TRS satisfies the conditions in Theorem 4.2, that
is, the corresponding inverse TRSs are terminating. The fourth column shows the
results of completion (‘success v/, ‘fail’ or ‘timeout’) with the numbers of running
‘cycles’ in the sense of Definition 3.6. The numbers of cycles are equivalent to
times of applying ORIENTATION. As described above, the implementation checks
the innermost termination of input TRSs before the completion procedure starts.
Thus, we have the results ‘success (0 cycle) and 1 call of provers’. The sixth column

6 Unfortunately, the site shown in [8] is not accessible now. The examples are also described briefly as
functional programs in [9], and some of the detailed programs can be found in [9].

7 The detail of the experiments will be available from the following URL:
http://www.trs.cm.is.nagoya-u.ac.jp/repius/experiments/
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Table 1
the results of the experiments
CR SN by innermost CR&SN by completion
example by [1] | Th.4.2 result (cycles) ‘ call AProVE ‘ time ‘ —overlap
‘ du (primitive) H ‘ H v (0 cycle) ‘ 1 time ‘ 0.64 s ‘ ‘
snoc.fct v v (1 cycle) 2 times 2.12s Vv
snocrev.fct v v (2 cycles) 3 times 4.61s 4
double.fct v (1 cycle) 2 times 2.32's
mirror.fct v (2 cycles) 3 times 4.10s
zip.fct 4 v v (0 cycle) 1 time 1.04 s v
inc.fct v v (1 cycle) 2 times 2.53 s v
octbin.fct V4 4 v (0 cycle) 1 time 1.28 s V4
treelist.fct v timeout (0 cycle) | timeout at lst time | timeout —
print-sexp.fct v (6 cycles) 7 times 35.53 s Vv
print-xml.fct v (2 cycles) 3 times 14.02 s
’ treelist.fctf H { v H v (4 cycles) { 5 times { 40.92 s { ‘

TThe improved transformation [16] of U is applied instead of U.

shows the average time of 5 trials. The rightmost column shows whether or not the
resultant TRSs are non-overlapping (surd means the resultant is non-overlapping).
None of the resultant TRSs has overlay while part of them are overlapping.

In the experiments, the procedure failed in modifying treelist.fct because of
a timeout in pre-checking the innermost termination ®. For the intermediate CTRS
Rj5 generated from treelist.fct, the improvement of U shown in [16] is effective.
Note that the improvement proposed for the variant U’ of U is also applicable to
U where U’ shown in [3,20,19] is obtained by setting X; = Var(l,t1,...,ti—1) N
Var(r,t;, $i+1,tit1, - - -, Sk, tx) in Definition 3.1. U unravels one of the conditional
rules into 5 rules but the improved transformation U’ of U unravels the rule into
4. Surprisingly, the completion succeeds in modifying the TRS U'(Rs5) (see the
result on the bottom line of Table 1). Remark that in other examples, there is no
difference between applications of U and U’ to the inverse CTRSs.

We tried to prove by TTT [7] innermost-termination of U(Rj5) and U’(R5). The
results are the same with AProVE 1.2: ‘timeout’ and ‘success’, respectively. More-
over, AProVE 1.2 succeeded in proving termination of both U(Rs5) and U’(R5), and
TTT did not in either of those TRSs.

5 Comparison with Related Work

Completion procedures are used for solving word problems, for transforming equa-
tions to equivalent convergent systems, or for proving inductive theorems. As far as
we know, there is no application of completion to program modification, and there
is no program transformation based on unravelings in order to produce computa-
tionally equivalent systems. The method in this paper does not always succeed for
every confluent and OP-SN DCTRSs while the latest transformation [24] based on
Viry’s approach [27] always succeeds. Consider the example in Section 1 again. To
eliminate the unexpected normal form U; (Ui (Ui (InvSnoc(nil), c, nil), b, [c]), a, [b,c])
from the set of normal forms, the transformation in [24] is effective in the sense

8 The current ‘web interface’ version of AProVE succeeds in proving this innermost termination.
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of producing convergent systems. By the transformation, we obtain the following
convergent TRS instead of U(Znv(Ry)):

InvSnoc(cons(y, nil), z) — {(nil,y)},
InvSnoc(cons(x, ys), L) — InvSnoc(cons(z, ys), {InvSnoc(ys, L)}),

InvSnoc(cons(z, ys), {{zs,y)}) — {{cons(x, zs),y)},
InvSnoc({zs}, z) — {InvSnoc(zs, L)}, {{z}} — {z}

U{ec(z,..., {xi}, ..., zn) — {c(x1,...,2,)} | ¢ is & constructor, n > 1}

where { } and L are special function symbols not in the original signature. In
this system, the term InvSnoc([a,b,c], L) has a unique normal form {{[a,b],c)}.
However, it is difficult to translate the convergent but owerlapping TRS into a
functional program because the system contains special symbols { } and L and
overlapping rules.

On the other hand, the modified completion in this paper unexpectedly suc-
ceeded for all examples on program inversion we tried, except for functions that call
non-injective functions such as ones including accumulators. The resultant systems
of our method are not always non-overlapping (equivalently non-overlay for inner-
most reduction), while the results of [24] are always overlapping. One of our future
works is to find a subclass in which the completion halts successfully, and then to
compare this framework with the transformation [24] based on Viry’s approach [27].

The inversion compiler LRinv, the closest one to the method in this paper, has
been proposed for injective functions written in a functional language [8,5,9]. This
compiler translates source programs into programs in a grammar language, and
then inverts the grammar programs into inverse grammar programs. To eliminate
nondeterminism in the inverse programs, their compiler applies LR parsing to the
inverse programs. The classes for which LR parsing and the completion procedure
work successfully are not well known, which makes it difficult to compare LRinv
and our method. However, LRinv succeeds in generating inverse functions from
the scripts reverse.fct, unbin.fct, treepath.fct, pack.fct and pack-bin.fct
while the method in this paper is not applicable to those scripts. From this fact,
LRinv seems to be stronger than the method in this paper but there must be a
plenty of room on improving the principle of inversion used in the partial inversion
complier in [20]. As future work, we plan to extend the partial inversion compiler
for functions with accumulators such as Rev.
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Abstract

We present a transformation from a generalized form of left-linear TRSs, called quasi left-linear TRSs,
to TRSs such that outermost termination of the original TRS can be concluded from termination of the
transformed TRS. In this way we can apply state-of-the-art termination tools for automatically proving out-
ermost termination of any given quasi left-linear TRS. Experiments show that this works well for non-trivial
examples, some of which could not be automatically proven outermost terminating before. Therefore, our
aplfl)roach substantially increases the class of systems that can be shown outermost terminating automati-
cally.

1 Introduction

A lot of work has been done on automatically proving termination and innermost
termination. However, also termination with respect to the outermost strategy
makes sense. For instance, this is the standard strategy in the functional program-
ming language Haskell [10], and it can be specified in CafeOBJ [4] and Maude [2].
We will focus on the most general variant of the outermost strategy: reducing a
redex is always allowed if it is not a proper subterm of another redex. Termination
with respect to this strategy we shortly call outermost termination. This is different
from the approaches for proving termination of Haskell presented in [7,15], where
termination is only proven for a specific set of terms (ground instantiations of a
so-called start term) and not for every possible term. Furthermore, the language

I Email: M.Raffelsieper@tue.nl
2 Email: H.ZantemaQtue.nl
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Haskell does not allow overlapping rules, i.e., there is at most one rule applicable
for every term.

Let’s consider the following example. The infinite list 0: 1 :2:3:--- can be
generated by applying the non-terminating rule

from(x) — z: from(s(z))

to the start term from(0). If we want to check for overflow, e.g., numbers should
not be n or higher, we could add the rule

s"(x) : xs — overflow.

Now for sure the TRS remains non-terminating since it still contains the first non-
terminating rule. But we expect the combined system to be outermost terminating.
This is the kind of examples for which we want to prove outermost termination
automatically.

Until now Cariboo [9] was the only tool having facilities for proving outermost
termination. Its approach is a stand alone one, which does not make use of the
huge effort of the last years to improve the power of termination tools. For making
use of the impressive power of termination tools, the natural approach is to make
a transformation from TRSs to TRSs such that the modified termination property
(in our case outermost termination) of the original TRS can be concluded from
termination of the transformed TRS. In the past, a similar approach was successfully
applied to context-sensitive termination [5] and liveness problems [8].

The Termination Problem DataBase (TPDB) [14] already contains 6 outermost
examples that really require a consideration of the outermost strategy. If no strat-
egy is regarded, then all of these examples are non-terminating. For these examples,
both Cariboo and our presented transformation together with a termination prover
for term rewrite systems without a strategy can prove outermost termination. As
will be shown later, using the presented transformation we can prove outermost
termination for systems where Cariboo fails to do so. Therefore, this approach
increases the number of term rewrite systems that can be shown outermost ter-
minating. However, it is not the case that it supersedes Cariboo: There are also
examples where Cariboo succeeds while the transformed TRS cannot be shown
terminating by any of the termination provers that we tried.

The presented approach deals with ground outermost termination. We will
see that when fixing the signature there may be a difference between outermost
termination and ground outermost termination, but by adding fresh constants there
is no difference any more. Therefore it is not a restriction to focus on ground
outermost termination.

The crucial ingredient of our transformation is anti-matching: for L being a set
of terms such that it matches all terms that can be rewritten with the given TRS,
we need a set St such that any term matches with a term in Sy if and only if it
does not match with a term in L. It turns out that if all terms in L are linear, then
a finite set S}, satisfying this requirement can easily be constructed, while there are
sets L containing non-linear terms such that every set Sy, satisfying this property is
infinite. That’s why we restrict to the class of quasi left-linear TRSs, which are all
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TRSs where a left-hand side is an instance of a linear left-hand side. Clearly, this
class also includes all left-linear TRSs.

Based on this anti-matching we give a straightforward transformation 7' such
that every infinite outermost reduction with respect to any quasi left-linear TRS R
gives rise to an infinite T'(R)-reduction. We experimented with several variants of
the basic transformation and chose the most powerful one in our final definition of
the transformation.

This paper is structured as follows: After introducing the used notations in
Section 2, we present our transformation and prove soundness in Section 3. There,
we assume that we can construct a set of terms that match those terms not being
matched by a left-hand side. This problem of anti-matching is treated in Section 4,
which proves that our transformation can be applied automatically for quasi left-
linear TRSs. In Section 5 we give a short description of our implementation of the
transformation and present a number of examples. We conclude in Section 6.

2 Preliminaries

This section shall briefly introduce the notations used in this paper. For an intro-
duction of term rewriting see for example [1,16].

We consider the set 7(X,V) of all terms over a set V of variables and a finite,
non-empty set X of function symbols, called signature, where each f € 3 is associated
with a natural number called its arity. If the arity of f € ¥ isn € N, then we denote
this by arity(f) = n. Instead of T (X, () we also write 7 (), which we call the set
of ground terms. For a term ¢t € 7(X,V) we write V() to denote the set of variables
occurring in ¢. For a non-variable term ¢ = f(¢y,...,t,) we say that f is the root
of t, denoted by root(t). A term t € 7 (X,V) is called linear if every variable occurs
at most once in t; we write 733, (2, V) for the set of all linear terms in 7 (%, V).

A position of a term ¢t € T (X,V) is a sequence of natural numbers, the set of all
positions of a term ¢ is denoted Pos(t). The empty sequence is denoted as e. Such
a position 7 € Pos(t) identifies a subterm of ¢, which is written ¢|,. The term that
we get from replacing the subterm t|, by another term s € 7 (%, V) is denoted t[s|.

A substitution o : V — T(X,V) is written as 0 = {x1 := t1,...,%m = tm},
which denotes the mapping o(z) = = and o(x;) = ¢; for all x # z; and 1 < i < m.
The set of all substitutions over ¥ and V is denoted as SUB(X, V). The application
of a substitution o € SUB(X,V) to a term ¢t € 7(X,V) is denoted to and replaces
all variables by their corresponding terms. Such a term to is called an instance
of t. Two terms s,t € 7(X,V) are said to unify, if a unifier o € SUB(X, V) exists
such that so = to. A term s € 7(X,V) is said to match a term ¢t € 7(X,V), if a
substitution o € SUB(X, V) exists such that so = t.

A standard property relating linearity and unification is the following.

Lemma 2.1 Let t,u € T;in(X, V) be two linear terms with V(t) N V(u) = 0 that do
not unify. Then there is a position m € Pos(t) N Pos(u) such that t|; and u|, are
no variables and root(t|;) # root(u|).

Proof (Sketch). We refer to [16, Section 7.7], where the standard Martelli-
Montanari unification algorithm is given. For linear terms t,u € T (%, V) with
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V(t) N V(u) = () we have as invariant of the algorithm that every variable occurs at
most once. Thus, the only way to get the result fail is by having two terms that
have different root symbols. a

A Term Rewrite System (TRS) is a set R C 7(X%,V) x T(X,V), where instead
of (¢,r) € R we write £ — r € R. The set of left-hand sides of a TRS R is denoted
lhs(R) and is defined as lhs(R) = {¢ | { — r € R}. A TRS is called left-linear if ¢
is linear for all ¢ € lhs(R) and we call it quasi left-linear if every ¢ € lhs(R) is an
instance of a linear ¢’ € lhs(R). A term s € 7(X,V) rewrites to a term t € 7 (%, V)
with a rule £ — r € R at a position m € Pos(s), denoted by s —y_., t, iff there
exists a substitution o € SUB(X, V) such that s|; = ¢o and t = s[ro|,. The term
5| is called redex. Instead of s —/_,, r t we also write s =g t, s =rt, s =, or
s — t if the term rewrite system R and/or the position 7 are clear from the context.
If for a term s € 7 (X, V) and a position m € Pos(s) we have for all ¢t € T (32, V) that
s /Rrx t holds, then we also write s /g or s /7.

A term s € T(X,V) outermost rewrites to a term t € 7 (X,V) with a rule
¢ — r € R at a position m € Pos(s), denoted s ing_)mr t,iff s =/, t and for all
positions " € Pos(s) with 7 = ' 7" for some 7 € N* with 7" # € we have that
$ 7L>R,7r/~

A TRS R is called terminating (outermost terminating), iff there is no infinite
sequence t1,ta,t3,... € T(X,V) of terms with t; —p t;41 (¢ %R tiv1) for all i € N.
A TRS R is called ground terminating (outermost ground terminating), iff there
is no infinite sequence t1,ta,t3... € 7(X) of ground terms such that ¢; —p t;41
(t; Zrtivq) for all i € N.

The following example shows that outermost termination for arbitrary terms
may differ from outermost ground termination.

