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Workshop “Differential Equations by
Algebraic Methods”

Preliminary Schedule

Friday, 6th of February in RISC, Hagenberg
9:00 – 9:20 Morning Coffee
9:20 – 9:30 Franz Winkler welcome
9:30 – 10:15 Kate Shemyakova ta
10:30 – 11:15 Arne Lorenz Laplace Invariants via Vessiot Equivalence Method
11:30 – 12:15 Johannes Middeke The Jacobson Normal Form of a Matrix of Differential Operators

Lunch
14:00 – 14:45 Evelyne Hubert Differential Invariants of Lie groups: Generating Sets and Syzygies
15:00 – 15:45 Fritz Schwarz Ideal Intersections in Rings of Partial Differential Operators

Coffee breack
16:15 – 17:00 Markus Rosenkranz A Skew Polynomial Approach to

Georg Regensburger Integro-Differential Operators (joint work with Johannes Middeke)
17:15 – 17:30 Loredana Tec Implementation of Integro-Differential Operators

Saturday, 7th of February in RISC, Hagenberg
9:30 – 10:15 George Labahn The Popov Normal Form of a Matrix of Differential Polynomials
10:30 – 11:15 Elizabeth Mansfield ta
11:30 – 12:15 Wilhelm Plesken Counting Solutions of differential and polynomial systems

Lunch
14:00 – 14:45 Christian Aistleitner Differential reduction“s” for differential characteristic set computations
15:00 – 15:45 Lam Xuan Chau Ngo Rational gen. solutions of first-order non-autonomous parametric ODEs

Conference Dinner ∼ 19:00 in Linz

Sunday, 8th of February in the hotel
10:00 – 12:00 Discussions, planning cooperations, etc.

Lunch in Linz
optional: Linz 2009 European Capital of Culture (Lentos museum:

“Best of Austria. An Art Collection” and “Images of the City in Art. Linz view. 1909-2009”)

Other participants: Franz Pauer, Günter Landsmann, Ralf Hemmecke, ...

The workshop is supported by FWF project DIFFOP (F. Winkler and E. Shemyakova) and EU project SCIEnce:
Symbolic Computation Infrastructure for Europe (F. Winkler).
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Research Interests of Our Group
Franz Winkler Team leader. Besides the work with the members of the

team, cooperation with M.Zhou on Groebner Bases. This
work is based on the work of F.Pauer (a participant),
”Groebner Bases in Rings of Differential Operators”, in:
B.Buchberger,F.Winkler, ”Groebner Bases and
Applications”, Cambridge Univ. Press (1998).

Johannes Middeke Smith normal form for matrices with DE entries (a
talk). Cooperation with M. Rozenkranz and G. Regensburger
on Integro-Differential Operators (a talk).

Chau Ngo Feng and Gao have shown how to use the parametrization of
algebraic curves (Sendra/Winkler) for exact solution of a
DEs of the form F (y , y ′) = 0, where F is a polynomial;
Chau is working on extending of this results (a talk).

Ekaterina Shemyakova Moving Frames for computation of Laplace
invariants of different sorts with E. Mansfield (a talk).
Transformation Methods for exact solution of PDEs with S.
Tsarev (a talk).
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Linear Partial Differential Operators

K : a field, char(K ) = 0 with commuting ∂x , ∂y .

K [D] = K [Dx , Dy ]: the ring of LPDOs

L =
d∑

i+j=0

aijD
i
xD j

y aij ∈ K ,

the principal symbol is the formal polynomial

SymL =
∑

i+j=d

aijX
iY j .

K is differentially closed, i.e. contains solutions of (non-linear in the
generic case) differential equations with coefficients from K .

Analogously we work with arbitrary number of independent variables.
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Laplace Transformations Method

Laplace (1749 - 1827) Darboux (1842 - 1917)

it is a method of exact integration of L(u(x , y)) = 0 with

L = Dx ◦ Dy + aDx + bDy + c , a = a(x , y), b = b(x , y), c = c(x , y) .
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Lemma 1.

L = Dx ◦ Dy + aDx + bDy + c = (Dx + b) ◦ (Dy + a) + h

= (Dy + a) ◦ (Dx + b) + k ,

where h = c − ax − ab, k = c − by − ab.

h, k form a generating set of differential invariants under the gauge
transformations!
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Consider L = {L = Dx ◦ Dy + aDx + bDy + c} and the gauge action on L
exp(g(x , y)) ∗ L = exp(−g(x , y)) ◦ L ◦ exp(g(x , y)) .

The gauge action can be defined also the coefficients of L’s as

exp(g) ∗ a = a + gy ,

exp(g) ∗ b = b + gx ,

exp(g) ∗ c = c + gxy + gxgy + agx + bgy .

Differential Invariant: an algebraic function of coefficients a, b, c and finite
number of their derivatives that is invariant under the given
transformations.
h = h(a, b, c) and k = k(a, b, c) are differential invariants for L under the
gauge transformations, i.e.

h(a, b, c) = h(exp(g) ∗ a, exp(g) ∗ b, exp(g) ∗ c) ,

k(a, b, c) = k(exp(g) ∗ a, exp(g) ∗ b, exp(g) ∗ c) .
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Lemma 2.

If L is factorable, then the equation L(z) = 0 is integrable in quadratures.
If, say, h = 0, the problem of the solution of L(z) = 0 is reduced to the
problem of the integration of the two first order equations:{

(Dx + b)(z1) = 0,
(Dy + a)(z) = z1.

Accordingly one gets the general solution of zxy + azx + bzy + c = 0:

z =
(

A(x) +

∫
B(y)e

∫
ady−bdxdy

)
e−

∫
ady

with two arbitrary functions A(x) and B(y).
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The Method of Laplace
If L is not factorable, i.e. h 6= 0 and k 6= 0, consider L1 and L−1, which are
the results of the differential substitutions

z1 = (Dy + a)(z), z−1 = (Dx + b)(z) ,

correspondingly. Straightforward computation yields

L1 = Dxy +
(

a− ln |h|y
)

Dx + bDy + c + by − ax − b ln |h|y ,

L−1 = Dxy + aDx +
(

b − ln |k |x
)

Dy + c − by + ax − a ln |k |x .

Note that the new operators belong to L.
The Laplace invariants of L1 and L−1:

h1 = 2h − k − ∂xy (ln|h|) , k1 = h 6= 0 ,

h−1 = k 6= 0 , k−1 = 2k − h − ∂xy (ln|k |) .

· · · ← L−2 ← L−1 ← L,
L → L1 → L2 → . . .
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Lemma
L = h−1(L1)−1h,

the Laplace invariants do not change under such substitution.

Therefore, we have essentially ONE chain:

· · · ↔ L−2 ↔ L−1 ↔ L↔ L1 ↔ L2 ↔ . . . ,

and the corresponding chain of invariants is

· · · ↔ h−2︸︷︷︸
=k−1

↔ h−1︸︷︷︸
=k

↔ h↔ h1︸︷︷︸
=k2

↔ h2 ↔ . . .

Theorem [Goursat/Darboux]
If the chain of invariants if finite in both directions,
then one can obtain a quadrature free expression of the general solution of
the L(u(x , y)) = 0.
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Generalizations and Variations of the Laplace Method

non-linear, 2nd-order, scalar PDEs of the form

F (x , y , z , zx , zy , zxx , zxy , zyy ) = 0.

[Darboux] (via linearization)

as above, but non-scalar [Anderson, Juras, Kamran] (via analysis of
the higher degree conservation laws).