Example 2.2 Consider the following term rewrite system R over the signature
¥ = {f,a,b}:

f(a, ) — a f(x,a) — f(z,b)
R=( f(b,x) — a b — a
f(f(z,y),2) — a

For arbitrary terms we have the infinite outermost reduction
f(x,a) — f(z,b) — f(z,a) — ---

However, when instantiating = by any arbitrary ground term ¢ € 7 (X)), then one
of the three rules on the left is applicable at the root position. Hence, the reduction
f(t,b) — f(t,a) is no longer an outermost reduction. In fact, the above term rewrite
system is outermost ground terminating, as we will show later.

However, this difference only occurs when fixing the signature. It is easy to see
that by replacing variables in any infinite outermost reduction by fresh constants,
the result is an infinite outermost ground reduction. For quasi left-linear TRSs
adding one fresh constant suffices.
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3 The Transformation

The idea of the transformation is to only allow a reduction when a certain control
symbol down marks the current redex. After having reduced a term, the control
symbol is replaced by another control symbol up that is moved outwards. Only
when the root of the term is encountered, then the control symbol is replaced by
the down symbol again. In order to find the next outermost redex, the symbol down
may only descend into subterms when no left-hand side is applicable to the term.
For this purpose, we need a set .S such that its elements match exactly those terms
that are not matched by a left-hand side. For quasi left-linear TRSs such a set
always exists and can be constructed automatically.

Theorem 3.1 For a quasi left-linear TRS R, there exists a finite, computable, and
(up to variable renaming) unique set S C Tyyn (X, V) of linear terms such that for all
ground terms t € T(X) the two statements are equivalent:

e For all ¢ € lhs(R) and all T € SUB(X, V) we have t # (T,
e t=so for some s € S and some o € SUB(XZ, V).

The proof of this theorem is given in the following section. Using such a set, we
can now define the transformation formally.

Definition 3.2 Let R be a TRS over a signature X. Let S C 7(X,V) be such that
for all t € 7(X) we have that s € S and o € SUB(X, V) exist with so = ¢, iff for
all ¢ € lhs(R) and all 7 € SUB(Z,V) we have ¢7 # t. Choose four fresh unary
symbols top, up, down, block ¢ ¥, and let X! = {f7 | f € %, arity(f) > 0} be such
that ¥ N X% = (). The TRS T(R) over the signature ¥ U Xf U {top, up, down, block}
is defined to consist of the following rules:

e down(¢) — up(r), for all rules ¢ — r of R;
« top(up(x)) — top(down(x));

o down(f(t1,...,tn)) —  fi(block(t1),...,down(t;),...,block(t,)), for all
f(t1,...,ty) € Sand alli e {1,...,n};

e fi(block(z1),...,up(z;),...,block(z,)) — up(f(x1,...,2,)), for all f € ¥ and all
i€ {l1,...,n}, where arity(f) = n and x1,...,x, are distinct variables.

Because of Theorem 3.1, this transformation can be performed automatically
for any finite quasi left-linear TRS. For an infinite TRS R, we clearly have that
T(R) is infinite, too. The TRS T'(R) can also become infinite for a TRS R that
is not quasi left-linear, since then any set S satisfying the required property of the
above definition might be infinite. This is demonstrated in the following section.
However, the soundness of the transformation does not depend on this restriction.

In the transformation, we introduce the already mentioned symbols down and
up to control the position of the next redex. The symbol top is used to denote the
root position of the term, where the search of the next redex has to turn downwards
again. The last of these fresh control symbols is the symbol block. Its purpose is
to disallow evaluations where an up symbol appears at the root position of a term
without having applied a rule of the form down(¢) — up(r). Furthermore, we create
a new marked symbol f? for every function symbol f of the original rewrite system,
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having the same arity as f. This allows to use different interpretations for these
symbols in the often used reduction pairs. Thus, it can be distinguished whether a
symbol is above or below one of the control symbols.

An outermost rewrite step can be modelled by a sequence of steps in the trans-
formed system. This is shown in the following lemma.

Lemma 3.3 Let R be a TRS over a signature ¥, let u,v € T(X).
Ifu >R v, then down(u) _);(R) up(v).

Proof. Let u,v € T(X) be two ground terms, let u ggﬂmr v for some rule £ — r €
R and some position m € Pos(u). Induction is done over the length of 7.

In case m = ¢, we directly have the rule down(¢) — up(r) € T(R), which shows
the desired property.

Otherwise, let m = i 7’ for some 7’ € Pos(u|;) and let uw = f(u1,...,u,). Hence,
u /e and v = fug, ..., Ui—1,Vi Uit1,- .., Uy) for some v; € T(X). Since u is a
ground term, we have ur = u and ur = u # {'o for all 7,0 € SUB(X,V) and all ¢’ €
lhs(R). Hence, from the requirement in Definition 4.1 we get that there is a term s €
S and a substitution o € SUB(X) such that so = u. Let s = f(s1,...,8,). Then a
rule down(f(s1,...,8,)) — fi(block(sy),...,down(s;),...,block(s,)) € T(R) exists
that is applicable to the term down(u) and therefore gives the reduction down(u) =
down(f(u1,...,uy)) — fi(block(uy),...,down(u;),...,block(uy,)). For the subterm
u; we have u; i’ZHr,ﬂ'/ v;. Here, the induction hypothesis is applicable and yields
a reduction down(u;) —7* up(v;). When applying this together with the rule
fi(block(z1),...,up(x;), ..., block(z,)) — up(f(x1,...,x,)) € T(R) the desired re-
sult can be shown:

down(u) = down(f(uy,...,u,)) — fi(block(uy),...,down(u;),...,block(uy,))
—+ fi(block(uy),...,up(v;), ..., block(uy,))
— up(f(ur, ..y Uim1, Uiy Ui 1, -« - Up)) = up(v)
0O

Using the above lemma we can prove the main theorem which shows that the
presented transformation is sound, i.e., from the termination of the transformed
TRS the outermost ground termination of the original TRS can be concluded.

Theorem 3.4 Let R be a TRS over a signature ¥ for which T(R) is terminating.
Then R is outermost ground terminating.

Proof. Assume R is not outermost ground terminating. Then there is an infinite
outermost reduction t; g ts —p ... for some ground terms tq, g, ... € 7(X). For
each t; % g t;y1 we have that down(t;) H;(R) up(ti+1) by Lemma 3.3. Due to the

rule top(up(z)) — top(down(x)) we obtain an infinite reduction in the transformed
system T'(R),

top(down(t1)) —>;(R) top(up(t2)) —r1(r) top(down(tz)) —>JTF(R) e

contradicting termination of T'(R). ad
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Let us now remark on the situation when (arbitrary) outermost termination shall
be considered, not just outermost ground termination. For a quasi left-linear TRS R
over the signature ¥ we create a new TRS R’ which has the same rules as R, but now
is defined to be over the signature ¥’ = ¥ U{c}, where ¢ ¢ ¥ is a fresh constant (i.e.,
it has arity 0). Then an infinite reduction ¢; Lpto Bpts Sp ... for some terms
t1,to,13,... € T(E,V) implies that ti0 i>R/ too2 i>R/ t303 i>R/ ... is an infinite
reduction of ground terms t;0; € 7 (X) for substitutions o; = {x :=c | x € V(t;)}
for ¢+ € N. This holds, since no left-hand side of the rewrite system R’ matches a
subterm of ¢;0; which R does not match, because no left-hand side of R’ contains the
constant c. In the other direction, one can replace a symbol ¢ in an infinite reduction
w.r.t. R by a fresh variable, giving an infinite reduction w.r.t. R. Therefore, we
have that the term rewrite system R is outermost terminating, iff the term rewrite
system R’ is outermost ground terminating. Such a TRS R’ can then be handled
by our transformation to show outermost termination of R.

4 Anti-matching

We consider a term rewrite system R and consider a set L matching all terms that
can be rewritten by R, for example L = lhs(R). For our transformation of this
term rewrite system we have to find a set Sy, of terms that describe the terms which
cannot be rewritten by R. Clearly, this is only depending on the left-hand sides.
Rewriting w.r.t. a TRS is done by matching the left-hand sides to some other terms.
Thus, we want to find a set St of terms that match those ground terms not matched
by the terms contained in L. One can imagine that there are several possible sets
that satisfy this condition. Our goal is to select the smallest such set and to be able
to construct it finitely when this is possible.

This section presents the general problem of finding a set of terms that match
the terms not matched by some terms contained in another set. Only at the end of
this section we will restrict ourselves to the case of linear terms, where we will see
that for this restriction the set is finite and can be computed.

The problem of finding a set of terms that describe the complement of a set of
terms is similar to the problem considered by Lassez and Marriot [13], where an
explicit representation of a set is being searched that is described using counter ex-
amples. But their focus is on machine learning, therefore it is hard to directly apply
their results. We also want to mention the concept of anti-patterns as introduced
in [11]. This is more general since it allows to introduce negation of patterns at
any position in a term, while we are only interested in the negation of a complete
pattern. However, this work is not applicable here, since we want a representation
of a set that does not match a given term, while an anti-pattern matching problem
is to decide whether an anti-pattern matches a single ground term.

Below, we first define a set S of terms that satisfy the desired property. This set
is usually infinite and contains quite a number of redundant terms, i.e., terms that
are already matched by other terms contained in S7. Thus, we define another set
S, that consists only of the minimal elements of S} w.r.t. an order that expresses
whether one term matches the other.
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Definition 4.1 Let L C 7(X,V) be a set of terms. On terms we define the preorder
< by
t<u <= do:to=u

which induces the definition of its strict part to be
t<u <= t<uA-(u<t).

Now Sy, is defined to be the set of minimal elements of the set of terms that do not
unify with elements of L, i.e.,

S, ={teT(S,V)| Al e L,o,7€SUBL,V): lo=tr}
Sp={tes] | Aue S) tu <t}

One might wonder why unification is considered, while term rewriting is con-
cerned with matching. This becomes clear when formulating what kind of terms
we are looking for: the set of terms that match those terms which are not matched
by left-hand sides. This means we have to consider two matchings at the same
time, when assuming that the set of variables are disjoint then this gives rise to a
unification problem.

As a next step we show that the set S} is closed under substitution. This is of
interest, since we want to consider the ground terms that are matched by a term
contained in S} . Thus, it should be the case that every instantiation of a term from
S} is also contained in S, such that especially this holds for ground instances.

Lemma 4.2 {sc € T(X,V) | s € S},0 € SUB(X,V)} = 5.

Proof. “O”: Holds trivially for o = id.

“C”: Let s € S;,0 € SUB(X,V). Then so € {soc € T(%,V) | s € S},0 €
SUB(X,V)}. We have that lo’ # st/ for all £ € L and all substitutions o/, 7’ €
SUB(3,V). Therefore, especially £o’ # so7’ holds for all substitutions o’,7" €
SUB(X, V). Hence, so € S7. O

The set S, is derived from the set S} by taking only the minimal elements of
S} w.r.t. the order >. In order to be able to show that these minimal elements
exist, we have to first show that this order is well-founded, i.e., there are no infinite
descending chains.

Lemma 4.3 The relation > from Definition 4.1 is well-founded.

Proof. Assume, > was not well-founded, i.e., there exists an infinite sequence t1 >
to > ... for some t1,to,... € T(X,V). Thus, for every i > 1 we have t;_17 # t; for
all 7 € SUB(X,V) and substitutions o; € SUB(X, V) exist such that t,_1 = t;0;.
For a term ¢ € 7(X,V), let #x(t) € N denote the number of symbols from %
contained in ¢ and let #2xp(t) € N denote the number of variables that occur more
than once in ¢. If for a variable z; € V(t;) we have o;(z;) ¢ V, then we see that
#x(ti—1) = #x(tio;) >N #x(t;). Otherwise, we have o;(x) € V for all z € V. Then
there must be two variables x;, y; € V(t;) with z; # y; and o;(x;) = 04(y;) € V, since
otherwise we could define 7 = {y := z | 0y(x) = y} and would get ¢;_17 = ¢;. Hence,
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in this case we see that #x(t;i—1) = #x(t;) and #axp(ti—1) >N #oxv(t;). Because
the lexicographic combination of two well-founded orders is also well-founded, we
have a contradiction since we have constructed an infinite descending chain for the
lexicographic combination of > on #x and >y on Faxy. O

When removing larger elements from a set w.r.t. <, then all terms that are
matched by removed terms are still being matched by some term in the set. This is
proven in the next lemma and will be used to show that S still matches the same
terms as S7.

Lemma 4.4 {uo |u € U,o € SUB(X,V)} ={uoc | u e UUU',0 € SUB(X,V)} for
every U,U' CT (X, V) withU' ={u' | ue U :u<u}.

Proof. “C”: trivial, since U CU UU".

“27: Let v e UUU', let o' € SUB(X, V). If v’ € U, then the property trivially
holds. So let v/ € U'\ U. Then a u € U exists such that u < 4/, i.e., there is a
substitution 7 € SUB(X,V) such that ' = ur. Hence, u'0’ = uro’ € {uo | u €
U,o € SUB(%,V)}. a

For the set S7 it should be intuitively clear that all terms that are not matched
by a term contained in L are matched by a term in that set. Using the above lemma,
we can now show that this already holds for the set Sy,

Lemma 4.5 {sc € T(X,V) | s € Sp,0 € SUB(X,V)} = 5.

Proof. “C”: Since Sf, C S/L, this holds due to Lemma 4.2.
“D”: Since > is well-founded as shown in Lemma 4.3, the existence of the min-
imal elements in Sy, is guaranteed. Thus, Lemma 4.4 shows the desired property.O

This allows us to prove that the ground terms matched by St are indeed those
terms that are not matched by the set L.

Lemma 4.6 7(X)\ {fo € T(X) | £ € L,oc € SUB(Z,V)} = {sc € T(¥) | s €
Sr,o € SUB(X,V)}.

Proof. This lemma is shown in two steps: First it is proven that {lo € T(X) | £ €
L,o € SUB(X,V)}N{sc € T(X)|s € Sp,0 € SUB(X,V)} =0 (showing “2”), and
in the second step it is shown that 7(X) = {fo € T(X) | £ € L,o € SUB(X,V)} U
{sc € T(Y)|se€ Sr,0 € SUB(X,V)} (showing “C”).

For the first step, let t € {lo € T(X) | ¢ € L,0 € SUB(E,V)}N{sc € T(X) | s €
Sp,o0 € SUB(X,V)}. Thus, there exist £ € L and o, € SUB(X, V) such that ¢t = loy
and there exist s € S;, C S7 and o5 € SUB(X, V) such that ¢t = so,. Putting this
together gives foy =t = so,, which is a contradiction to the definition of S} .

To show the second step, we observe that clearly {¢foc € T(X) | ¢ € L,o €
SUB(Z,V)}U{sc € T(X) | s € Sp,o0 € SUB(X,V)} € 7(X). So it remains to
be shown that {¢oc € T(X) | ¢ € Lo € SUB(X,V)}U{soc € T(X) | s € S;,0 €
SUB(X2,V)} D T(X). For that purpose, let ¢t € T(X) be an arbitrary ground term.
In case there exist £ € L and oy € SUB(X,V) such that oy = ¢ the property has
been shown. Otherwise, we may assume that for all £ € L and all substitutions
o € SUB(X,V) that satisfy fo € T(X) we have fo # ¢. Since ¢ is a ground term,
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V(t) = 0 holds. This means that for any substitution 7 € SUB(X,V) we have
tT = t. Furthermore, for every term ¢’ € 7(X,V) with V(t') # () it holds that ¢ # ¢/
which allows to conclude that ¢ # fo’ for all substitutions ¢/ € SUB(X,V) where
V(bo') # 0. Putting this together, we get that for all substitutions o, 7 € SUB(X, V)
it holds that fo # t7 = t. From the definition of S} we get ¢ € S}, and hence
te{sceT(X)|seSL,0eSUB(X,V)} by Lemma 4.5. O

In the following we restrict ourselves to sets L that only contain linear terms. It
should be observed that this also covers the case of a quasi left-linear TRS R: for
such a TRS we can define L to be the set of all linear left-hand sides of R and have
that L still matches the same terms as Ths(R), due to Lemma 4.4. We want to show
that for a linear set L the set Sy, is finite. For that purpose we need the depth of a
term, which is defined as follows.

Definition 4.7 The depth of a term ¢ € 7(3,V) is defined as depth(t) =0ift € V
and depth(f(¢1,...,t,)) = 1 4+ max{depth(t1),...,depth(t,)} for t = f(t1,...,tn).

The depth of a finite set T C T (X, V) is defined as the maximum over the depths
of the terms it contains, i.e., depth(7") = max{depth(¢) | t € T'}.

Then, we have that for example depth(f(z,y)) = 1, while depth(f(a,y)) = 2 for
the signature ¥ = {f,a}. Using this notion of depth, we can now prove the following
lemma. It provides an upper bound on the depth of the terms contained in Sy, for
sets L containing only linear terms.

Lemma 4.8 For a set L C T;,(2,V) of linear terms we have that depth(s) <
depth(L) for all s € St.

Proof. Assume, there exists a s € S;, C S} with depth(s) > depth(L). Thus, we
have that so # ¢7 for all £ € L and all substitutions 0,7 € SUB(X,V). W.lo.g. we
may assume that V(s) and V(¢) are disjoint for all £ € L. Lemma 2.1 shows that for
every £ € L a position 7, € Pos(¢) N Pos(s) exists such that root(¢|,) # root(s|,).
By definition of depth(L), we have |m| < depth(L). Let truncp(s) € T(3,V)
denote the term that is derived from s by replacing all subterms at positions of
length depth(L) by fresh variables. By construction, we have depth(truncy(s)) =
depth(L), truncr(s) < s, and root(s|;) = root(truncr(s)|) for all @ € Pos(s)
with |7| < depth(L). Hence, root(truncr,(s)|) = root(s|) # root({|r,), i.e., for all
substitutions o,7 € SUB(X, V) we have truncr(s)o # ¢r. Thus trunc(s) € S},
which contradicts the minimality of s. |

Furthermore, we only have to consider linear terms for the set S, if we are only
interested in the matching of ground terms.

Lemma 4.9 For a set L C Ty (X, V) of linear terms, we have for every t € T(X)N
S7 that s € S N Thin(2,V) and o € SUB(X, V) exist with so = t.

Proof. Let t € 7(X) N S}. Then for all £ € L and all 7 € SUB(X, V) we have that
¢r #t. Since T (X) C Tjin (%, V), we get from Lemma 2.1 that a mp € Pos(€) N Pos(t)
exists with root(t|r,) # root(¢|r,).

There exist s € S;, and o € SUB(X, V) with so = ¢, due to Lemma 4.5. In case
s € Tiin(X2, V) nothing has to be proven.
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Otherwise, we start with the term lin(s) that is created from s by replacing
every occurrence of a variable by a fresh variable, thereby generating a linear term.
Then clearly, there is a substitution ¢’ such that lin(s)o’ = t. If there is an ' € L
and a substitution 7 € SUB(X, V) such that lin(s)7 = ¢'7 (where we assume that
V(lin(s)) N V(¢') = (), then we replace the variable at a position 7 that is a prefix
of mp by f(x1,...,2,), where f = root(t|r,), arity(f) = n, and the x; are fresh
variables. This variable must exist, otherwise ' would match ¢. This process is
repeated until there are no more ¢ that unify with the thereby constructed term s’.
By construction s’ is linear and does not unify with any term from L. Furthermore,
this term is minimal in S} w.r.t. >, therefore s’ € Sy, which shows our claim. O

From the above lemmas, we can give the following construction of a set S for a set
L of linear terms that satisfies the requirement of Definition 3.2. Let d = depth(L)
be the maximal depth of terms occurring in L. Start by S’ being the finite set of
all linear terms up to renaming of variables of depth < d. Next remove all terms
from S’ that unify with L. Finally initialize S to S’ and remove all non-minimal
elements t from S, i.e., every term t for which a u € S exists with u < ¢ is removed
from S. From Lemmas 4.8 and 4.9 we then know that all ground terms that are
not matched by L are matched by S.

Using this construction and the above lemmas, we can now show Theorem 3.1.
It states that for a quasi left-linear TRS R a finite, computable, and unique set S
exists that matches exactly those terms that lhs(R) does not match. Please note
that we only have to consider a linear set L that matches all ground terms matched
by lhs(R), as we already observed above.

Proof of Theorem 3.1. Let L C Ty, (X, V) be the finite set of linear left-hand sides
of R. Then L matches all terms that can be rewritten by R due to Lemma 4.4. Let
S, C T(X,V) be defined as given in Definition 4.1. As we can see from Lemma 4.6,
we have that for all ground terms ¢ € 7 (X) it holds that t € {soc € T(X) | s € Sp,0 €
SUBE, W)} iff t ¢ {oc € T(X) | £ € L,o € SUB(X,V)}. From Lemma 4.8 we get
that S, is finite, since, up to variable renaming, only finitely many terms whose
depth is less than or equal to depth(L) exist for a finite signature . Lemma 4.9
shows that S = Sp N7, (X, V), and finally the sketched construction shows that the
set S is computable and unique since the minimal elements w.r.t. > are unique. O

Finally, we want to further analyze the case of TRSs that are not quasi left-
linear. For this purpose, let L = {f(z,z)} be the left-hand sides of a TRS over the
signature ¥ = {f,g}. Then for every n € N we have f(z,g"(x)) € S7. Furthermore,
there is no term s # f(z,g"(z)) € S} such that so = f(z,g"(x)), which shows that
S, is infinite. To show that this is not due to choosing the set Sy, we prove the
proposition below, stating that Sy, is the smallest set that has the desired property.

Proposition 4.10 Let L C T(X,V). For every S C T(X,V) that satisfies YVt €
T(X):(3s€ S,0 e SUB(X,V) :t =s0) <= —(IH € L,7 € SUB(X,V) : t = L)
we have Sp, C S C S, where we disregard variable renamings.

Proof. The inclusion S C S} can be seen directly from the definition of S7 .
Assume, there is such a set S C 7(X,V) with S, € S. Then, there is a term
s’ € St such that s’ ¢ S. Furthermore, it must be the case that {so | s € S,0 €
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SUB(X,V)} = {so | s € Sp,0 € SUB(X,V)} = S}, i.e., there must be an s € S
and a o € SUB(X, V) such that so = s’. This implies that s < s’. In case we also
have s’ < s, then s’ € S, contradicting our assumption. But otherwise s < s’ holds,
which contradicts the minimality of s’. O

As a consequence of Proposition 4.10 and the previously observed fact that for
L = {f(z,z)} it holds that S D {f(x,g"(x)) | n € N}, we conclude that any set S
that matches those terms which are not matched by a term in L must be infinite,
since already Sy, C S is infinite.

5 Implementation and Experiments

We have implemented the transformation as described in the previous sections. Even
though the construction of the set Sy, of terms that match those terms not matched
by the set L of left-hand sides of the input term rewrite system can certainly be
improved, the complete transformation only takes a neglegible amount of time for
all of the following examples.

Our implementation allows for a number of different variants of the transforma-
tion to be used. In Section 3 only one of these was presented, this proved to be the
most effective one in our experiments. In detail, one can chose whether or not to
add the blocking symbol when the symbol down descends into a term that is not
matched by a left-hand side of the original term rewrite system. Also, one can chose
whether the symbols upon descending should be rewritten to a marked version of
that symbol. As a last option, one can also use a modified version of the rules for
the up symbol, however this modification proved itself not to be effective.

The transformed system was then used as input for the termination provers
Jambox [3], TTT2 [12], and AProVE [6], which were the strongest tools of the
2007 termination competition in the TRS category [14]. The reason why we used
multiple tools was that the transformation turned out to produce rewrite systems
for which sometimes one tool succeeded in proving termination of the transformed
TRS, while at least one of the other tools was unable to do so.

Below we present some examples. First, we want to show that Example 2.2
really is outermost ground terminating, as claimed above. When this example is
transformed, the following TRS is created:

Example 5.1 (Transformation of Example 2.2)

top(up(x)) — top(down(z)) down(b) — up(a)
T(R) = down(f(z,a)) — up(f(z,b)) down(f(a, z)) — up(a)
fi(block(z),up(y)) — up(f(z,y))  down(f(b,x)) — up(a)
fi(up(z), block(y)) — up(f(z,y))  down(f(f(z,y),2)) — up(a)

It can be observed that in the transformed TRS there are no rules that allow
the symbol down to descend into a term. This holds because we have S; = {a},
such that no rules are created for it. The transformed TRS can easily be shown
terminating within a short amount of time by all of the considered tools. For the
next example, this is not the case anymore.
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Example 5.2
Ry — { a — f(a)

Both AProVE and TTT2 can show termination of T'(Rz), while Jambox fails to
do so. What is also interesting is that TTT2 uses RFC Match Bounds to show this,
while AProVE uses only Dependency Pairs and a large number of rewriting steps,
but is able to find this proof much faster than TTT2.

The next example proved to be rather difficult for all of the considered tools. It
is the example from the introduction for the case n = 1.

Example 5.3

from(z) — x:from(s(z))
R3 =
s(z):xs — overflow

This example could only be proven terminating by the tool Jambox, both
AProVE and TTT?2 failed. However, the techniques used by Jambox to prove ter-
mination, namely semantic labelling and polynomial orders, are also implemented
in both of the other tools. Hence, this clearly shows that proving termination is
also strongly dependent on heuristics and/or search encodings.

In the examples that we considered so far, we had that always the right-hand
side of the rule that caused the outermost ground termination was a ground term.
This is different in the next example.

Example 5.4
r-{ e
g(b) — f(g(b))
This transformed TRS can be shown terminating by the tools TTT2 and Jam-
box, while AProVE fails.

In the example below, it is the case that the right-hand sides are not always
either growing or detecting a term that has grown too large.

Example 5.5
f(f(z,y),z) — ¢
Ry =4 f(z,f(y,2) — f(f(z,9),2)
a —  f(a,a)

The transformed TRS T'(R5) can be shown terminating by both AProVE and
Jambox, while for this example TTT2 fails to show termination. If the first rule
is changed to f(f(z,y),z) — f(c,z), then only AProVE can show the transformed
TRS to be terminating.

Next, we want to consider the 6 examples contained in the Termination Problem
DataBase (TPDB) [14] that require outermost termination analysis. All of these ex-
amples can be proven outermost ground terminating by the tool Cariboo [9], which
was mentioned in the introduction. Of these 6 examples, 5 are left-linear, therefore
they can be directly handled by our approach. For these, we can show outermost
ground termination using Jambox as termination prover. The last example shall be
considered in more detail below.
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Example 5.6 (Outermost Example 6)

fz,z) — f(i(z),g(e(@) f(z,i(g(z)) — a
Rs =1 f(z,y) — = f(z,i(z)) - f(z,x)
glz) — (@)

As can be seen above, this example has non-linear left-hand sides for the function
symbol f. However, these left-hand sides are all instances of the left-hand side
f(z,y), which makes this TRS quasi left-linear. Hence, we only have to consider
the set L = {f(z,y),g(z)} of linear terms, from which we then compute Sz to be
St ={a,i(x)}. Using this set, our transformation yields a finite TRS T'(Rg), whose
termination can be proven using any of the three considered tools.

Finally, we want to compare the strength of our approach against that of Cari-
boo. The following example is non-terminating for normal rewriting, since already
the rule h(z) — f(h(z)) allows an infinite reduction.

Example 5.7

. { fh()) — fiz)  h@@) — f(h(x))
fli(z)) — = i(z) — h(z)

Cariboo is unable to prove outermost ground termination of the TRS Ry, while
the transformed TRS T'(R7) can be proven terminating by all considered tools. Also
Example 5.4 and both variants of Example 5.5 cannot be proven outermost ground
terminating by Cariboo.

There are also examples where Cariboo succeeds, whereas our transformation
fails. First of all, Cariboo can also handle examples that are not quasi left-linear,
while our transformation is not applicable in this case. But there are also quasi
left-linear examples where Cariboo can prove outermost ground termination, but
none of the considered tools can prove termination of the transformed TRS. Such
an example is given below.

Example 5.8

[ from(z) —  cons(z, from(s(z)))
Rg—{ cons(s(s(z)), zs) — nil

This example can be shown terminating by Cariboo, whereas for all termination
provers the transformed TRS T(Rg) is too hard. Please note that this is only a
slightly modified version of Example 5.3, where instead of one s symbol now two
such symbols are required.

6 Conclusion

We have presented a transformation such that outermost ground termination of
a TRS follows from termination of the transformed TRS. This transformation is
sound for arbitrary term rewrite systems, but only for finite quasi left-linear term
rewrite systems the transformed term rewrite system is finite and can be constructed
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automatically. For this class of term rewrite systems we implemented the transfor-
mation and we were able to prove ground outermost termination for a number of
non-trivial examples. When comparing the presented approach to the existing one
implemented in the tool Cariboo [9], then we have shown that our approach can
prove term rewrite systems to be outermost ground terminating where the existing
approach fails. However, there are also examples where Cariboo succeeds but our
transformation fails. Especially, Cariboo is not limited to quasi left-linear TRSs, but
also when considering only such TRSs there are examples showing this. However,
some of these quasi left-linear examples might, due to the nature of our approach,
be proven outermost ground terminating in the future using the presented transfor-
mation, when the underlying termination provers become even more powerful.