2nd-order, arbitrary many independent variables, an idea [Dini]

existence proved [Tsarev] for

L =
∑

i+j+k≤2

aijk(x , y , z)DxDy Dz

systems whose order coincides with the number of independent
variables [Athorne and Yilmaz]

attempt for arbitrary order operators in two independent variables
[Roux]

arbitrary order hyperbolic operators [Tsarev]
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First Constructive Factorization Algorithm: Grigoriev and
Schwarz
Theorem[Constructive Proof] Let the symbol of some LPDO
L ∈ K [Dx1 , . . . , Dxn ] factors as

SymL = S1 · S2 . . . Sk , (∗)
where S1, . . . , Sk are coprime. Then there exists At MOST one
factorization

L = F1 ◦ · · · ◦ Fk ,

such that
SymFi

= Si , i = 1, . . . k .

Note: theorem does not require L to be hyperbolic.
Proof. Consider L and Fi ’s as the sums of their homogeneous components.
Substitute into (∗) and equate the corresponding homogeneous
components. Obtained polynomial equations can be solved
ALGEBRAICALLY when solve them in the descending order one after
another.
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Example
Consider NON-hyperbolic L = Dxyy + Dxx + Dxy + Dyy + xDx + Dy + x ,
and factorization of its symbol SymL = (X ) · (Y 2). Consider

ŜymL +
2∑

i=0

L3 = (Dx + G0) ◦ (Dyy + H1 + H0)

with G0 = r(x , y), H1 = a(x , y)Dx + b(x , y)Dy , and H0 = c(x , y). Equate
the components on the both sides of the equality:

L2 = (aX + bY )X + rY 2 ,
L1 = (c + ra + ax)X + (bx + rb)Y ,
L0 = rc + cx ,

L2 = X 2 + XY + Y 2, L1 = xX + Y , L0 = x .

The first equation gives us a = b = r = 1.
We plug this to the second equation, and get c = x − 1, that makes the
last (third) equation of the system identity. Thus,

L = (Dx + 1) ◦ (Dyy + Dx + Dy + x − 1) .
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Concluding Remark on Grigoriev-Schwarz’s algorithm

It reveals a large class of LPDOs which factor uniquely.

In general, given a factorization of the symbol, the corresponding
factorization of LPDOs is not obligatory unique!
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Invariants of LPDOs

The Laplace Transformation method of integration is based on invariant
description of invariant properties.

1 Laplace transformations are invariant w.r.t. the G.T. Thus, we can
consider a chain of invariants instead of a chain of operators.

2 The existence of a factorization is an invariant property, therefore,
can be described in terms of invariants.
In our particular case,

L = Dxy + a(x , y)Dx + b(x , y)Dy + c(x , y) =

(Dx + b)(Dy + a) + h = (Dy + a)(Dx + b) + k ,

and a factorization exists if and only if h = 0 or k = 0.
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Invariants for Hyperbolic Bivariate LPDOs
of Third-Order

Such the operators have the normalized form

L = (p(x , y)Dx + q(x , y)Dy )DxDy +
2∑

i+j=0

aij(x , y)D i
xD j

y

Symbol with Constant Coefficients: 4 invariants were determined, but
they are not sufficient to form a generating set [Kartaschova].

Arbitrary Symbol: ideas how one can get some invariants [Tsarev],
also some [Kartaschova], but again insufficient to form a generating
set.

Arbitrary Symbol: a generating set is found [Shemyakova, Winkler].
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Generating Set of Invs for L = (pDx + qDy )DxDy + . . .
Theorem. The following is a generating set of invariants:

Ip = p ,

Iq = q ,

I1 = 2a20q2 − a11pq + 2a02p2 ,

I2 = a20xpq2 − a02y p2q + a02p2qy − a20q2px ,

I3 = a10p2 − a11a20p + a20(2qy p − 3qpy ) + a2
20q − a11,y p2 + a11py p + a20,y pq ,

I4 = a01q2 − a11a02q + a02(2qpx − 3pqx) + a2
02p − a11,xq2 + a11qxq + a02,xpq ,

I5 = a00p3q − p3a02a10 − p2qa20a01 + p2a02a20a11 + pqpxa20a11 +

(pI1 − pq2py + qp2qy )a20x + (qqxp2 − q2pxp)a20y

+(4q2pxpy − 2qpxqy p + qqxy p2 − q2pxy p − 2qqxppy )a20

+(
1

2
pxy p2q − pxpy pq)a11 − 1

2
p3qa11xy

+
1

2
a11xpy p2q +

1

2
a11y pxp2q − 2pxq2a2

20 − 2p2pxa20a02 .

Kate Shemyakova (RISC) My Resent Results on Symbolic Methods for LPDOs 21 / 44

The results mentioned above (ours and not) have been obtained using
some generalization of the Laplace methods.

Problems on the way of future development:

output invariants are not independent;

they are not enough to form a generating set;

how to treat non-hyperbolic case?

joint invariants of a pair of operators?
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Moving Frames Method

Laplace-like methods were developing independently from, and without
reference to the methods of moving frames.

1 The idea of moving frames is associated with Cartan, but in fact was
used earlier for studying geometric properties of submanifolds and
their invariants under the action of a transformation group.

2 Fels and Olver formulated a new, constructive approach to equivariant
moving frame theory for the finite-dimensional group actions. The
methods have been applied in various areas of mathematics (in
particular, Mansfield and Moroz have been applying them for PDEs).

3 Recently Olver and Pohjanpelto, also Cheh explore
infinite-dimensional case, and pave the way for computer algebra
applications.
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Moving Frames for Laplace Invariants

Consider this method for the simplest possible example: hyperbolic
bivariate LPDOs of 2-nd order:

L = Dxy + a(x , y)Dx + b(x , y)Dy + c(x , y) .

For such the class a generating set is known:
{h = c − ax − ab , k = c − by − ab}.

The action of the gauge transformations L→ Lf = Lexp(g(x ,y)):{
x̃ = x ,
ỹ = y ,

&


ã = a + gy ,

b̃ = b + gx ,
c̃ = c + agx + bgy + gxy + gxgy .
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In a neighborhood of some generic point (x0, y0):

g(x , y) =
g(x0, y0)+gx(x0, y0)(x−x0)+gy (x0, y0)(y−y0)+ 1

2gxx(x0, y0)(x−x0)2+. . .
One can assume g(x0, y0) = 0. Now gJ(x0, y0), J ∈ N2

0 are independent
parameters of the prolonged action.
Further below we omit the designation of the dependence on x0 and y0.

The Cartan normalization procedure: construct a cross-section by choosing
some normalization equations.

Set the values of the parameters gx and gy :{
ã = a + gy = 0 ,

b̃ = b + gx = 0 .
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Set the values of the parameters gxy , gyy , gxx :

consider some formulae of the first prolongation:
ãx = ax + gxy = 0 ,
ãy = ay + gyy = 0 ,

b̃x = bx + gxx = 0 .

The formulae of the action are linear differential expressions on g , thus it
is easy to obtain all the prolongations.

Choosing the normalization equations

ãJ = 0 , ∀J ∈ N2
0 ,

we get equations for every action parameter (gy )J , while the normalization
equations

b̃x ...x = 0 (1)

provide us with the equations for all (gx)x ...x .
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The invariantization ι of the coordinate functions on M :

I
aij

J = (̃aij)J |frame .

The invariants that correspond to the coordinate functions appearing in
the chosen normalization equations are constants, and called phantom
differential invariants, while the remaining (I b

y and I c) form a generating
system of differential invariants:

6

y

- x
�
��

All were
normalized

to zero

a

6

y

- x
norm. to zero

b

6

y

- x
c

Figure: Three copies of N2, one for each independent variable a, b, and c showing
which derivatives have been normalized. The � indicates a generating invariant.
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Keeping in mind that formulae for every prolongation of the action
depends on only FINITE number of group parameters gJ(x0, y0), we can
prove that finite case theorems valid in the case of our particular Lie
pseudo-group action also.
Thus, the recurrence formulae of Olver and Pohjanpelto implies that all
the remaining invariants can be ontained by differentiating I b

y and I c .