A next step is to consider whether the presented transformation is complete,
i.e., whether from the non-termination of the transformed TRS one can conclude
that the original TRS is not outermost ground terminating.
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1 Introduction

For a long time it was considered not possible to give constructive semantics to
classical logic, but only to intuitionistic and linear logic. Recent works have shown
[12,13] that this is actually possible if one gives up on the principle that the com-
putational semantics is a confluent rewrite system.

In this paper we present two non-confluent higher order rewrite systems, the first
called the *X calculus defined on terms, and the second called the %X calculus defined
on diagrams. *X represents a computational interpretation of Gentzen’s sequent
system G1 for classical logic, while ¥ whose diagrams are naturally derived from
*X-terms, captures the essence of classical computation. In both calculi reduction
rules satisfy interface preservation and type preservation.

The first computational interpretation for classical logic in the sequent calculus
was presented by Herbelin [1,6], while a more direct correspondence with a standard
sequent formulation of classical logic was presented by Urban [12]. This research
first lead to the X calculus [9,14], to which the the ideas of making weakening and
contraction explicit are applied (as studied through Alxr calculus by Kesner and
Lengrand [7]), yielding the *X calculus. Due to this explicitness and the linearity
constraints, the terms (and therefore the proofs) can be seen as diagrams, a fact
which is nicely illustrated by the diagram for Peirce’s law near the end of this paper.

2 The sequent calculus G1

Among the three systems presented by Kleene [8], G1 is the closest to the original
formulation of Gentzen [3]. Despite the fact that Gentzen and Kleene present ex-
plicitly exchange rules, which is not the case here, we keep the name G1 (Figure 1).
Latin symbols A, B, ... are used to denote formulas and Greek symbols I, A, IV, A/, ...
to denote contexts, which are in this framework multisets of formulas. Exchange
rules are handled by using the multiset data structure, whereas the other structural
rules, namely weakening and contraction are explicitly given. The axiom rules do
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THAA I, AF A
(az) (cut)
AFA I, FA A
'kFAA I',BF A’ I'NAF B, A
(L—) — (R—)
T/, A— BFAA '-A— BA
A A
(weak-L) (weak-R)
TLAFA THAA
LA AFA THAAA
—— (cont-L) —— (cont-R)
AR A F'FAA

Fig. 1. Sequent system G1

not involve arbitrary contexts. Inference rules with two premises, namely (L —)
and (cut), are given in the context-splitting style, which means that when looking
bottom-up the contexts of a conclusion is split by premises. It has been shown in
[11] that if a context-sharing style was applied one obtains an equivalent system,
i. e., a system that proves the same sequents.

3 The calculus *X

Terms are built from names which should not be confused with wvariables. The
difference lies in the fact that a variable can be replaced by an arbitrary term, while
a name can be only renamed (that is, substituted by another name). The reader
will notice the presence of hats on some names, which is a notation borrowed from
Principia Mathematica [16] and denotes the binding of a name. The syntax of *X’
is presented in Figure 2, where x, ¥, z... range over an infinite set of innames and
a, 3,7... range over an infinite set of outnames.

P,Q = (z.a) capsule
| P B-a exporter
| Palx]yQ importer

| Patz@Q cut

| zOP left-eraser

| POa right-eraser

| z< %(P] left-duplicator

| [P)% > right-duplicator

Fig. 2. The syntax of *X
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Free and bound names Names can be free or bound. The sets of free innames
and free outnames are defined in Figure 3.

S I(S) 0(9)
(z.a) x a
ZPB-a I(P)\{z} (O(P)\{8}) U{a}

PalzyQ|I(P)U(@\y}) Uiz} (O(P)\{a})UO@)
Pa1zQ | I(P)U(I(Q)\{z}) (OP)\{a})LO@)

r®P I(P)U {z} O(P)

Poa I(P) O(P) U {a}
z<ZU(P] || (I(P)\{z1, 25}) U {z} O(P)
[P)& >a 1(P) (O(P)\{a1, as}) U {a}

Fig. 3. Free names

The notation I(P), O(P) and N(P) denotes a set of free innames, free outnames
and free names of a term P, respectively. Thus N(P) = I(P)UO(P). If we wish to
see those sets as lists, we use the following notation: Z¥, OF and N, respectively.

A name which occurs in P and which is not free is called a bound name. Notice
that the same construction often binds two names. This can be either two innames,
two outnames or an inname and an outname. Moreover, these names sometimes
belong to different subterms, as in the case of an importer or a cut. To denote the
binding of all names in one list, we use simply 7 , 0.

It is sometimes needed to use I(P) instead of Z', and similarly for outnames
O(P), and names in general N(P). The bar is used to denote that we see the given
set of names as a list, according to the total order which can be defined for the set
of names. To exclude a name from a list, for instance, outname a, we write OF\a.

Renaming We define the operation P{x/y} which denotes the renaming of a free
name y in P by a fresh name z. It is a meta-operation which replaces a unique
occurrence of a free name by another free name. Therefore it is simpler than the
meta-substitution of A-calculus, which denotes the substitution of a free variable
(which can occur arbitrary number of times) by an arbitrary term.

Indexing We introduce a special kind of renaming, called indexing, in order to
simplify the syntax of the reduction rules. For example P; = ind(P, N(P),i) means
that P; is obtained by indexing free names in P by index i, where i € N. Simple
notation P; for cases such as this one will be used when possible. We assume that
indexing always creates fresh names. As we use it indexing preserves linearity.

Convention on names We adopt a convention on names: “a name is never both
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bound and free in the same term”. Terms are defined up to a-conversion, that is,
the renaming of bound names does not change them.

Modules A module is a part of a term (not a subterm) of the form a # zQ (left-
module) and PB X ¥ (right-module) which percolates through the structure of that
term (and its subterms) during the computation, as specified by the so-called “prop-
agation rules”. It resembles the explicit substitution. We say that o and y are the
handles of a # Q and Pa\ 1, respectively. Two modules are independent if the
handle of one module does not bind a free name inside the other module, and
vice-versa, as follows:

independent modules conditions

& 47Q, B AR a ¢ N(R), B¢ N(Q)
Paxz, QBxy |2z¢N(@Q), y¢ N(P)
Paxz, BFYR r ¢ N(R), B¢ N(P)

Linearity In *A’, we consider only the linear terms, which means:
— Every name has at most one free occurrence, and
— Every binder does bind an actual occurrence of a name (and thus only one)

Although the *X¥-syntax produces non-linear terms, every non-linear term can be
translated into a linear one, using duplicators and erasers. For instance, (z.a) ® a,
which has two free occurrences of «, can be represented in *X by the term [(z.a1) ®
oq)% >« (notice the role of a duplicator). The term ¥ (z.a) 33+~ binds no free name
and corresponds to the linear term ¥ ((z.a) ® () By (notice the role of an eraser).
The following tables define specific names which are called principal.

a term H princip. names a term H princip. names
(z.c) z,a z0OP x
ZPB-a ey PO« e
Pa 7] §Q P z<Z(P] z
Pa t 2Q none [P)i% >o o

We say that a name is logical if it is introduced by either: a capsule, an importer
or an exporter (terms that correspond to logical inference rules). We say that a
name is structural if it is introduced by either an eraser or a duplicator (terms
that correspond to structural inference rules). We say that a name is L-principal
(S-principal) in a term P if it is both logical (structural) and principal in P.

Lemma 3.1 FEvery term has at least a free logical outname.

Some abbreviations

instead of ‘ we write Ainstead OAf ‘ we WriAte _
210((2n®P).) | 210 ..xnOP 21< Aean< 2(P.] | (@10 @n)< GNP
(-(POa) Joan | PO Oan [ [P)sar.)oesan | [P 00) s (aq, .. am)
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4 Reduction rules

Reduction rules are grouped into: Activation rules (left and right), Structural ac-
tions (left and right), Deactivation rules (left and right), Logical actions, Propagation
rules (left and right).

Congruence rules We assume some simple congruence rules which originate from
the sequent calculus.

Commuting names in a duplicator Permuting independent duplicators
— _ <D< AP = y<ha<D(P]
r<z(P] = a<Z(P] a B
PEsa = [P)Zsa e
as - ai = s = o
[z<Z(Phat>a = z<Z([P)3l>a]

The conditions in the first rule treating the duplicators are y ¢ {z1,x2} and
z ¢ {y1,y2} and in the second 3 ¢ {a1,as} and « ¢ {01,02}. The third rule
allows us to drop parenthesis and use a simplified notation

0,

x< %(P)% > and more generally I< IQ<P>02 >0

0
where Z and O are lists of names. When Z = (), we write [P)@i >0. The case
O = () is not possible as stated by Lemma 3.1.
When the names are triplicated, one can do it in any order:

s<ly<mlPll = 2<Fly<BiPl
[PYESp Ly = [[P)2>6)F >y

This can be seen as an associativity of names bound by a ternary duplicator.
Permuting the erasers: The following rule suggests that we may drop parenthesis
and write * ® P ® «, and more generally we may write: Z® P ® O.

yorzoOP = z0yOoP
Poaepf = POLO«a
(zOP)Oa = z0(POa)

Activation rules Activation rules handle the intrinsic non-determinism of the
classical cut-elimination. More precisely, during cut-elimination we have to choose
in which of the left or the right subtree to push the cut further. For that, the syntax
is extended with two operators called active cuts:

P& A3Q | PaxzQ

A cut can be activated only towards an eraser or a duplicator. This means it
can be left-activated only if one has either an eraser or a duplicator on the left, and
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similarly, it can be right-activated only if one has an eraser or a duplicator on the
right. See Figure 4. In other words, to activate a cut towards terms corresponding
to logical inference rules is not allowed.

Left :
(act-L) : Pa t zQ — Pa /7 zQ, if a not L-principal for P
Right :

(act-R) : Pa t Q@ — PaXzQ, if z not L-principal for Q

Fig. 4. Activation rules

Terms Pa /2@ and Pa X T(Q are essentially different. This becomes obvious
if we take the example when both, a and z, are introduced by erasers. If P = M O«
and Q@ =z ® N, where M and N are arbitrary terms

(Moa)a z2(zoN) — (ZVN\z2)o MOV
(Mea)axz(z®N) - IM o N6 (OM\ a)

is Lafont’s example [5], which illustrates the non-determinism of classical cut-
elimination, here coded in *X.

Structural actions Structural actions consist of four reduction rules, specifying
erasure and duplication by referring to the situation when an active cut faces an
eraser or a duplicator. Structural actions are given in Figure 5 and related to those
in intuitionistic logic [2,7].

Deactivation rules See Figure 6.

There is a duality between activation and deactivation groups of rules. One can
be obtained from the other by reversing the arrow, and negating the side conditions.
Activation and deactivation rules are designed in a way that does not allow looping,
that is, the side conditions do not allow activation followed by deactivation of a cut,
or vice versa.

Logical actions The purpose of logical actions is to define reductions when L-
principal names are involved in a cut. See Figure 7.

First two logical rules define merging of a capsule with another term by using
the renaming operation. The merging of a capsule with another element follows
Urban’s local cut-elimination procedure ([12], p. 50), whereas a slightly different
approach was taken in [14,9].

The third logical action describes the direct interaction between an exporter
and an importer, which results in inserting the (immediate) subterm of an exporter
between the two (immediate) subterms of an importer.

Propagation rules

Propagation rules describe the propagation of a cut through the structure of
terms. The propagation of a cut over another inactive cut is enabled, which allows
representing elegantly S-reduction (see [15], chap. 6 ) The rules are divided into
“left” and “right” symmetric groups, see Figures 8 and 9.
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(#-eras) : (POa)a”zQ — e PO O
_ 79 o2
(F-dupl) = (PE>a)a/3Q — I 5 ((Pa1/71Q1)as / 72Qz) o >0
where:
I =1(Q)\z, O =0(Q) and Q; = ind(Q, N(Q), i) fori=1,2.
Right :
(N-eras) : Paxz(z0Q) — P oQoof
(N\-dupl) : Paxi#(e<I(Q) — IP<;£ <p2a5 X T3 (Prar X ﬁQ)> %li >oP
where:
P =1(P), OF =0(P)\ a and P; =ind(P, N(P), i) fori=1,2.
Fig. 5. Structural actions
(/-deact) : Pa/”zQ — PatzQ, if «is L-principal for P
Right :
(X-deact) : PaXxzQ — Pa t zQ, if zis L-principal for Q
Fig. 6. Deactivation rules
(ren-L) c (ya)a 1 2Q - Qy/z}
(ren-R) : Pat z(z.f) —  P{g/a}
A~ Ai s o Q7t7P)312R
(ei-insert) : (YPB-a)at z(QF [z]ZR) — either @719 )A f
QY Ty(PBTZR)

Fig. 7. Logical actions

For instance the rule (exp/#-prop) shows how an active cut (in fact, a mod-
ule B # YR) enters from the right-hand side through an exporter, up to its imme-
diate subterm. Propagation through an importer or a cut requires a side condition
to decide to which of the two immediate subterms the module will go.

The rules (cut(c) #-prop) and (Xcut(c)-prop) require additional explanations.
They handle the case of propagation over a cut with a capsule whose both names
are cut-names. If we exclude these rules from the system, we could construct an
infinite reductign sequence such as: R R
(Pa t z(z.0))8 1 yR— ... - Pa 1 2({x.8)8 T yR) — ... = (Pa | Z(z.5))B t YR.

Besides that, the solution offered is intuitive as we would expect the terms
(P&t #(x.8))3 # §R and Pax z((z.8)3 1 §R)

to reduce to the same term Pa { YR, in this case.

Structural rules and convergence
Let us have a close look at the structural rules of duplication. For example the
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(exp/-prop) : (%\Piy\-a)ﬁ/ YR — /I\(PB}‘@\R);Y\-O[, a#p

(imp/-prop1) : (Pa[z] 2Q)B/§R — (PB/GR)a[z]2Q, B€O(P)
(imp/-props) : (P& [x] 2Q)B /YR — Palx] 2(QB/JR), BeO(Q)

(cut(c) #-prop) : (P& t z(x.8))B 7 §R — Pa t jR

(cut*-prop1) : (P& tiIQ)B 7GR  — (PB/GR)Gt3Q, BEO(P), Q# (x.B)
(cut/-props)  : (PatiQB/JR  — Patz(QB/JR), BeOQ), Q# (v.0)
(L-eras*-prop) : (z® P)3 *§R — 2 (PB #§R)

(R-eras/-prop) : (P®a)B *§R — (PBAJR)Oa, a#8

(L-dupl #-prop) : (z< g(P})B YR — x< g(PE 7 YR

(Redupl 7-prop) : ([PYD>a)B 7GR — [PBAGR)E >a, a#p

Fig. 8. Left propagation

: PAXEFQS-v)

J(PaXTQ)B -~

(X exp-prop) —

(Nimp-prop1) : PAXEQB [y ZR) — (PAx3Q)B [y ZR, =el(Q)
(Nimp-props) : PAXZQB [y TR) — QB [yl Z(PAXZR), z¢clI(R)
(Ncut(c)-prop) : Paxz((z.8)3 1 §R) — Pa t jR

(Neut-propt) = PAXZQB{JR) — (PAax2Q)Bt§R, =z €l(Q), Q# (v.)
(Neut-props)  : PAXTQBtIR)  — QB 1t y(PaNTR), w€l(R), Q# (z.0)
(X L-eras-prop) : PaXzZ(y© Q) — yoO (PaxzqQ), z#vy

(X R-eras-prop) : PaXxz(QopB) — (PaXxzQ)op

(X L-dupl-prop) : P& X #(y< %(Q}) - y< %(P& X3Q], z#y

(XN R-dupl-prop) : Pa X /z\([Q)g >03) — [PaX EQ)% >0

Fig. 9. Right propagation

rule (/-dupl):

Q Q
(PZ>0)a #5Q — 1% 5 ((Pa1 #FiQu)E / T3@s) Go> 07

yields the term (Pay 4 71Q1)az2 / Z2Q2 in the context of a certain number of left
and right contractions. Notice that this term contains two left modules, namely
o1 #71Q1 and @3 # T2Q2, which are independent since aj,as € P (and there-
fore ag ¢ Q1, a1 ¢ Q2). One may wonder whether the order of modules is rel-
evant, that is, whether the two terms S; = (Paj #71Q1)az / 72Q2 and Sy =
(Pag /# T2Q2)a1 # 21Q1 should be considered the same. Intuitively, in a given sit-
uation, there is no reason to prefer using one term over another.

Definition 4.1 (NF-Joinability) We say that the two terms P and () are NF-
joinable if they share the same set of normal forms, denoted P | NF Q.

Theorem 4.2 (Convergence) Let P, Q, Pi,...P,, Q1,...Qn be arbitrary terms
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and k — k an arbitrary permutation of (1,...n), then

(a) (..(Par 7 T1Qu1)..)on / TnQn INF (..(Pa7 /* T71Q1)...)0n * TnQn
where {67 7 T1Q1, ...-0n * TpQn} is a set of independent modules.

(b) Praq X z1( (P N\ 75,Q)...) INF Prag X 27(..(Pran X 77Q)...)
where { Pyay N\ 71, ...Pya, X\ Tp} is a set of independent modules.

Theorem 4.3 (Basic properties of —)

(i) Preservation of free names: If P — @ then N(P) = N(Q).

(ii) Preservation of linearity: If P is linear and P — Q then @ is linear.

Simplification rules We define the simplification rules, denoted --+, which can
be seen as an efficient way to simplify terms. They are not reduction rules since
they do not involve cuts. The point is that applying a duplicator to an eraser is of
no interest and can be avoided by using simplification rules, as defined by:

(s1) x<%<z@f1 —» Pla/y}
(sr) : [POnIsa --» Pla/B}

They are applied before the reduction rules, that is, we give them high priority
during computation. One can see them as a kind of garbage collection, as they
simplify computation by preventing the situation when we duplicate a term to erase
one or both copies in the next step.

It is easy to see that the simplification rules preserve the set of free names,
linearity and types. The rules can be given in a more general way:

(S‘%) : Z<%<IQ®P] --> P{I/Zl}

(s%) : [POO)G -0 —-» P{OJO;}

5 The type assignment system for “X

We only consider here linear terms to which we will add type information. Given a
set T of basic types, a type is given by A, B :=T | A — B.

The type of an *X-term is expressed as P:- I' = A, which is the type assignment
of the *X-term P, where T is a context (antecedent) whose domain consists of free
innames of P and A is a context (succedent) whose domain consists of free outnames
of P. Contexts are sets of pairs (name, formula). By forgetting the names one gets
sequents of G1 where contexts are multisets of formulas. For example, I" as a set of
type declarations for innames could be z : A, y : B, while A as a set of declarations
for outnames could be ao : A, 3 : A — B, v : C. Comma in the expression I', A
stands for the set union.

We will say that a term P is typable if there exist contexts I' and A such that
P:- T' - A holds in the system of inference rules given by Figure 10. If we remove
the term decoration in the type system of Figure 10, we get the classical sequent
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P.- TFa:AA Q. T ,o:AF A
. (az) (cut)
(z.0) '+ z:AFa:A P&t 3Q:- T,I'FA A
P.- TFa:AA Q.- T',y:BF A P+ Tyo:Ak a:B,A
(L—) (R—)

Palz]§Q:- I,T,z:A— Br A A

8)

Pa-B.- TFB:A— BA

P+ TFHA P+ TFHA
(cont-L) (cont-R)
rOP- Tha:AFA PoOa:r TFHa:AA
P Tz :Ay:AFA P- Tha:AB:AA
(weak-L) - (weak-R)
2<I(P]:- T,z:AF A [P)3>71 Thy:AA

Fig. 10. The type system for *X

calculus as presented in Figure 1. As an illustration we give a term for the Peirce’s
law.

(az)
(ron)i- 2:AF a1 A

(weak-R)

PN (—R) (az)
Z(z.a1)OB)B-v:r Far:A~vy:A—B (yag)i* y: Ak ag: A

(r.a1) @B z: Ak a1:AB:B

= (—L)
Z((z.on)OB)B-7)F 2] Y(yaz): 2:(A—>B)—> Ak oa1:Aax: A

— — (cont-R)
(@ ({z.01) ©B)B-MT [l yoz))gh>alr z2: (A= B) = Ak a:A

= — (—k)
2((@(w.a1) ©B)B-7)7 [2] §{y-az))gt >a)@- 61 F6:((A—B)—A)— A

We can also assign a prooftree to the term A\zxyz.2z(yz) known as the S-combinator
of A-calculus. Typing this term is left to the reader (see [15] Sec. 4.4)

O (1 (7 (< Z{(w.€) € [w] T (((21.0) 8 [u] §(y.B)) B [v] Z(zAN])F-1)7-0)8 -

Theorem 5.1 (Witness reduction)
1.IfS:- T+ A and S— 95, then S':-T F A
2.IfS:-TFA and S-S5, then S:-T F A

6 Diagrammatic classical computing

After designing and studying the *X calculus, a linear model of computation which
introduces explicit erasure and duplication, it was natural to think about a diagram-
matic representation enabled by linearity and explicitness of name handling. Thus
we obtained the diagrammatic calculus %Y, which abstracts away from unessen-
tial part of *X-computation. Having both of these calculi at hand makes it easier
to understand each of them, and through them the rather complex classical cut-
elimination.

The basic notion of %X is port and it corresponds to the notion of a name in
*X. Ports represent the interface of a diagram. Like for names, there are two kinds
of ports - entering ports, called in-ports, and exiting, called out-ports. We imagine

100



LESCANNE AND ZUNIG

D({z.a)) == D(Pa t Q) =
et — pP“—H—DW©
DEPJ-a):= D(Pa 2] §Q) :=

D~ j,/ “D@)

D(P)Z >a) == D(z<Z(P)) =
DB |, > ~ .| DP
D(Poa):= D(x® P):=

DP) |@— =& D(P)

Fig. 11. Encoding the terms into diagrams

a diagram as a circuit with entering and exiting wires (See Figure 12) where P is
an actual diagram. By convention in-ports are always coming from the left, and

out-ports are always going to the right. Latin letters =, vy, z,... are used to denote
in-ports and Greek a, 3,7, ... to denote out-ports.
X o

— P

Fig. 12. A generic diagram

6.1 The syntax

The syntax of the diagrammatic calculus 4X' defined in Figure 13 consists of eight
basic diagram constructors which are directly inspired by *X-terms, and which can
be seen as their two-dimensional view. The constructors are called: (1) in-out, (2)
cut, (3) E-fan, (4) Z-fan, (5)&(6) black-holes, (7)&(8) forks. The translation D from
terms to diagrams is defined inductively on the structure of terms by Figure 11. It
is important to notice that the diagrams are always built from within, starting from
the ground diagram called in-out. Higher order diagrams are built by respecting
the rules defined by the syntax.

Because a diagram represents a class of terms, the terminology used to denote
diagrams is different from that used for *X (see Figure 15).

Convention on ports We use the convention that the ports of a diagram are

101



LESCANNE AND ZUNIG

ay
2

|
K
&

©)
| @H" |
®) (]
Y
| D

Fig. 13. The diagrammatic syntax

presented only when they are relevant. The set of ports P of a diagram is presented
in Figure 14. A port is said to be logical if it is created by an in-out, Z-fan, or an
E-fan. Structural ports are the ones created by black holes and forks.

Diagram Ports (P) Diagram Ports (P)

e {x.0} o p {z} UP(P)

{a} UP(P) @L {a} UP(P)

Ple] | {@uP(P)UPQ) = {z} UP(P)

x

a
y

P(P)UP(Q) [ | (UPE)

< g

]

Fig. 14. The ports
Lemma 6.1 Fach diagram has at least one logical out-port.

6.2 The reduction rules

Reduction rules are divided into four main groups. These are logical and structural
actions and also activation and deactivation rules. Each group (except logical) can
itself be split into two symmetric left and right subgroups. The activation and
deactivation groups are dual.

The diagrammatic calculus Y has less rules than *X. Namely the group called
“propagation rules” does not exist in “¥. The basic purpose of this group in *X
is to propagate the cut through the structure of terms, until it reaches a point
where the propagation ends. In general, a propagation ends when a module, for
example @ # ZQ, reaches an actual place where a free name a occurs in the syntactic
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X _diagrams | *X-terms Logic X -diagrams *X -terms Logic
in-out capsule axiom fork duplicator contraction
E-fan exporter | —R-intro black hole eraser weakening
Z-fan importer —L-intro dagger cut cut
port name named proposition

Fig. 15. The terminology

representation. In %Y, since we are in a two-dimensional space, the propagation rules
are lost which also suggests that they are not an essential part of the computation.
The reduction procedure aims at the elimination of {’s (daggers) and captures the
essence of the classical cut-elimination, like proof nets for linear logic [4]. Therefore
it is non-deterministic and non-confluent, like classical cut-elimination.
Following convention on ports, we draw only the relevant ports in reduction
rules, i.e., those which are involved in reducing, or created by the reduction rule.

6.2.1 Activation rules
As a picture is worth a thousand words we present the rules with no comments.

o Left-activation.

(act-L-eras)  : Plo“®H— Q| — | P o> 0@

(act-L-dupl) P W 0 — p >i@7x 0

e Right-activation.

(act-R-eras)  : P*—®*e Q| —- | P X0

(act-R-dupl) P L@% 0 d p L®i< [

Lafont’s example [5] is

& of 19

OQ
O = P390 == P

Active cuts are introduced into the system to express non-determinism. The
rules make sure that when a dagger is activated, it will be treated by some other
reduction rule.

6.2.2 Deactivation rules
o Left-deactivation.
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ylthxQ —_ ylaCxQ

— Eoc X Q

(caps /*-deact)

(exp /#-deact)

¢ Right-deactivation.

P & X *eb — Pl F el

(X caps-deact)

Flaall
(Nimp-deact)  : P = - P

Activation and deactivation are dual. Indeed by negating the side condition and by
changing the direction of the arrow in an activation rule, one gets an deactivation
rule and vice versa.

6.2.3 Structural actions

Structural actions define duplication and erasure of diagrams. They are imple-
mented by using forks and a black holes, which correspond to erasers and duplica-
tors in *X. We have pairs of symmetric rules: (/*-erasure) and (X -erasure), and
(/-duplication) and (X -duplication). By lack of space, we give only the rules for
left actions. Those for right actions are symmetric (for details see [15]).

(/-dupl): 19

e ar] Joe
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(/-eras):

1t

IQ{E§ P

[0JOJIO}
——
O@

The rule (/-duplication) defines an action which occurs when a left-activated dagger
faces a right fork. We duplicate a term on the right-hand side of a dagger.

6.2.4 Logical actions
e Merging.

(mer-L) Tet 0 - 0

(mer-R) P et = P

o Inserting. The last rule is called insertion and describes how to reduce a diagram
that connects an £-fan to an Z-fan through a dagger. The term P is inserted
between the terms @ and R.

(EZ-insert) : 0P 0 4 R

6.3 Diagram simplification

Simplification rules (Figure 16) are denoted by --». They are used to simplify
diagrams when possible, but they are not reduction rules in the sense that they
do not involve cuts. These rules have no computational meaning. Furthermore,

rewriting in an arbitrary diagram all branches of the form } and in

optimizes further computations, in the sense that many useless duplications
of a term are avoided. The case of two branches of a fork ending in black holes is
a special case. Thus z} is rewritten in ©——— and similarly {z is
rewritten in ———®. The set of ports is preserved by reductions and simplification
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Left simplification:

~ P - P

Right simplification:

p_~ .. P

Fig. 16. Diagram simplification

rules.

Theorem 6.2 (Preservation of ports)
1. If P — Q then P(P) = P(Q)
2. If P --» Q then P(P) = P(Q)

7 The type assignment system for %X

Given a set T of basic types, a type is given by A, B :=T | A — B. The type
assignment of a diagram P is given by an expression P:- I' = A. Here I' stands
for a set of type declarations for in-ports, while A stands for a set of declarations
for out-ports. If P is a diagram, an expression P:- I' - A is used to denote a type
assignment. The type system is presented in Figure 19.

Theorem 7.1 (Witness reduction)
1. If D1:- T'H A and D; — Do then Dy - T' B A
2.If Dy:- T F A and Dy --» Dy then Dy:- T' = A

As an illustration we give two diagrams as representations of proofs: the Peirce’s

law: - (A — B) — A) — A (Figure 17), and the S combinator: - (A — B —
C)— (A— B) — A— C (Figure 18).

8 Non determinism

The diagrammatic calculus %Y is non-deterministic and non-confluent, which is in
accordance with the properties of classical cut-elimination. This is due to the fol-
lowing reasons.

The direction of activation. Activation rules are new. Introduced by Urban and
Bierman in [13] as “commuting cuts”, they showed that it is not necessary to re-
strict this choice in order to achieve strong normalization. The non-determinism
introduced by activation rules leads to non-confluence.