Since the normalization equations imply gx = −b, gy = −a, gxy = −ax ,
then

I b
y = b̃y |frame = by − ax ,

I c = c̃ |frame = c + a(−b) + b(−a)− ax + ab = c − ab − ax .

Remark. The Laplace’s complete generating system is
{h = c − ax − ab , k = c − by − ab}.
Their invariants can be expressed in terms of the new ones as

h = I c , k = I c − I b
y .
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L = (p(x , y)Dx + q(x , y)Dy )DxDy +
2∑

i+j=0

aij(x , y)D i
xD j

y

Every factorization of L is an extension of a factorization of its symbol
SymL = XY (pX + qY ). Thus consider NON-commutative factorizations
of this polynomial.

12 different factorizations of SymL:

1. (S)(XY ) , properties of the formal adjoints

(XY )(S) , symmetry w.r.t. X , Y :

2. (X )(YS) , (Y )(XS) , ← consider only one of the two

(YS)(X ) , (XS)(Y ) , ← consider only one of the two

3. (S)(X )(Y ) , (S)(Y )(X ) , ← consider only one of the two

4. (X )(S)(Y ) , (Y )(S)(X ) , ← consider only one of the two

(X )(Y )(S) , (Y )(X )(S) , ← consider only one of the two
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Factorization Type (S)(XY)

Theorem

Operators of an equivalent class given by the values of the invariants
I1, I2, I3, I4, I5 has a factorization of the factorization type (pX + qY )(XY )
if and only if

I3q3 − I4p3 + (pq(qy − px) + 2(py q2 − qxp2))I1
+pq(pI1x − qI1y )− 3pqI2 = 0 ,
Is I2 + Ir + 2pq2I2x + q3I2y = 0 ,

where Is = q
p (4p(qpx + pqx) + 2q(pqy + qpy ) + I1),

Ir = q3p
2 I1xy − qp2(qI4y − pI4x) + q3

p I5 + q2p2I1xx − 3q2pqx

2 I1y + pI1I4 +
(
−

2qp2qxx + 6q2
xp2 + q2qxpy + 4qpqxpx − q2ppxx + q2pxqy − 3q2pqxy

2 +

5qpqxqy + 2p2
xq2 − q3pxpy

p

)
I1 + 3p2(qqy + pqx)I4 +

(
2qx + qpx

p

)
I 2
1 −

pq
(

3qqy

2 + 2qpx + 4pqx

)
I1x − qI1I1x .
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Analogously other three main types

2. (X )(YS) ,

3. (S)(X )(Y ) ,

4. (X )(S)(Y ) ,

where S = (pX + qY ).

The obtaining of conditions is not an automatized process.
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The formal adjoint for

L =
∑
|J|≤d

aJDJ ,

where aJ ∈ K , J ∈ Nn, |J| is the sum of the components of J, is

L†(f ) =
∑
|J|≤d

(−1)|J|DJ(aJ f ) , ∀f ∈ K .

Properties:

(L†)† = L,

(L1 ◦ L2)† = L†2 ◦ L†1, the type of factorizations changes!

SymL = (−1)ord(L)SymL† .

Lemma

The operation can be defined on the equivalent classes of LPDOs.
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Example: hyperbolic operators of order 2

The family of operators {L = Dxy + a(x , y)Dx + b(x , y)Dy + c(x , y)} has a
complete generating set of invariants {h = c − ax − ab , k = c − by − ab}.

For the formal adjoint

L† = Dxy − aDx − bDx + c − ax − by

we have
h† = c − by − ab , k† = c − ax − ab .

Thus,
{h , k} → {k , h}
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Theorem (formal adjoint for equivalent classes)

Consider the equivalent classes of L3 given by the values of the invariants
I1, I2, I3, I4, I5. Then the operation of taking the formal adjoint is defined
by the following formulae

I †1 = I1 − 2q2py − 2p2qx + 2pxqp + 2qy qp ,

I †2 = −I2 − qp2qxy + qy p2qx + q2ppxy − q2pxpy ,

I †3 = −I3 + 1
q2

(
2pI2 − (2py q + qy p)I1 + qpI1y − 2py qy q2p+

2q3p2
y + qyy q2p2 − q3ppyy

)
,

I †4 = −I4 + 1
p2

(
− 2qI2 − (pxq + 2qxp)I1 + qpI1x + 2p3q2

x − 2p2qxqpx

+pxxq2p2 − qp3qxx

)
,

I †5 = I5 + p1I1 + p3I3 + p4I4 + p12I1y + p11I1x + p2I1xy − qpI3x − p3

q I4y + p0

−pI2y + p2

q I2x + (−2q2p3qx + 4py q4p − q2pI1 − 2q3p2px)/(q4p)I2 ,


(2)

where p1 = (4qxpy p + pxqy p− 2qxy p2)/q + (4qxqy p2)/q2 + 3pxpy − pxy p,
p3 = 2qpx + pqx , p4 = (2qy p3 + p2py q)/q2, p0 = p3qxqyy − 2q2pxp2

y −
qqxp2pyy + q2pxppyy − qp2qyy px − 2p2py qy qx + 2qqxpp2

y + 2qpy pqy px ,
p11 = −(2py pq + qy p2)/q, p12 = −(pxpq + 2qxp2)/q.
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Corollary

Consider the equivalent classes of L3 possessing the properties p = 1 and
q = 1 and which are given by the values of the invariants I1, I2, I3, I4, I5.
Then the operation of taking of the formal adjoint is defined by the
following formulae

I †1 = I1 ,

I †2 = −I2 ,

I †3 = −I3 + 2I2 + I1y ,

I †4 = −I4 − 2I2 + I1x ,

I †5 = I5 + I1xy − I3x − I4y − I2y + I2x − I1I2 .
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Formal Adjoints for Computation of Factorization
Conditions

L has a factorization of a factorization type (S1)(S2).

m

L† has a factorization of the factorization type (S2)(S1).

m

Conditions in terms of invariants I †1 , . . . , I †5 .

m

These conditions after the substitutions of the expressions in terms of
I1, . . . , I5 for the invariants I †1 , . . . , I †5 .

Completely automatized process for any number of factors.

Kate Shemyakova (RISC) My Resent Results on Symbolic Methods for LPDOs 38 / 44



LPDOs Whose Symbol Has Constant Coefficients Only
⇒ ∃ a normal form with Sym = (X + Y )XY . Symbol is invariant ⇒
can consider equivalent classes of L3 with the property p = q = 1. Let
such a class be given by the values of the invariants I1, . . . , I5.

Theorem

Consider equivalent classes possessing the property p = q = 1, and given
by the values of the invariants I1, I2, I3, I4, I5. Operators of the class have a
factorization of factorization type

(S)(XY ) ⇔

I3−I4+I1x−I1y−3I2 = 0 & I1I2+Ir +2I2x +I2y = 0 , (3)

where Ir = 1
2 I1xy − I4y + I4x + I5 + I1xx + I1I4 − I1I1x ;

(S)(X )(Y ) ⇔
(3) & I2 − I4 + I1x = 0 ;

(S)(Y )(X ) ⇔
(3) & − 2I2 − I4 + I1x = 0 ;
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(X )(SY ) ⇔
I4 = 0 & I2x + I5 − I3x + I1xy/2 = 0 ; (4)

(X )(S)(Y ) ⇔
(4). & I3 − I1y − 2I2 = 0 ;

(X )(Y )(S) ⇔
(4). & I3 = I2 ;

(XY )(S) ⇔
I4 = I3 − I2 & I1xy/2 + I1I4 + I5 = 0 .

(YS)(X ) ⇔
I4 = I1x − 2I2 & I5 = I1I2 .

(XS)(Y ) ⇔
I3 − I1y − 2I2 = 0 & I5 = I2x + I1xy/2 ;

Kate Shemyakova (RISC) My Resent Results on Symbolic Methods for LPDOs 40 / 44



(Y )(SX ) ⇔
I3 = 0 & I5 = (I4 + I2)y + I1I2 − I1xy/2 ; (5)

(Y )(X )(S) ⇔
(5) & I4 = −I2 ;

(Y )(S)(X ) ⇔
(5) & I4 − I1x = −2I2 ;
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A Maple-Package for LPDOs with Parametric Coefficients

Description

The number of variables – Arbitrary.

The orders of LPDOs – Arbitrary.

Parameters – Arbitrary.

Easy access to the coefficients of LPDOs.

Application to a function → to a standard Maple PDE form.

Basic Procedures

The basic arithmetic of LPDOs (addition, composition, mult. by a
function on the left).

Transposition and conjugation of LPDOs.

Application to a function → to a standard Maple PDE form.

Simplification Tools for coefficients.
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More Advanced Possibilities

Standard Laplace invariants.

Standard Laplace Transformations.

Standard Laplace Chain.

Laplace Invariants for extended Schrödinger operators:
∆2 + aDx + bDy + c .

Laplace Transformations for those.

Laplace Chain for those.

Full System of Invariants for operators L3 = DxDy (pDx + qDy ) + . . .

Obstacles to factorizations of 2, 3 orders → Grigoriev-Schwarz
Factorization.
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Introduction – Laplace Example

Linear partial differential operators (LPDOs) of order 2:

L = ∂x∂y + a ∂x + b ∂y + c

Gauge transformations:

L 7→ g−1Lg, g = g(x, y).

Laplace invariants:

h = c− ax − ab, k = c− by − ab.

The operator L can be factorised if h = 0 or k = 0:

L = (∂x + b) (∂y + a) + h,

= (∂y + a) (∂x + b) + k.

Introduction – General Situation
Consider arbitrary LPDOs of order d:

L =
∑
|µ|≤d

aµ(x)∂µ, ∂µ = ∂µ1
x1
· · · ∂µn

xn

with symbol
∑

|µ|=d aµ(x)Xµ.
The factorisation of LPDOs is gauge invariant:

g−1Lg = g−1L1L2 g = (g−1L1 g)(g
−1L2 g).

Conditions for factorisation ↔ Laplace invariants.

Methods to compute invariants:

Partial factorisation (obstacles) [SW07b], [SW07a]
Moving frames [MS08]
. . .
Vessiot equivalence method [Ves03]



Third Order LPDOs
The number of invariants in a generating set:

[MS08] Vessiot
Symbol, order 0 1 2 3 total 0 1 2 total
X3 2 2 1 5 2 3 5

X3, (a) 2 0 2 4 2 1 1 4

X3, (b) 1 1 0 1 3 1 1 1 3

X3, (c) 0 1 1 2 0 2 2

X2 Y 1 3 1 5 1 5 6

X Y (pX + qY ) 3 3 1 7 3 4 1 8

full 5 4 1 10

Moving frames: small invariants of higher order,
Vessiot: large invariants of minimal order.

In future: Combine both methods!

Invariants for LX3,(c) = ∂3
x + a20∂

2
x + a10∂x + a00

Moving frames [MS08]:

Ia10 = a10 − 1

3
a2

20 − a20,x,

Ia00
x = a00 − 1

3
a10a20 +

2

27
a3

20 −
1

3
a20,xx.

Vessiot:

I1
1 = −a10 +

1

3
a2

20 + a20,x,

I1
2 = a10,x − 3a00 + a20a10 − 2

3
a20a20,x − 2

9
a3

20.

Comparison:

Ia10 = −I1
1 Ia00

x = −1

3
(I2

1 + I1
1,x)



Invariants for Fourth Order LPDOs
Results of the Vessiot equivalence method:

Symbol, order 0 1 2 3 4

X4 5 5 1

X4 (a) 3 6

X4 (d) 2 2 1 0 2

...
X3 Y 4 7 1

X2 Y 2 3 10

X3 (pX + qY ) 5 7 1

X2 Y (pX + qY ) 4 9 1

X2 (pX + qY ) (rX + sY ) 5 9 1

X Y (pX + qY ) (rX + sY ) 5 9

X Y (pX2 + qY 2) 5 6 1

Natural Bundles
Let X be a manifold, coordinates (x) = (x1, . . . , xn).

Diff loc(X,X): local diffeomorphisms ϕ : X → X.
Pseudogroup Θ ⊆ Diff loc(X,X).
A natural Θ-bundle is a fibre bundle

π : F → X : (x, v) → (x)

such that each x̃(x) ∈ Θ lifts to Φ : F → F as:

x̃ = x̃(x), v = Φṽ(x̃, x̃q).

In other words: Θ acts on F .
A section of F is called geometric object:

ω : X → F : (x) 7→ (x, v = ω(x)).

ψ : F → R is an invariant if ψ ◦ Φ = ψ ∀ x̃(x) ∈ Θ.



Laplace Example I

Pseudogroup Θ of gauge transformations:

X → X :

 x
y
u

 7→
 x̃=x
ỹ= y

ũ= eg(x,y)u

 .

The natural Θ-bundle F for the Laplace operators

L = ∂x∂y + a ∂x + b ∂y + c

has coordinates (x, y, u; a, b, c).
Each gauge transformation lifts to F via L̃ 7→ e−gL̃eg:

a = ã+ gy

b = b̃+ gx

c = c̃+ gxy + ã gx + b̃ gy.

A section a(x, y), b(x, y), c(x, y) specifies an LPDO.

Prolongation and Projection

Choosing v = v(x) and ṽ = ṽ(x̃), the Θ-action on F

v = Φṽ(x̃, x̃q)

can be seen as a PDE system for x̃(x) of order q.
Prolongation F  J1(F):

vx = DxΦ(ṽ,ṽx̃)(x̃, x̃q+1).

Projection F(1) = J1(F)/Kq+1:

w = Ψ(ṽ,w̃)(x̃, x̃q)

by eliminating derivatives of order q + 1.
Vessiot structure equations: Integrability conditions.



Laplace Example II

The Θ-action on F is (with q = 2):

a = ã+ gy

b = b̃+ gx

c = c̃+ gxy + ã gx + b̃ gy + gxgy.

First prolongation to J1(F):

ax = ãx + gxy, ay = ãy + gyy,

bx = b̃x + gxx, by = b̃y + gxy,

cx = c̃x + gxxy + . . . , cy = c̃y + gxyy + . . . .

Projection: F(1) has the improved coordinates:

h = ax − c+ ab, , ay, bx, k = by − c+ ab.

Invariants: Projection to order zero.

Embedding Theorem

Theorem
If the symbol of Φṽ(x̃, x̃q) = v is 2-acyclic for generic ṽ(x̃), then

ι : J2(F)/Kq+2 → J1(F(1))

is an embedding.

Visualisation: ↪→

Computing im(ι) involves only linear algebra.
The invariants on J2(F) and on im(ι) coincide.
More general situation:

↪→ ↪→ ↪→



Laplace Example III

The bundle F(1) has the coordinates (x, y, u; a, b, c) and

h = ax − c+ ab, , d = ay, e = bx, k = by − c+ ab.

Prolongation to J1(F(1)) and the embedding im(ι):

ax= h+ c− ab ay= d bx= e by= k + c− ab

cx cy

dx= hy + . . . dy ex ey= kx + . . .

hx hy kx ky

Projection to F(2):

hx, hy, kx, ky.

All new coordinates on F(2) are invariants
⇒ {h, k} is a generating set of invariants.

Summary

Pseudogroup Θ, natural bundle F .
Prolongation and projection yields natural bundles

F , F(1), F(2), . . .

using the Embedding Theorem.
Invariants on Ji(F) = invariants on F(i).
All new coordinates of F(i) are invariants
⇒ generating set of invariants on F(i).
Computation of invariants:

Moving frames on F(i) or
Linear PDEs on F(i).