Actual boundaries of diagrams. Structural actions define erasure and duplication of
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oA

2 (A=>B)—>A

8 (A—>B)~>A)—>A

Fig. 17. The diagram for Peirce’s law

x,:A.S:A : y:B.B:B ; z:C'y:C

X, A €A v: B>C

@
I
w: ASB >C \/

0: A>B)>A>C

E
\/ o (A—>B—->C—~> (A~ B)—>A—->C

Fig. 18. The diagram for the combinator S

diagrams, but the choice of which specific diagram is erased or duplicated is non-
deterministic (as in [10] we do not use boxes). The diagram to duplicate (erase)
can be any subdiagram whose port is involved in a dagger operation. It is still an
open question whether this leads to non-confluence or not.

9 Conclusion

This paper provides an insight into rather complex classical computations. We ex-
tract its essential part through diagrammatic representation. *X is the first classical
calculus to introduce terms for explicit erasure and duplication. From this low level
language we derive a higher abstraction model - the diagrammatic calculus “X.
However *X-terms are not in one-to-one correspondence with %¥-diagrams, and
this is the starting point of a research aimed at revealing which exactly *X-terms
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(az)
Ak a:A
I'z:AF o :B,A
(L—)
I'-p:A— B,A
I'-oa:AA 'V: I',y:BF A’
(R—)
p \/ -V:' I,IV,z2:A— BFA A
“ I'ka:4,A *: Iz :AF A
(cut)

.3' :' kA
—o e
Iz :AFA o T'Fa:AA

y:' T,z :Ay:AFA B o ThRa:AB:AA

(cont-L) (cont-R)

Z T,z AFA v O ThqAA

(weak-R)

Fig. 19. The type system for X

should be considered the same; this lead to the design of the ©X calculus (see [15],
part IIT), with congruence relation on terms, which proposes a more faithful corre-
spondence with the diagrammatic calculus. Namely, one diagram of %X corresponds
to a congruence class of ©X.
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Abstract

Preservation of regularity by a term rewrite system (TRS) states that the set of reachable terms from a tree
automata (TA) language (aka regular term set) is also a TA language. It is an important and useful property,
and there have been many works on identifying classes of TRS ensuring it; unfortunately, regularity is not
preserved for restricted classes of TRS like shallow TRS. Nevertheless, this property has not been studied
for important strategies of rewriting like the innermost strategy — which corresponds to the call by value
computation of programming languages.

We prove that the set of innermost-reachable terms from a TA language by a shallow TRS is not necessarily
regular, but it can be recognized by a tree automaton with equality and disequality constraints between
brothers. As a consequence we conclude decidability of regularity of the reachable set of terms from a
TA language by innermost rewriting and shallow TRS. This result is in contrast with plain (not necessarily
innermost) rewriting for which we prove undecidability. We also show that, like for plain rewriting, innermost
rewriting with linear and right-shallow TRS preserves regularity.

Introduction

Finite representations of infinite sets of terms are useful in many areas of computer
science. The choice of a formalism for this purpose depends on its expressiveness,
but also on its computational properties. Finite-state Tree Automata (TA) [3] are
a well studied formalism for representing term languages, due to their good compu-
tational and expressiveness properties. They are used in many fields of computer
science, from a theoretical and a practical point of view. For instance, for the
analysis of systems or programs, when configurations can be represented by trees
(e.g. concurrent processes with parallel and sequential composition operators) TA
provide a finite representation of possibly infinite sets of configurations.

Term rewriting is a general formalism for the symbolic evaluation of terms by
replacement of some patterns by others, following oriented equations, or rewrite

L The first two authors were supported by Spanish Min. of Educ. and Science by the FORMALISM project
(TIN2007-66523) and by the LOGICTOOLS-2 project (TIN2007-68093-C02-01)

2 adriagascon@gmail.com, ggodoy@lsi.upc.edu, florent.jacquemard@lsv.ens-cachan.fr



GAScON, Gopoy, JACQUEMARD

rules, given in a finite set (a term rewrite system, or TRS). Plain rewriting is
sometimes too general, and in many contexts rewriting is applied with specific
strategies giving a finer representation of the system behaviour. This is the case
of the innermost strategy, which corresponds to the call by value computation of
programming languages, where arguments are fully evaluated before the application
of the function.

In the above application to system verification, transitions in infinite state sys-
tems can usually be represented by rewrite rules. There have been many studies
of the connections between tree automata and rewriting, and a central property in
this domain is the preservation of regularity. It states that for any given regular
language L (which means that L is accepted by a TA), the set of reachable terms
from L by a TRS R, denoted R*(L) is also regular. Preservation of regularity has
been widely studied. The first result of this kind was that preservation of regularity
holds for every ground TRS, as shown in [16]. In [14] this property was established
for linear (variables occur at most once in every left-hand and right-hand side of
a rule) and right-flat (the right-hand sides of the rules have height 0 or 1) TRS.
There have been several extensions of this result, e.g. [6,10,13,15,5], and [13] rep-
resents a breakthrough since the left-linearity condition (linearity of left-hand sides
of rules of the TRS) was dropped. However, in all the above cases, the condition of
right-linearity remains necessary and in fact, a rewrite rule like g(z) — f(x, ) does
not preserve regularity. Moreover, only plain rewriting is considered in these works,
except in [5] where the bottom-up strategy is considered; there have been (up to
our knowledge) no studies of regularity preservation under the innermost strategy.

The aim of this work is to study the preservation of regularity for innermost
rewriting, and to identify a class of TRS for which better results can be found un-
der the innermost strategy than under plain rewriting. We consider the class of
shallow (all variables occur at depth 0 or 1 in the terms of the rules) TRS. Al-
though the shallow case seems restrictive, for plain rewriting, shallow TRS do not
preserve regularity. Moreover, several interesting properties of TRS, like reacha-
bility, joinability, confluence [12] and termination [8], are undecidable for shallow
TRS, while adding certain linearity restrictions allows the decidability of all these
problems [13,15,9,8]. Hence, from a theoretical point of view, the shallow case draws
a frontier for decidability when one considers classes of TRS defined by syntactic
restrictions.

Our main result (Theorem 4.6, Section 4.2) is that, given a regular language
L and a shallow TRS R, the set R*(L) of terms reachable from L using R with
the innermost strategy is recognized by tree automata extended with equality and
disequality constraints between brothers in their state transitions. This kind of au-
tomata, which we call BTTA, was introduced in [2] as an extension of TA, and it
has also good closure and decidability properties, but with worst complexity than
standard TA. This is in contrast with the situation with plain rewriting: R*(L) is
in general neither a TA nor a BTTA language under the same hypotheses (Propo-
sition 3.2, Section 3).

One of the classical techniques for proving results of preservation of regularity
consists of adding transitions to the automaton recognizing the starting language L,
in order to simulate rule applications of R and recognize also all the terms reachable
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from L. Apparently, this completion technique which worked well for standard TA
(in all the regularity preservation results cited so far) does not work for general
shallow TRS. Innermost rewriting cannot be simulated by TA transitions, despite
it does operate almost in a bottom-up fashion for shallow TRS [5]. The reason
follows from two other results of the paper:

* First, we show that innermost rewriting with flat TRS (TRS whose all left-hand-
side and right-hand-sides of rules have depth at most one) does not preserve

regularity (Proposition 4.2, Section 4). As a consequence, we need to consider
BTTA instead of standard TA.

e Second, flat and linear TRS do neither preserve BTTA-recognizably (Proposi-
tion 4.3, Section 4.1). Consequently, TA completion cannot work in this case.

The main result is obtained in two steps. First, we reduce the problem of
representing the reachable terms from a regular set to the reachable terms from a
constant. Next, we give a direct construction of a BTTA recognizing the reachable
terms from a constant. It is based on a representation of the set of reachable terms
introduced in [7] using constrained terms. As an immediate consequence of the main
result, we obtain from [1] that given a regular language L and a shallow TRS R,
it is decidable whether R*(L) is regular for innermost rewriting. In contraposition,
we prove undecidability of regularity of R*(L) for plain (not necessarily innermost)
rewriting.

Another positive result (Theorem 5.3, Section 5.1) is that, like for plain rewriting,
innermost rewriting with linear and right-shallow TRS preserves regular languages.
This result has been independently obtained in [11] In our case it is proved with
a non trivial adaptation of the tree automata completion technique of e.g. [14,10].
The cases of plain and innermost rewriting are different in essence to treat, and some
subtle differences need to be introduced. We show in particular that even though
TA completion permits to establish that right-linear and right-flat TRS (i.e. when
left-hand sides of rules might be not linear) preserve regular languages under plain
rewriting, we show that this property is no longer true for under innermost rewriting
(Proposition 5.4, Section 5.2).

1 Preliminaries

We use standard notation from the term rewriting literature [4]. A signature X is
a finite set of function symbols with arity. We write X,, for the subset of function
symbols of ¥ of arity m. Given an infinite set V of variables, the set of terms
built over ¥ and V is denoted 7 (X, V), and the subset of ground terms is denoted
T (X). The set of variables occurring in a term ¢t € 7 (X, V) is denoted vars(t). A
substitution o is a mapping from V to 7 (3,V). The application of a substitution o
to a term ¢ is written o(¢), and is the homomorphic extension of ¢ to 7 (X, V).

A term ¢ is identified as usual to a function from its set of positions (strings of
positive integers) Pos(t) to symbols of F and V. We note A the empty string (root
position). The length of a position p is denoted |p|. The height of a term ¢, denoted
h(t), is the maximum of {|p| | p € Pos(t)}. A subterm of ¢ at position p is written
t|p, and the replacement in t of the subterm at position p by u denoted ¢[u]).
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Rewriting and the innermost strategy.

A term rewriting system (TRS) over a signature X is a finite set of rewrite
rules { — r, where £ € T(X,V) \ V (it is called left-hand side of the rule) and
r € T(X,vars(l)) (it is called right-hand side). A term s € 7 (X, V) rewrites to ¢ by
a TRS R at a position p of s with a substitution o, denoted s yrradd (p and o may
be omitted in this notation) if there is a rewrite rule £ — r € R such that s|, = o(¢)
and ¢t = s[o(r)]p. In this case, s is said to be reducible. The set of irreducible terms,
also called R-normal-forms, is denoted by NFg. The transitive and reflexive closure
of - is denoted —~. Given L C 7(X), we note R*(L) = {t | 3s € L, s - t}. The
above rewrite step is called innermost if all proper subterms of s|, are R-normal
forms. In this case, we write s % t, and % for the the transitive and reflexive
closure of this relation, and R*(L) for {t | 3s € L,s - t}. We shall also use
the notations NFf(s) and NFy(s) (with s € 7(F,V)) for resp. R*({s}) N NFp and
R*({s}) N NFg.

A TRS is called linear (resp. right-linear, left-linear) if every variable occurs at
most once in each term (resp. right-hand side, left-hand side) of the rules. It is
called shallow (resp. right-shallow, left-shallow) if variables occur at depth 0 or 1
in the terms (resp. in the right-hand sides, in the left-hand sides) of the rules and
flat (resp. right-flat, left-flat) if the terms (resp. the right-hand sides, the left-hand
sides) in the rules have height at most 1. A rule ¢ — r is called collapsing if r is a
variable.

2 Tree automata with constraints between brothers

A tree automaton (TA) A on a signature ¥ is a tuple (Q, Qf, A) where Q is a finite
set of nullary state symbols, disjoint from 3, Qf C Q is the subset of final states
and A is a set of ground rewrite rules of the form: f(qi,...,qm) — ¢, or ¢1 — ¢
(e-transition) where f € X, and ¢1,...,qm,q € Q (g is called the target state of
the rule).

A Bogaert-Tison tree automaton (BTTA, or tree automaton with constraints
between brothers) is defined like a TA except that its states are unary and its
transitions are constrained rewrite rules of the form f(qi(z1),...,¢m(zm)) —
q(f(xl,...,xm)) [c], or e-tramnsitions ¢;(z1) — q(x1), where x1,...,z,, are dis-
tinct variables and the constraint c is a Boolean combination of equalities x; = z;.
Equivalently, the constraint ¢ can be defined as a partition P of {1,...,m} with
the same meaning as a conjunction of equalities z; = x; for the indexes ¢, j such
that i =p j, and disequalities x; # x; for the indexes 4, j such that ¢ Zp j. Follow-
ing the notations of [2,3], the above transitions are written f(qi,...,qm) — q (or
flais--.,qm) — q when c is true) and ¢1 — ¢, and every equality x; = x; (resp.
disequality x; # x;) in the constraint c is written i = j (resp. 7 # j). Note that
every TA is the special case of BTTA whose constraints are all equal to true.

The language L(A, q) of a BTTA A in state ¢ is the set of ground terms accepted
in state ¢ by A, i.e. the terms ¢ such that ¢ —— ¢(t). The language L(A) of A is
Ugeor L(A, ) and a set of ground terms is called regular (vesp. BT-regular) if it is
the language of a TA (resp. BTTA).

A BTTA A is called deterministic (resp. complete) if for every term t € 7 (%),
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there is at most (resp. at least) one state g such that ¢t € L(A,q). If A is determin-
istic and complete, this unique state is denoted A(t). A BTTA A is normalized if
it does not contain e-transitions, constraints in transitions are defined using parti-
tions, and for every function symbol f with arity m, states ¢1, ..., ¢, and partition
Pof {1,...,m}, A contains exactly one rule of the form f(q1,...,q¢mn) £, q. A nor-
malized BTTA A is deterministic and complete, and any BTTA can be transformed
into a normalized one recognizing the same language. If A is normalized, we write
A(t, P), for a flat term ¢ € 7 (X UQ), to denote the unique state ¢ such that ¢ Liyg
is a transition of A. BTTA are useful for representing the set of normal forms of
certain classes of TRS, like flat TRS, see e.g. [3].

Lemma 2.1 [3] Let R be a flat TRS over X. There exists a normalized BTTA B =
(@B, Q%, Ap) on X which recognizes the set of ground R-normal forms. Moreover

QB \ Q%] =1.

3 Closure under plain rewriting with shallow TRS

Right-(shallow and linear) TRS preserve regularity [13]. It is well known that right-
linearity cannot be omitted, as the following example shows.

Example 3.1 Let us consider the TRS R := {g(z) — f(z,z)} and the regular
language L = {¢"(a) | n > 0} = {a,g(a),g(g(a)),...}. The set R*(L) is not regular
because its intersection with the regular set 7 ({f,a}) is the non-regular set Bin of
complete binary trees whose internal nodes are labeled by f and whose leaves are
labeled by a, and the class of regular tree languages is closed under intersection. &

We show below that considering BTTA does not help in this case.

Proposition 3.2 In general, R*(L) is not BT-regular when L is a regular tree
language and R o flat TRS.

Proof. Let us consider R, L and Bin as in Example 3.1. The set R*(L) is not
BT-regular. Indeed, its intersection with the regular (hence BT-regular) set Ly :=
{f(s,t) | s € T({g,a}),t € T({f,a})} is the subset L’ of terms f(s,t) € Ly with
t € Bin and h(s) = h(t). This latter set is not BT-regular, as shown below. It
follows that R*(L) is not BT-regular because the class of BT-regular tree languages
is closed under intersection [2].

Let us now show that L’ is not BT-regular. Assume that it is recognized by a
BTTA A = (Q,Qf,A) on ¥ with n states, and for all i > 1 let f(s;,t;) be the term
of L' with h(s) = h(t) = i. For each 4, there exists a reduction sequence f(s;,t;) =
q(f(s,t;)) with ¢ € QF, and we consider the last rule p; of A applied in this reduction
sequence. There exist two distinct indexes 71,92 > 1 such that p;; = p;,. Let
flq1(x1), g2(x2)) <= q(f(x1,x2)) be this unique rule of A. Note that the constraint
¢ does not contain the equality 1 = z9, actually ¢ may be x1 # x5 or true. In
both cases, it follows that f(s;,t,) = f(q1(si,), q2(ts,)) oI q(f(siy,tiy)). This
is contradiction with the fact that f(s;,,t;,) ¢ L' because h(s;,) # h(ti,). ]
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4 Closure under innermost rewriting with shallow TRS

The essential problem in Example 3.1 and Proposition 3.2 relies on the fact that
after an application of the rule g(z) — f(z,z) on a term g(t), producing f(¢,t),
the following application of rewrite rules can change the two occurrences of t in
different ways, producing terms f(¢1,t2) with t1 # to. The equality constraints of
BTTA have not the expressive power to capture the relation relating ¢ and ¢ (i.e.
that both are reachable from a common term). The situation is getting better when
the innermost strategy is applied.

Example 4.1 When we apply the rule g(z) — f(z,z) (Example 3.1) with the
innermost strategy, the subterm where it is applied must be g(¢) for a R-normal
form ¢. Hence, in the term f(¢,¢) obtained, ¢ cannot be modified by rewriting.
Hence R*(L) = {¢"(t) | t € Bin} is BT-regular. &

Note however that R*(L) is not regular in the above example.

Proposition 4.2 In general, R*(L) is not reqular when L is a reqular tree language

L and R a flat TRS.

4.1 Closure of BTTA languages with flat TRS

Linear and flat TRS preserve regularity [14]. This result cannot be extended to
BT-regularity, neither for plain nor innermost rewriting.

Proposition 4.3 In general, R*(L) and R*(L) are not BT-regular when L is BT-
reqular and R s a flat and linear TRS.

Proof. The tree language L = {h(f™(0),f™(0)) | n > 0} is recognized by
the following BTTA, with one equality constraint tested at the root position:
({g, 4"}, {d'}.{0 = ¢, f(a) = ¢, h(q.q) =2, ¢'}). Note that L is not regular. Let
us consider the flat and linear TRS R = {f(z) — g(x)} and the regular tree lan-
guage L' = {h(f™(0),¢™(0)) | n > 0}. The closure R*(L) N L' = {h(f™(0),¢™(0))}
is not BT-recognizable, hence R*(L) is neither BT-recognizable. This is also true if
we consider innermost rewriting. O

4.2 Closure of TA languages with shallow TRS

The classical approach for proving preservation of regularity [10,13,15] consists of
completing a TA recognizing the original language L with new rules inferred us-
ing R. This method cannot be generalized to BT-regular languages, according to
Proposition 4.3. Therefore, we follow a different approach. We first prove that given
L regular and R flat, we can generate a new TRS R, over an extended signature
including a new constant ¢ such that R}({c}) coincides with R*(L) on the given
signature. This simple and enabling result permits to represent the set of terms
reachable from a regular term set as the set of terms reachable from a constant.
Later, we show how to compute a BTTA recognizing the reachable terms from a
constant. To this end we make use of some results in [7] on innermost rewriting
with shallow TRS.
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Simplifying assumptions on the signature and the TRS.

From now on in this section, we assume that all terms are built from a given
fixed signature 3 which contains several constant symbols and only one non-constant
symbol f of arity m. We assume moreover that the TRS R is flat. Such assumptions,
already used e.g. in [7], can be made without loss of generality for the problem
considered here.

Reduction to reachable terms from constants.

Our intention is to reduce the effort of characterizing the reachable terms from a
regular language L to just characterizing the reachable terms from a single constant.
This is possible using the common idea of adding the inverse rules of an automaton
A recognizing L to the rewrite system. The generation of the terms of L starting
from the final states of A before any rewrite step application is ensured by the
innermost strategy.

Lemma 4.4 For every flat TRS R and regular language L, over a signature X,
there exists an extension X' D X, a constant ¢ € ¥\ ¥ and a flat TRS R, over ¥’
such that Ry({c}) N T(X) = R*L).

Weak normal forms and constrained terms.

From [7] we have the following definitions and results. A term t is a weak normal
form if it is either a constant or a term of the form ¢ = f(¢1,. .., t;) such that every
t; is either a constant or a normal form.

A constraint C is a partial function C' : V — P(Xp) (P(X0) denotes the powerset
of 3¢ minus the empty set) i.e. an assignment from variables to non-empty sets of
constants. We say that a substitution o is a solution of a constraint C' (with respect
to a TRS R) if for all z in dom(C), o(z) € NF3(C(z))\ Zo. A constrained term is a
pair denoted ¢|C, where t is a flat term and C'is a constraint, with dom(C) = vars(t).
A term o(t) is called an instance of t|C if ¢ is a solution of C. Note that every
instance of a constrained term is a weak normal form.

In [7] it is shown how to compute for every flat TRS R and for every constant
¢ € g two sets of constrained terms r. and 7. satisfying the following properties.

(a) for every t|C € r¢, there exists at least one solution of C, and all instances of
t|C are innermost-reachable from c.

(b) for every t|C € T, all non-constant normal form instances of ¢|C' are innermost-
reachable from c.

(¢) for every weak normal form s innermost-reachable from c¢, there exists some
constrained term ¢|C € r. such that s is an instance of ¢|C.

(d) for every non-constant normal form s innermost-reachable from ¢, there ex-
ists some constrained term f(t1,...,t,)|C € T. such that s is an instance of

flt1, . tm)|C.
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Recognizing terms reachable from constants.

We assume some sets 7. and 7, as above and we construct a normalized BTTA Agr
which recognizes terms reachable from constants in 3y using R. For this purpose,
we shall use the BTTA B of Lemma 2.1 recognizing the ground normal forms of
R. Let Qo = {q € Qp | 3d € X0, B(d) = q}, and @1 = Q% \ Qo. Without loss of
generality we assume that only constants lead to states in (9. Thus, the states of
(1 characterize the set of non-constant R-normal-form. The states of Ar are pairs
(S, q), where S C ¥ and ¢ € Qp. The intuitive idea is that a term ¢ will lead to
(S, q) with Ap if it leads to ¢ with B and S is the set of all constants that R-reach
t. To this end, the set of transition rules contains:

* b— ({d| b0 € rq}, B(b)), for every constant b.

. f((Sl,q1>,...,<Sm,qm>) £, <S,B(f(q1,...,qm),P)>, for every Si,...,S5, C
>0, q1,---,9m € @p, and partition P of {1,...,m}, and where S is the set of
constants ¢ € ¥y such that there exists f(ai,...,am)|C € (r. UT;) with:

i. V1 <i<m,if a; € 5y then o;; € S; and if o; € V then C(o;) C S; and ¢; € @1,

it. V1 <i<j<m,if oy =a; € Vtheni=p jandif f(ai,...,an)|C € 7\ 1

then B(f(q1 . ..qm),P) € @1 and every a; € Xg (1 < i <m) is in NFpg.

By construction, the automaton Ag is normalized. The following lemma states the
correctness of its construction.

Lemma 4.5 For allt € T(X) Ar(t) = ({d € 2o | d % t}, B(t)).

Proof. Let Ar(t) = (S, q). It is straightforward by construction that B(t) = q. We
prove S = {d € % | d 5> t} by induction on the size of t.

We first consider the case where ¢ is a constant. By definition of Ag, S = {d | (¢|0) €
rq}. It suffices to see that the conditions d <~ ¢ and (¢|0) € rq are equivalent when
t is a constant. This is a consequence of conditions (a) and (d) above.

Now, assume that t is not a constant. Then, ¢ is of the form f(¢1,...,¢y). Let
(S1,q1) = ARr(t1), - - -, {Sm, @m) = Ar(tm). By induction hypothesis, B(¢;) = ¢; and
Si={d € Xo|d - t;}, for every i € {1,...,m}. Let f((S1,q1), .-, (Sm:aqm)) £,
(S, q) be the rule fired in the last applied transition of Ar(t). Then, it holds that
i =p j iff t; = t;. We prove the two inclusions of S = {d € ¥ | d 4 t} separately.

Direction C. Let ¢ € S. By construction of Ag there exists a constrained term
flag,...,an)|C € (r. UT;) for which the above conditions ¢ and # hold.

We obtain an instance of f(a1,...,an)|C by defining a substitution o for the
a;’s that are variables in vars(f(ai,...,qn)) with o(a;) := ¢;. The substitution
o is well defined: if for different ¢ and j we have o; = o; € V, by condition (ii),
it implies that ¢ =p j and then ¢; = ¢;. It holds that every of such o(c) is a
non-constant normal form, because o; € V implies ¢; = B(¢;) € Q1 due to condition
(i). Moreover, o(a;) is reachable from C(«;) because a; € V implies C(oy;) C S;
and S; ={d € Xy | d % ti}. Altogether, it follows that o(f(aq,...,qn)) is an
instance of f(ai,...,am)|C € (r. UT).

We know that either f(aq,...,amn)|C € e or f(ai,...,am)|C € ¢\ re. On the
one hand, if f(ai,...,amn)|C € r. then, by condition a, ¢ % o(f(ar,...,am)).
On the other hand, if f(ai,...,am)|C € 7¢ \ r. then our conditions imply that
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B(f(q1,---,qm), P) € @1, and hence ¢ € @1 and t is a non-constant normal form.
Moreover, the «;’s that are constants are also normal forms. For every one of
these constants «; we know that a; € S;, and hence we also have «; % t;.

But since this «; is a normal form it follows that «; = t;. This implies that
o(f(aq,...,am)) = t, and hence, that ¢ is a non-constant normal form that is
an instance of f(a,...,on)|C € T¢, and by condition b, ¢ < o(f(a1,...,am)).
Once we know that ¢ = o(f(ou,...,00)), it suffices to show that
o(f(ai,...,um)) 5 t in order to conclude. By the definition of o, terms
o(f(aq,...,ap,)) and t can only differ in the positions i such that «; is a con-

stant. But in such cases we know that a; € S;, and using S; = {d € Xy | d % t:}
we obtain a; -~ t;. Hence, o(f(o1,...,am)) 4 t follows.

Direction D. Let ¢ be such that there exists a rewrite sequence ¢ % t. Since t is
not a constant, the previous derivation can be written by making explicit the last
rewrite step at position A as (>A represents any position other than A):

A A
C ?W f(Sl,...,Sm) Wt: f(tl,,tm)
Hence, there exist (sub-)derivations s; % t;. The term s = f(s1,...,8m) is a weak

normal form, and hence, by condition ¢, there exists a constrained term u|C' € 7,
such that s is an instance of u|C. At this point, either there exists such a u of the

form f(ai,...,am), or every u satisfying this condition is a variable. In the second
case, s is necessarily a normal form, and hence, by condition d, there exists a con-
strained term f(aq,...,an)|C in 7. such that s is an instance of f(ai,...,am)|C.

For proving that ¢ € S, it suffices to show that the conditions ¢ and i hold.

If a certain «; is a constant, then it coincides with s;, which R-reaches t;. Since
S;={deX|d % t;}, it necessarily contains «;.

If a certain «; is a variable, then s; coincides with ¢; and is a non-constant
normal form reachable from C(«;). Hence, ¢; = B(t;) is in @1, and again since
Si={d € %o | d 5 t;}, it necessarily includes C(a;).

If o; = a; € V then s; = s; and since both are normal forms we also have t; = t;,
from which ¢ =p j follows.

In the case where f(aq,...,am,)|C belongs to 7 \ r¢, f(s1,...,8m) I8 a non-
constant normal form. Therefore, ¢ = B(f(q1,...,qm), P) € Q1 and all the con-
stants «; are also normal forms. O

Given a flat TRS R and a regular L, the BTTA Ap, (for R, associated to R as
in Lemma 4.4), restricted to the signature X of R, recognizes R*(L) by marking as
accepting states the pairs (S, ¢) such that ¢ € S, according to Lemmas 4.4 and 4.5.
This permits to conclude the proof of Theorem 4.6.

Theorem 4.6 R*(L) is BT-reqular when L is reqular and R is shallow.

A term t is reachable from another term s if there exists a rewrite sequence that
transforms s into t. Two terms s and ¢ are joinable if there exists a term u reachable
from s and t. Ground reachability and joinability (the restriction of these problems
to ground terms ) are undecidable for flat TRS [12]. Theorem 4.6 show that they
become decidable when the innermost strategy is applied.
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Corollary 4.7 Ground reachability and joinability are decidable for ground terms
for innermost rewriting with shallow TRS.

Proof. When restricting to innermost rewriting, ¢ is reachable from s iff ¢ €
R*({s}). Since {s} is a regular language when s is ground, R*({s}) is BT-regular
by Theorem 4.6. Therefore ground reachability reduces to the membership problem
for BTTA, which is decidable.

Similarly, s and ¢ are joinable iff R*({s}) N R*({t}) # 0. By Theorem 4.6 and
closure of BT-languages under Boolean operations [3], we obtain a reduction of
ground joinability to the emptiness problem for BTTA, which is also decidable. O

In [1] the decidability of the regularity of a BTTA was shown. Combining this
result with Theorem 4.6 we obtain the following corollary.

Corollary 4.8 Given a regular language L and a shallow TRS R, it is decidable
whether R*(L) is reqular.

This result does not hold when we deal with plain rewriting. In [12] it has been
proved that reachability of flat TRS is undecidable by reducing the Post correspon-
dence problem into 0 % 1. We show below how to extend R into Ry such that
Ro*(0) is regular iff 0 = 1.

Theorem 4.9 Given a regular language L and a flat TRS R, it is undecidable
whether R*(L) is regular.