Sucessfully treated fourth order LPODs.
Even a fifth order example (X3Y 2) was computable. . .
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Definitions Differential operators

Differential fields

Let F be a field.
A derivation is an additive map ϑ : F → F that fulfils the Leibniz-rule

ϑ(a b) = a ϑ(b) + ϑ(a) b for all a, b ∈ F .

The pair (F , ϑ) is called a differential field.

Examples are

The rational functions Q(x) with the usual derivation d/dx .

The meromorphic functions with the usual derivation.

Every field with the zero map.
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Definitions Differential operators

Differential operators
Definition

Let (F , ϑ) be a differential field.
Take a variable ∂ and consider polynomial expressions

an∂
n + . . . + a1∂ + a0

with coefficients a0, . . . , an ∈ F .

The ring R = F [∂; id, ϑ] is the set of all these polynomials together with the usual
addition and multiplication given by the Leibniz rule

∂a = a∂ + ϑ(a) for all a ∈ F .

(This mimics composition of linear differential operators in ϑ).

We call R the ring of differential operators.
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Definitions Differential operators

Example & properties

Let R = F [∂; id, ϑ] be a ring of differential operators.

Differential operators behave almost like ordinary polynomials.

Multiplication is not commutative.

But for all f , g ∈ R we have

ord (fg) = ord f + ord g and lc(fg) = lc(f) lc(g).

This makes R a (non-commutative) Euclidean domain.

As example, take F = F5(x) and ϑ = d/dx . Here,

x∂2 + 2∂ + x = ∂2 · x + x

Hence, left-division of x∂2 + 2∂ + x by ∂2 yields the remainder x .
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Definitions Jacobson form

Jacobson form

Let R be a ring of differential operators. A matrix M ∈ Rm n is said to be in
Jacobson form if

M =

n columns︷ ︸︸ ︷

1

··
··

· 0 ··············

··
··

··
··

··
··

··
··

· 0

··
··
··
··
··
··
·

0

··
··
··
··
··
··
·

··
··

··
··

··
··

··
··

·
1

f

0

·
·
·
·

0

0 ·············· 0 0





m rows

where f ∈ R.
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Definitions Jacobson form

Example for the Jacobson form

The matrix (
1 0 0
0 ∂3 + x∂2 − x∂ − x2 0

)
is in Jacobson form the matrix(

∂ + x 1 2∂2 + 2x∂ + x
−1 ∂2 − x x∂2 − x2

)
is not in Jacobson form.

J. Middeke (RISC) Jacobson form DIFFOP Workshop 7 / 21

Definitions Jacobson form

Remarks

The Jacobson form is a two-sided normal form.

It is a generalisation of the Smith form for integer matrices.

A (more general) version of the Jacobson form exists in every (not
necessarily commutative) principle ideal domain.
This was done by Nathan Jacobson, Tadashi Nakayama and Oswald
Teichmüller.

It is almost unique.
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Definitions The main theorem

The main theorem

Let R be a ring of differential operators over a field F .

Theorem

Let M ∈ Rm n. If
[F : Const(F)] > m · ord M

then we can compute unimodular matrices S ∈ ( Rm m)∗ and T ∈ ( Rn n)∗ such
that

SMT

is in Jacobson form, using only polynomially (in m, n and ord M) many field
operations.
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Definitions The main theorem

Example
Let F = F5(x) and R = F [∂; id, d/dx], and let

M =

(
∂ + x 1 2∂2 + 2x∂ + x
−1 ∂2 − x x∂2 − x2

)
∈ R2 3.

Since [F : Const(F)] = 5 > 4 = 2 · 2 (number of rows times maximal order) the
algorithm is applicable.

We will compute

(
0 −1
1 ∂ + x

)
·M ·

1 ∂2 − x −2∂
0 1 −x
0 0 1


=

(
1 0 0
0 ∂3 + x∂2 − x∂ − x2 0

)
.
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The algorithm Overview

Outline of the algorithm

Given M ∈ Rm n we perform the following steps

1 Remove linear dependencies of the rows and columns: Transform

M  
(

M′′ 0
0 0

)
by linear transformations where M′′ ∈ Rk k is square and has linearly
independent rows.

2 Compute modularly in
Rk

RkM′′

to transform M′′ into Jacobson form.
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The algorithm Reduction

Removing linear dependencies
Overview

Removal of linear dependencies is done with so-called row- and
column-reduction.

Row- (column-) reduction removes highest order terms from a row
(column) by elementary row (column) operations.

This is iterated as long as possible.

The remaining non-zero rows (columns) are linearly independent.

The number of remaining non-zero rows (columns) after reduction equals
the rank of M.

We will apply first column-reduction then row-reduction, i. e., we transform

M  
column-

reduction

(
M′ 0

)
 
row-

reduction

(
M′′ 0
0 0

)
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The algorithm Reduction

Gröbner bases and the (weak) Popov form

We can further inter-reduce the rows of M′′ such that entries of maximal
order do not overlap.

The result is called the (weak) Popov form of M′′.
The (weak) Popov form is a Gröbner basis of RkM′′ with respect to the term
over position ordering.

Since M′′ is square and reduction at most reduces the order, that means
that

dimF
Rk

RkM′′
6 m · ord M <∞.
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The algorithm Reduction

Example (Reduction)
Removing linear dependencies

Over F5(x) with derivation d/dx , consider again

M =

(
∂ + x 1 2∂2 + 2x∂ + x
−1 ∂2 − x x∂2 − x2

)
.

We column-wise consider the leading coefficients of M:

LCcol(M) =

(
1 0 2
0 1 x

)
.

Since there is a linear dependency, we may erase ∂2 in the last column.
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The algorithm Reduction

Example (Reduction)
Removing linear dependencies

Over F5(x) with derivation d/dx , we compute

MQ =

(
∂ + x x 0
−1 ∂2 + 1 0

)
.

We row-wise consider the leading coefficients of MQ:

LCrow(MQ) =

(
1 0 0
0 1 0

)
.

In fact, MQ is already in (weak) Popov form.
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The algorithm Modular computations

Cyclic vectors

Let M = Rk/RkM′′.

Since dimF M 6 m · ord M 6 [F : Const(F)], by the cyclic vector theorem
there exists v ∈M such that

Rv = M.

Computing the annihilator Rf of v , we obtain an R-isomorphism

ϕ : M →̃ R

Rf
, v 7→ 1.

Defining g ∈ Rk by gj = ϕ(ej) we have for w ∈ Rk

ϕ(w) = wg

where e1, . . . , ek are the unit vectors in Rk .
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The algorithm Modular computations

Computing S and T

One may prove that gcrd(g1, . . . , gk) = 1; hence there exists an
invertible matrix T ∈ ( Rk k)∗ with last column g.

The last column of M′′T is (right-) divisible by f , i. e., we may write

M′′ T = W · diag(1, . . . , 1, f).

A dimension argument shows that W is invertible.

With S = W−1 we have

S M′′ T = diag(1, . . . , 1, f)

which is in Jacobson form.
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The algorithm Modular computations

Example (Modular computations)
Computing a cyclic vector

Continuing the example, consider the first two columns of MQ. Let

M′′ =
(

∂ + x 1
−1 ∂2 − x

)
and M =

R2

R2M′′
.

Leading monomials are ∂e1 and ∂2e2.

A basis for M is e1, e2, ∂e2.

A cyclic vector is e2, i. e., Re2 = M.

That means, e2, ∂e2, ∂
2e2 is an F -basis of M.

We compute

0 =
(
∂3 + x∂2 − x∂ − x2) · e2 = f · e2;

hence M ∼= R/Rf .
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The algorithm Modular computations

Example (Modular computations)
Computing S and T

We compute

ϕ : M→ R

Rf
, v 7→ v · ( ∂2−x

1

)
and T =

(
1 ∂2 − x
0 1

)
.

Furthermore we have

M′′ T =

(
∂ + x ∂3 + x∂2 − x∂ − x2

−1 0

)
=

(
∂ + x 1
−1 0

)
· diag(1, f),

where diag(1, f) is in Jacobson form.

Combining this with the first part of the algorithm we obtain(
0 −1
1 ∂ + x

)
︸ ︷︷ ︸

=S

·M ·
1 ∂2 − x −2∂

0 1 −x
0 0 1


︸ ︷︷ ︸

=Q diag(T ,1)

=

(
1 0 0
0 ∂3 + x∂2 − x∂ − x2 0

)
.
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Epilogue

Summary

Input A matrix M ∈ Rm n where R = F [∂; id, ϑ] and
[F : Const(F)] > m · ord M.

Output Unimodular matrices S ∈ ( Rm m)∗ and T ∈ ( Rn n)∗ such that SMT
is in Jacobson form.

1 Apply column-reduction to M gaining
(

M′ 0
)
.

2 Apply row-reduction to M′ gaining

(
M′′

0

)
.

3 Transfer M′′ into (weak) Popov form and compute a basis for Rk/RkM′′

(where M′′ ∈ Rk k ).

4 Compute a cyclic vector v for Rk/RkM′′.
5 Let ϕ : Rk/RkM′′ → R/Rf where Rf = AnnR v .

6 Compute T ∈ ( Rk k)∗ such that ϕ(ej) = Tjk .

7 Let N = diag(1, . . . , 1, f) and compute S = (MT/N)−1.

J. Middeke (RISC) Jacobson form DIFFOP Workshop 19 / 21



Epilogue

Conclusion

The steps in the algorithm can be done using only polynomial many
operations in F .

Important ingredients of the algorithm were the cyclic vector theorem and
row-/column-reduction.

We may stop after the computation f if only the Jacobson form is needed.

Other algorithms exist, e. g.:
• RWTH Aachen (Zerz, Levandovskyy, Schindelar) (can control coefficient

growth!).
• Culianez, G., Quadrat, A., 2005. Formes de hermite et de jacobson:

implémentations et applications. Tech. rep., INRIA Sophia Antipolis.
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Epilogue

And now lunch. . .

Thank you for your attention!
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and Syzygies
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Differential invariants arise in equivalence and classification problems and are used in
symmetry reduction techniques

Original motivation: symmetry reduction with a view towards differential elimination.
[Mansfield 01]

Seminal results: the reinterpretation of Cartan’s moving frame method.
[Fels & Olver 99]

We introduce today the computationally relevant algebraic structures.
[H05, HK07, H08, H09]
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1 Differential Algebra

Differential Polynomial Rings

F = Q(x, y)

δ1 =
∂

∂x
, δ2 =

∂

∂y

Y = {φ, ψ}
F Jφ, ψK = F[φ, φx, φy, . . . , ψ . . .]

φxxy ; φx2y ; φ(2,1)

∂

∂x
(φxxy) = φxxxy ; δ1

`
φ(2,1)

´
= φ(3,1)

∂

∂x

∂

∂y
=

∂

∂y

∂

∂x

F a field

∆ = {δ1, . . . , δm} derivations on F

Y = {y1, . . . , yn}
F[ yα | α ∈ Nm, y ∈ Y ] = F JYK

δi (yα) = yα+εi

εi = (0, . . . , 1
ith

, . . . , 0)

δiδj = δjδi

Derivations with nontrivial commutations

Y = {y1, . . . , yn}

∆ = {δ1, . . . , δm}

δi δj − δj δi =
m∑

l=1

cijl δl

cijl ∈ K JYK
K JYK?

Differential polynomial ring K JYK with non commuting derivations

Y = {y1, . . . , yn}
D = {δ1, . . . , δm}
K[yα | α ∈ Nm, y ∈ Y]

δi (yα) =

8>>>>>>>><>>>>>>>>:

yα+εi
ifα1 = . . . = αi−1 = 0

δjδi

„
yα−εj

«
+

mX
l=1

cijl δl

„
yα−εj

«
where j < i is s.t. αj > 0
while α1 = . . . = αj−1 = 0

If the cijl satisfy

- cijl = −cjil

- δk(cijl) + δi(cjkl) + δj(ckil) =
mX

µ=1
cijµcµkl + cjkµcµil + ckiµcµjl

& there exists an admissible ranking ≺
- |α| < |β| ⇒ yα ≺ yβ ,

- yα ≺ zβ ⇒ yα+γ ≺ zβ+γ ,

-
∑

l∈Nm

cijl δl(yα) ≺ yα+εi+εj

then δiδj(p)− δjδi(p) =
m∑

l=1

cijl δl(p) ∀p ∈ K[ yα |α ∈ Nm ] = K JYK
[H05]
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2 Lie Group Actions and their Invariants

Lie Group G
G a r-dimensional smooth manifold, locally parameterized by Rr

m : G × G → G
(λ, µ) 7→ λ · µ

and i : G → G
λ 7→ λ−1

smooth

e ∈ G e · λ = λ · e = λ

Group action

G a Lie group M an open subset of Rn

Action g : G ×M → M
(λ, z) 7→ λ ? z

smooth

e ? z = z (λ · µ) ? z = λ ? (µ ? z)

Orbit of z: Oz = {λ ? z | λ ∈ G} ⊂M

Semi-regular Lie group actions

scaling translation+reflection rotation
G R∗ R× {−1, 1} SO(2)

M R2 \O R2 R2 \O

λ ? z

(
λ z1
λ z2

) (
z1 + λ1

λ2z2

) (
cosλ − sinλ
sinλ cosλ

)(
z1
z2

)
Orbits:

3



Infinitesimal generator

x ∂
∂x + y ∂

∂y
∂
∂x y ∂

∂x − x ∂
∂y

Infinitesimal generators

ξ1
∂

∂z1
+ . . .+ ξd

∂

∂zd

a vector field the flow of which is the action of a one-dimensional (connected) subgroup
of G.
V1, . . . ,Vr a basis of infinitesimal generators for the action on M of the r-dimensional
group G.

Local Invariants

f : U ⊂M→ RK smooth

f(λ ? z) = f(z) for λ ∈ G close to e
⇔

f is constant on orbits within U

⇔
V1(f) = 0, . . . ,Vr(f) = 0

Examples

G K∗ K× {−1, 1} SO(2)

rational x
y y2 x2 + y2

local x
y y

√
x2 + y2

4



Classical differential invariants

E(2) α2 + β2 = 1(
X
Y

)
=
(
α −β
β α

)(
x
y

)
+
(
a
b

)
YX =

β + αyx

α− β y
YXX =

yxx

(α− β y)3

Curvature: σ =
√

y2
xx

(1+y2
x)3 a differential invariant

Arc length: ds =
√

1 + y2
x dx

Invariant derivation:
d

ds
=

1√
1 + y2

x

d

dx

Jets / Differential algebraProlongation

J0 = X × U g(0) : G × J0 → J0 V0
1, . . . ,V

0
r

(x1, . . . , xm) coordinates on X ; independent variables

(u1, . . . , un) coordinates on U ; dependent variables

Jk = X × U (k) g(k) : G × Jk → Jk Vk
1 , . . . ,V

k
r

[DifferentialGeometry]

additional coordinates uα =
∂|α|u
∂xα

, |α| ≤ k

; the derivatives of u w.r.t x up to order k

Di =
∂

∂xi
+
∑
α

uα+εi

∂

∂uα

Differential polynomial ring: K(x) JuK = K(x) [uα |α ∈ Nm]

Diuα = uα+εi .