Proof. In [12] it is proved that reachability of flat TRS is undecidable by reducing
a PCP instance P into a TRS R over a signature including {0, 1} such that P has
a solution iff 0 -~ 1. The reduction in [12] also satisfies that if P has no solution,
the 0 does not reach any term containing 1 nor any term containing 0 properly.
This reduction can be modified by adding new symbols {f,h,g,a,b,c} to the
current signature ¥, and adding two new sets of rules to R: Ry = {0 — f(a,b),a —
g(a),b— g(b),a — ¢,b — ¢, f(x,z) — h(xz,x)} and Rs containing all the necessary
rules for making R3(1) to be T(X U {f,h,a,b,c}). The rules of R ensure (R U
Ri U Ry)*(0) to be a non-regular language, unless 0 -~ 1. Note that if P has
solution, then 0 —> 1, and hence (RU Ry U R2)*(0) is T (X U{f, h,a,b,c}), which is
regular. Otherwise, if P has no solution, then 0 does not reach any term containing
1, nor containing 0 properly, and hence (R U Ry U R2)*(0) N7 ({h,c}) is the set
{h(g"(c),g™(c)) | n > 0}, which is not regular. O

5 Innermost rewriting and right-shallow TRS

In this section, we study the closure of regular languages under innermost rewriting
with TRS whose right-hand sides of rules are shallow. We show that regularity is
preserved by innermost rewriting with linear right-shallow TRS (Subsection 5.1),
but not by innermost rewriting with right-(linear and flat) (non left-linear) TRS
(Subsection 5.2).
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5.1 TA languages and linear and right-shallow TRS

First, we observe that every right-shallow TRS R can be transformed into a right-
flat TRS R’ (on an extended signature) such that for all s,t € 7(X), s % t iff
s % t. The idea is to add a new constant ¢, and a rule ¢, — r for every ground
proper subterm r of a right-hand side of a rule of R, and to replace r by ¢, in all
the right-hand sides of R.

Let A= (Q,Qf, A) be a deterministic and complete TA on ¥ recognizing a tree
language L, and let R be a linear and right-flat TRS. For all ¢ € X3 we denote as
gc the unique state of @ such that ¢ — q. € A. We assume moreover wlog that
L(A, qc) = {c}.

We construct a finite sequence of TA Ag, A1, ... whose last element recognizes
R*(L). The construction of the sequence is incremental. Every Ay; is obtained
from Aj by the addition of some new transitions, such that if some term s is
recognized by Ay and s rewrites (in one step of innermost rewriting) to ¢, then
t is recognized by Ag11.

In order to restrict to innermost rewriting, we shall use a complete and de-
terministic TA B = (Qp, Q%, Ap) (without e-transitions) recognizing the ground
R-normal forms (see e.g. [3] for its construction). As in Lemma 2.1, we can
assume that B has only one non-accepting state greject- Let Ag be a TA rec-
ognizing L(A): Ay := (Q x Qg,Qf x QB,AO) where Ag is the set of transi-
tions f((ql,q’1>,...,<qm,q7’n>) — {q,q') such that f(q1,...,q¢m) — ¢ € A and
fd, - an) — ¢ € Ap.

The addition of transition rules to Ay, giving Ag11, is defined by the superposi-
tion of rules of R into a sequence of transitions of Ay. More precisely, Ax11\ Ay con-
tains all the transitions which can be constructed from a rewrite rule £ — r of R (we
let £ = f(1,...,4n)) and a substitution @ of the variables of £ into states of Q x Q;

*

whose accepted language wrt Ay is not empty, such that: 6(¢) v (90, Greject), and

the last step of the above reduction is f({q1,4}), - - -, (gm- @) A {90+ Greject) and
for all i < m, ¢} # greject- There are two cases for the transitions of Ag41 \ Ag:

e case 1: r is a variable. In this case, r € vars(f). Let (g,q') = 6(r), we add the
e-transition (q,q7’) — (qo,q)-

e case 2: r = g(ry,..., ). We add all the transitions ¢((q1, 7)), - -, (GmsT)) —
(g0, q') such that g(q,...,q,) — @ € Ap and for each i < m, if r; is a variable
then (g;,q,) := 0(r;), otherwise, if r; is a constant then g; is ¢,, and there is no
restriction for g.

All the TAs have the same state set, hence the construction terminates with a
fixpoint denoted A*. We can now show that L(A*) = R*(L(A)), more precisely,
that for all t € T(X), t € L(A*, (¢,¢)) iff t € L(B,¢’) and there exists s € L(A, q)
such that s % t. To this end we follow the principle of the proofs given e.g.
in [14,10,13], but some technical difficulties appear when we try to replace a subterm
by another subterm while preserving an execution with A*. They are solved thanks
to the following technical Lemma 5.2.

The if direction is proved by induction on the number of rewrite steps
in s % t, using Lemma 5.2. The other direction is proved by an induc-
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tion on the multiset associated to the derivation ¢ %» {(q,q¢') by mapping
each transition rule p used to the least index i of the A; to which p belongs.

Lemma 5.2 For allt € T(XUQa~), ift[(qg,qrejecth — (¢ Greject) then, for all
q' € Qp, there exists ¢" € Qp such that t[(qo, ¢ )]p = (¢,4")-

Proof. First of all, we note that no e-transition is applied in ¢ A*—,m (q, Greject) at any
position p’ < p wrt the prefix ordering. This is due to the fact that the e-transitions
are always of the form (_,qn,) — (-, gnr € @p) for some gy, different from greject,
since this kind of transitions are derived in case 1 using rules where the right-hand
side is a variable, and hence, it is necessarily instantiated by a normal form.
Hence, it suffices to prove the statement of the lemma for the case where t is
of the form f({q1,4}),---,(@m,q,)), P is a certain position ¢, and there is just one
rewrite step derivation with a rule of the form f({q1,¢1), .-, (Gi: @)+ - -+ (Gm> @) —
(¢, Greject). The global statement is then obtained inductively. In this case, ¢; is qo,
and qé iS Greject- If the rule [, qI1>7 s G qll‘>, s (gm, Q;n>) — (q Qreject> is in Ay,
by the definition of Ay we have that for any ¢’ € Qp there exists also an alternative
rule of the form f({q1,4}),---,{qi,q);s---,{am,4,,)) — (¢,q"), for some ¢”, and we
are done. Otherwise, assume that this rule f({g1,4¢}),---, (¢, @)+, (Gm: ) —
(¢, Greject) is not in Ag. Then it has been derived by case 2 using a rule ¢ —
f(ri,...,rm) € R. Moreover, by the conditions of case 2 and the fact that ¢} is
Greject We know that r; is not a variable, and hence, it is a constant. Again by the
conditions of case 2, for any ¢’ € @Qp there exists also an alternative rule of the form

FUa,dy)s - {qi,d'), - (Gmy dhn)) — (q,q"), for some ¢”, and we are done. a

The number | A*| of states of A* is at most |A| x | B|, and the number of rules of
A* is polynomial in the same measure? , if we assume as usual that the maximum
arity of a function symbol is fixed for the problem.

Theorem 5.3 R*(L) is reqular when L is regular and R is linear and right-shallow.

Proof.

e Direction <= We prove it by induction on the number of rewrite steps of s % t.
For 0 rewrite steps we have s = t, and hence, ¢t % q. From the construction
of Ay, t ALO’ (¢,q') follows, and since Ay C A* we also have t = (¢,¢'), and
we are done. Hence, assume that there is at least one rewrite step in s % t.
We can write this derivation by making explicit the last rewrite step as s %
tlo(D]p =55 tlo(r)]p = t. By induction hypothesis, t[o({)], =z (4, Greject)
(the greject is due to the fact that t[o(f)], is not a normal form). By re-ordering
the rule applications of A*, we can assume that this derivation is of the form

t[O’(f)]p A*—*) t[e(@]p %} t[<Q07 Qrejectﬂp A*—*> <Qa Qreject>
where # is a mapping from variables to states of A*. By the conditions for

adding new rules into the A;’s, we also have 0(r) == (qo, ¢j) for some ¢ € Qp,
and since the variables of r occur also in ¢, there exists a derivation o(r) -

3 Note however that |B| can be exponential in the size of R in worst case.
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0(r) == (o, q0), and hence, by Lemma 5.2,

t{o(r)]p % t[O(r)]p A*—*’ (a0, a0)]p % (¢,4")

for some ¢”. But this ¢” is necessarily ¢’ since A* simulates B on the second
component of the pairs, and we are done.

Direction = The fact that ¢ % ¢ follows directly from the construction of
B: note that all the A;’s always simulate the execution of B for the second
component of the pair of states. For proving that s : (s % qnNs % t), we
do an induction on the measure defined as follows. For a concrete derivation
t — (¢,q'), we call Rules(t = (¢,¢)) the multiset of all rules used in it, and
define Ind(t <= (g, ¢')) as the multiset obtained by replacing every occurrence of
arule £ — r in Rules(t <= (¢,¢’)) by the least index i such that £ — r € A;. We
compare indexes of derivations by the multiset extension of the usual ordering
on natural numbers, and prove the statement of the lemma by induction on this
ordering.

Now, we distinguish cases depending on whether the last rewrite step of ¢ %
(q,q') is an e-transition or not.

Assume first that it is an e-transition. Then, this derivation can be written of
the form ¢ <+ (qo,q¢') —— (¢,¢’) for a certain state (go,q’) of Qa-. The rule
(g0, q") — {q,q¢’) is not in Ay, and has been necessarily added into some A; with
1 > 0 by case 1, using a collapsing rule £ — x € R and a substitution 6§ such that
0(z) = {(qo,q’) and 6(¢) ﬁ (¢, Greject). Moreover, for the rest of variables y of
¢ different from =, there exist terms t, € 7(3) such that t, <— 0(y).

We define a substitution o such that o(y) = t, for every of such y, and o(z) = t.
The substitution o is well defined because R is right-linear.

Hence, we have a one rewrite step derivation o (¢) W t, which is innermost
due to the conditions for the addition of the rule to A; (condition g, # greject
there). Now, note that the multiset Ind(t == (go,q’)) has just one less i than
Ind(t =+ (q,¢)), and that the multiset Ind(6(¢) x> (4, Greject)) and the respec-
tive multisets Ind(t, ﬁ—ﬁ 6(y)) contain numbers smaller than i. Therefore, com-
posing the previous derivations we can construct a derivation o(¢) <5 (¢, Greject)
smaller than ¢ ;—*> {g,q"). Hence, by induction hypothesis, there exists a term s
such that s % o(¢) and s % q, and, since t is R-reachable from s, we are done.

Now, assume that the last rewrite step of ¢ % (q,q') is not an e-transition.
Hence, this derivation can be written by making explicit the last step as ¢ %
fUai, 1), {@m @) == (¢, ¢'). Thus, if we write t of the form f(t1,... ),
we can take (sub-)derivations t; —+— (q1,4¢}); ---tm <~ (Gm.q,). Every
Ind(t; == (¢i,¢})) is smaller than Ind(t <+ (¢,¢’)), and thus, by induction
hypothesis there exist terms s1, ... s, and derivations s; %» q; and s; % t;.

At this point we distinguish cases depending on whether the rule
fla, qh)y - s {am,dn) — {q,¢') belongs to Ay or not. Assume first that
it belongs to Ag. Then, by the definition of Ay, there exists also a rule
flq1,---,qm) — q in A. Therefore, by composing this and the previous deriva-
tions, we have f(s1,...,8m) &> ¢ but also f(s1,...,5m) 5 f(t1,... . tm) = ¢,
and we are done.

122



GAScON, Gopoy, JACQUEMARD

Now, assume that f({q1,¢}),-.,(@m.q)) — {(g,q¢) has been added by case
2 into some A; with ¢ > 0 using a rule of the form ¢ — f(ry,...,r,) and a
substitution 6 satisfying the following properties. On the one side, 0(¢) ﬁ
(4, Greject). On the other side, for every r;, if r; is a variable then (g;, ;) is 6(r;)
and ¢ # Greject; and otherwise, if 7; is a constant then g¢; is ¢,, and there is
no restriction on ¢,. Moreover, for the variables y occurring in ¢ and not in
f(ri,...,rm) there exist terms ¢, € 7(X) such that ¢, ﬁ 0(y). We define a
substitution ¢ such that o(y) = t, for every of such y, and o(r;) = t; for the r;
that are variables. As above, o is well defined because R is right-linear. Hence,
we have a one rewrite step derivation o(¥) gy o(f(ri,...,rm)), which
is innermost due to the conditions for the addition of the rule to 4A;, again. The
terms o (f(r1,...,rm)) and t = f(t1,...,ty) can differ only in the positions i such
that r; is a constant. For an ¢ of this kind, ¢; is ¢,, and the only term of 7(X)
that can be derived into ¢, with A is r;. Therefore, s; is r;, and hence, there
exists a derivation r; % ti.

This implies that o(f(r1,...,7m)) % t. To conclude, it suffices to see that
there exists a term s such that s % o(f) and s =~ ¢. To this end, we will prove
that there exists a derivation () == (¢, reject) smaller than ¢t < (¢, ¢’), and
the statement will follow by induction hypothesis. But this is identical to what

we have done in a previous case. Note that the multiset Ind(6(¢) ﬁ (9, Greject))

and the respective multisets Ind(t, E%—ﬁ f(y)) contain numbers smaller than i.
Moreover, for the variables x that occur in f(rq,...,ry,), left-linearity ensures
that the indexes are preserved in these cases. Therefore, composing the previous
derivations we can construct a derivation o(¥) % (¢, Greject) smaller than ¢ %
(q,¢"), and we are done.

O

5.2  Closure of TA languages with right-(linear and flat) TRS

When we drop the restriction that R is left-linear in Theorem 5.3, we lose regularity
preservation with innermost rewriting. This is in contrast with plain rewriting,
where regularity is preserved for right-linear and right-shallow TRS [13].

Proposition 5.4 In general, R*(L) is not BT-reqular when L is regular and R is
right-linear and right-flat.

Proof. Let L = {f(f(a,a),c)}, and R = {f(z,¢) — =z, f(g9(x),z) — h(z),h(z) —
h(z),a — g(a),a — b}. The intersection of R*(L) with the language of all terms
containing only the symbols f, g, b is the set {f(g"(b), g™ (b)) | n # m + 1}, which
is not BT-regular. O

6 Conclusion and further work

We have covered much of the cases of closure of TA and BTTA languages by in-
nermost rewriting, providing results for each case. The positive results are that the
set of terms innermost-reachable from a regular language with a shallow TRS is
BT-regular, and it is regular when the TRS is linear and right-shallow. Moreover,
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given a shallow TRS, regularity of the reachable terms from a regular language
is decidable. Other consequences are the decidability of the problems of ground
reachability, ground joinability and reqular tree model checking (given two regular

languages Linit and Lp,q and the TRS R, do we have R* (Linit) N Lpag = 07) for
innermost rewriting with TRS in the above classes.

As future work, it could be interesting to consider other variants of tree au-
tomata with more general or different constraints, and to consider other strategies
of rewriting different from innermost.
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