[diffalg]

f : Jk → R differential invariant of order k if Vk(f) = 0.

Invariant derivation

D : F(Jk) → F(Jk+1) s.t D ◦V = V ◦ D

5



f : Jk → R a differential invariant
⇒ D(f) a differential invariant of order k + 1.

What is a computationnally relevant algebraic structure for differential invariants?

K Jy1, . . . , ynK / JSK
3 Normalized Invariants: Geometric and Algebraic

Construction

Local cross-section P

z̄ Oz
z

P • P an embedded manifold of dimension n− d

P = {z ∈ U | p1(z) = . . . = pd(z) = 0}

• P is transverse to Oz at z ∈ P .

• P intersect O0
z at a unique point, ∀z ∈ U .

⇔ the matrix (Vi(pj))1≤i≤r,1≤j≤d has rank d on P .

A local invariant is uniquely determined by a function on P .

[Fels Olver 99, H. Kogan 07b]

Invariantization ῑf of a function f

z̄ Oz
z

P
f : U → R smooth

ῑf is the unique local invariant with ῑf |P = f |P
ῑf(z) = f (z̄)

Normalized invariants: ῑz1, . . . , ῑzn. ῑf(z) = f(ῑz)

Generation and rewriting:
f local invariant ⇒ f(z1, . . . , zn) = f(ῑz1, . . . , ῑzn)

Relations: p1(ῑz1, . . . , ῑzn) = 0, . . . , pd(ῑz1, . . . , ῑzn) = 0

[Fels Olver 99, H. Kogan 07b]
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Normalized invariants. Example.

P

z

G = SO(2), M = R2 \O

P : z2 = 0, z1 > 0 U = M

(ῑz1, ῑz2) =
(√

z2
1 + z2

2 , 0
)

Replacement property:

f(z1, z2) invariant ⇒ f(z1, z2) = f (ῑz1, 0) .

Normalized invariants in practice

We mostly do not need (ῑz1, . . . , ῑzn) explicitly.

We can work formally with (ῑz1, . . . , ῑzn), subject to the relationships p1(ῑz) =
0, . . . , pd(ῑz) = 0.

Computing normalized invariants
In the algebraic case, the normalized invariants (ῑz1, . . . , ῑzn) form a K(z)

G
-zero of the

graph-section ideal

(G+ (Z − λ ? z) + P ) ∩ K(z)[Z]

The coefficients of the reduced Gröbner basis of the graph-section ideal form a generating
set for K(z)G endowed with a simple rewriting algorithm.

[H. Kogan 07a 07b]

4 Differential Algebra of invariants

Differential invariants

J0 = X × U g(0) : G × J0 → J0 V0
1, . . . ,V

0
r

(x1, . . . , xm) coordinates on X
(u1, . . . , un) coordinates on U

Jk = X × U (k) g(k) : G × Jk → Jk Vk
1 , . . . ,V

k
r

additional coordinates uα =
∂|α|u
∂xα

, |α| ≤ k

7



Normalized invariants of order k

Ik = {ῑx1, . . . , ῑxm} ∪ {ῑuα | |α| ≤ k}

Generation in finite terms

rk, the dimension of orbits on Jk, stabilizes at order s

r0 ≤ r1 ≤ . . . ≤ rs = rs+1 = . . . = r.

Ps : p1 = 0, . . . , pr = 0 defines a cross-section on Js+k

Is+k = {ῑx1, . . . , ῑxm} ∪ {ῑuα | |α| ≤ s+ k}

Construct: D1, . . . ,Dm : F(Js+k) → F(Js+k+1) s.t. DiVa = VaDi

Key Prop: ῑuα+εi
= Di(ῑuα) +Kia ῑ (Va(uα)) K = ῑ

(
D(P ) V(P )−1

)
Col: Any differential invariants can be contructively written in terms of Is+1 and their

derivatives.

[Fels Olver 99]

Algebra of Differential Invariants

K Jxi, uα | |α| ≤ s+ 1K / JSK
[Di,Dj

]
=

m∑
k=1

Λijk Dk

where Λijk =
Pr

c=1 Kic ῑ(Dj(Vc(xk)))−Kjc ῑ(Di(Vc(xk))).

The monotone derivatives of Is+1,{
Dβ1

1 . . .Dβm
m (ῑxi)

}
∪
{
Dβ1

1 . . .Dβm
m (ῑuα) | |α| ≤ s+ 1

}
,

generate all differential invariants.

[H 05, 08]
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Syzygies = Differential relationships

A subset S of the following relationships

p1(ῑx, ῑuα) = 0, . . . , pr(ῑx, ῑuα) = 0

Di(ῑxj) = δij −Kiaῑ (V(xj)),

Di(ῑuα) = ῑuα+εi −Kiaῑ (V(uα)), |α| ≤ s

Di(ῑuα)−Dj(ῑuβ) = Kjaῑ (V(uβ))−Kiaῑ (V(uα)),

α+ εi = β + εj , |α| = |β| = s+ 1.

form a complete set of differential syzygies.
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�����������
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ιuy

s + 1ιuxxιu ιux

ιuyy

ῑuα+εi = Di(ῑuα) +Kia ῑ (Va(uα))

K = ῑ
(
D(P ) V(P )−1

)
[H08]

Representations
Generators + Syzygies + Rewriting

• Differential elimination on a complete set of syzygies allows to reduce the number
of differential invariants.

• We can reduce substantially the number of generating invariants by differential
elimination on the syzygies.

– Euclidean and affine surfaces [Olver 07]
– Conformal and projective surfaces [H. Olver 07]
– Special orthogonal 3-dimensional manifolds [H09]

[aida], [diffalg ]

Edge and Maurer-Cartan invariants

We can always restrict to mr + d0 generating invariants

ῑuα+εi
= Di(ῑuα) +Kia ῑ (Va(uα)) K = ῑ

(
D(P ) V(P )−1

)
Thm: The edge invariants E = {ῑ(Di(pa))}∪I0 form a generating set when the the cross-

section is of minimal order.

We can obtain their syzygies by elimination.

Thm: The Maurer-Cartan invariants {Kia} ∪ I0 form a generating set of differential in-
variants.

We can obtain their syzygies from the structure equations.

[H08, H09]
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3

Motivation & Examples 1

Goal of Complete Theory

B Describe all possible types of closed form solutions of linear pde’s.

B Which cases may be solved algorithmically? Design and implement
algorithms for them.

B A. D. Polyanin, Handbook of Linear Partial Differential Equations,
Chapman & Hall/CRC, 2002.

Example 1. (Forsyth 1906)

Lz ≡ zxy +
2

x− y
zx − 2

x− y
zy − 4

(x− y)2z = 0.

General Solution: F , G undetermined functions.

z = 2(x− y)F (y) + (x− y)2F ′(y)− 2(x− y)G(x) + (x− y)2G′(x).

Loewy Decomposition:

L = Lclm
(〈

∂xx − 2
x− y∂x +

2

(x− y)2 , ∂xy +
2

x− y
∂x − 2

x− y
∂y − 4

(x− y)2

〉
,

〈
∂xy + 2

x− y∂x − 2

x− y
∂y − 4

(x− y)2 , ∂yy +
2

x− y
∂y +

2

(x− y)2

〉)
.

================================================
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Motivation & Examples 2

Example 2.
Lz = zxxx + (y + 1)zxxy +

(
1− 1

x

)
zxx

+
(
1− 1

x

)
(y + 1)zxy − 1

xzx − 1
x(y + 1)zy = 0.

General Solution. F , G, H undetermined functions.

z = F (y)e−x + G
(
(y + 1)e−x

)
+ (x + 1)e−x

∫
H(y)(y + 1)dy.

Loewy Decomposition.

L =
(
∂x − 1

x

)
(∂xx + (y + 1)∂xy + ∂x + (y + 1)∂y

=
(
∂x − 1

x

)
Lclm(∂x + 1, ∂x + (y + 1)∂y).

================================================



5

Motivation & Examples 3

Example 3. (Blumberg 1912).

Lz = zxxx + xzxxy + 2zxx + 2(x + 1)zxy + zx + (x + 2)zy = 0.

General Solution. F , G, H undetermined functions.

z = F (y − 1
2x

2) + G(y)e−x +

∫
H
(
ȳ + 1

2x
2
)
e−xdx

∣∣
ȳ=y− 1

2x
2.

Factorizations.

L =


(
∂xx + x∂xy + ∂x + (x + 2)∂y

)
(∂x + 1)

Lclm
(
∂x + 1, ∂x + 1− 1

x

)
(∂x + x∂y).

Lclm(∂x + 1, ∂x + x∂y) =

〈L1 ≡ ∂xxx − x2∂xyy + 3∂xx + (2x + 3)∂xy − x2∂yy + 2∂x + (2x + 3)∂y,

L2 ≡ ∂xxy + x∂xyy − 1
x∂xx − 1

x∂xy + x∂yy − 1
x∂x −

(
1 +

1

x

)
∂y〉

Loewy Decomposition.

L =

(
(1, x)(

0, ∂x + 1 +
1

x

) )( L1
L2

)

================================================
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Basic Concepts from Differential Algebra

Rings of partial differential operators:

D ≡ Q(x, y)[∂x, ∂y] and D ≡ Q(x, y, z)[∂x, ∂y, ∂z]

Left Ideal: I = 〈l1, l2, . . .〉, li ∈ D, form Janet basis.

Hilbert-Kolchin Polynomial: HI(n) ≡ (n+k
n

)− dim In; k = 1, 2.

Gauge: gI ≡ (deg HI , lcoef HI)

= (Differential type, typical differential dimension) ' size of solutions.

Least common left multiple: Lclm(I, J).

Greatest common right divisor: Gcrd(I, J).

Leading terms of an ideal: I = 〈...〉LT .

Terms not higher than a given term: O(τ )

General Reference: E. Kolchin, Differential Algebra and Algebraic
Groups, Academic Press, 1973.

================================================
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Ideal Intersections in the Plane 1

Theorem 1. Let the ideals Ii = 〈∂x + ai∂y + bi〉 for i = 1, 2 with I1 6= I2 be
given. Both ideals have gauge (1, 1). There are three different cases for their
intersection I1 ∩ I2, all are of gauge (1, 2).

i) If a1 6= a2 and
(

b1 − b2
a1 − a2

)
x
=
(

a1b2 − a2b1
a1 − a2

)
y

there holds

I1 ∩ I2 = 〈∂xx〉LT and I1 + I2 = 〈∂x, ∂y〉LT .

ii) If a1 6= a2 and
(

b1 − b2
a1 − a2

)
x
6=
(

a1b2 − a2b1
a1 − a2

)
y

there holds

I1 ∩ I2 = 〈∂xxx, ∂xxy〉LT and I1 + I2 = 〈1〉.
iii) If a1 = a2 = a and b1 6= b2 there holds

I1 ∩ I2 = 〈∂xx〉LT and I1 + I2 = 〈1〉.

================================================
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Ideal Intersections in the Plane 2

Proof. Auxiliary parameter u, define
u(∂x + a1∂y + b1) and (1− u)(∂x + a2∂y + b2)

New indeterminate w = uz, lexicographic term ordering w > z yields

(1) wx + a1wy + b1w and wx + a2wy + b2w − zx − a2zy − b2z.

If a1 6= a2 autoreduction leads to

(2)
wx + a1b2 − a2b1

a1 − a2
w − a1

a1 − a2
(zx + a2zy + b2z),

wy + b1 − b2
a1 − a2

w + 1
a1 − a2

(zx + a2zy + b2z).

Defining U ≡ zx + a2zy + b2z, integrability condition is

(3)

[(
a1b2 − a2b1

a1 − a2

)
y
−
(

b1 − b2
a1 − a2

)
x

]
w − 1

a1 − a2
Ux − a1

a1 − a2
Uy

−
[(

1
a1 − a2

)
x

+
(

a1
a1 − a2

)
y

+ b1
a1 − a2

]
U = 0.

If coefficient of w vanishes, (2) and (3) are Janet basis. This is case i).

If coefficient of w does not vanish, use (3) to eliminate w in (2). Result has
leading derivatives uxxx and uxxy. This is case ii).

If a1 = a2 = a autoreduction of (1) yields two expressions of the type w+O(zx)
and O(zxx). This is case iii). �

================================================
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Ideal Intersections in the Plane 3

Example 4. Consider the two gauge (1, 1) ideals

I1 = 〈∂x + 1〉 and I2 = 〈∂x + (y + 1)∂y〉.
Condition for case i) of Theorem 1 is satisfied. Consequently

Lclm(I1, I2) = 〈∂xx + (y + 1)∂xy + ∂x + (y + 1)∂y〉,
Gcrd(I1, I2) = 〈∂x + 1, ∂y − 1

y + 1
〉

of gauge (1, 2) and (0, 1) respectively. �

Example 5. The two ideals I1 = 〈∂x +1〉 and I2 = 〈∂x +x∂y〉, both
of gauge (1, 1), do not satisfy the condition of case i); furthermore
there holds a1 6= a2. Therefore by case ii) the intersection ideal is

Lclm(I1, I2) = 〈∂xxx − x2∂xyy + 3∂xx + (2x + 3)∂xy − x2∂yy

+2∂x + (2x + 3)∂y, ∂xxy + x∂xyy − 1

x
∂xy + x∂yy − 1

x
∂x −

(
1 +

1

x

)
∂y〉

of gauge (1, 2); Gcrd(I1, I2) = 〈1〉. �

================================================
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Ideal Intersections in Three-Space 1

Theorem 2. Let the ideals Ii = 〈∂x+ai∂y + bi∂z + ci〉 for i = 1, 2 with I1 6= I2
be given; 9 cases for their intersection ideal I1 ∩ I2 have to be distinguished;
their gauge is always (2, 2). The expressions P , Q, R, S1, S2, T1 and T2
involving only the coefficients of the Ii, and U , V and W involving also the
indeterminate u are defined below in the proof.

i) If a1 6= a2 and P = Q = 0, or a1 = a2 = a and b1 6= b2, there holds
I1 ∩ I2 = 〈∂xx〉LT and I1 + I2 = 〈∂x, ∂y〉LT .

ii) If a1 = a2 = a, b1 = b2 = b, c1 6= c2 and P = 0 there holds
I1 ∩ I2 = 〈∂xx〉LT and I1 + I2 = 〈1〉.

iii) If a1 6= a2, P = 0 and Q 6= 0 there holds
I1 ∩ I2 = 〈∂xxx, ∂xxy〉LT and I1 + I2 = 〈1〉.

iv) If a1 6= a2, P 6= 0 and S1 = S2 = 0 there holds
I1 ∩ I2 = 〈∂xxx, ∂xxy〉LT and I1 + I2 = 〈∂x, ∂y, ∂z〉LT .

v) If a1 = a2 = a, az 6= 0 and T1 = T2 = 0 there holds
I1 ∩ I2 = 〈∂xxx, ∂xxz〉LT and I1 + I2 = 〈∂x, ∂y, ∂z〉LT .

vi) If a1 = a2 = a, az = 0 and R 6= 0 there holds
I1 ∩ I2 = 〈∂xxx, ∂xxz〉LT and I1 + I2 = 〈1〉.

vii) If a1 6= a2 = a, P 6= 0 and S2 6= 0 there holds
I1 ∩ I2 = 〈∂xxyy, ∂xxyz, ∂xxx〉LT and I1 + I2 = 〈1〉.

viii) If a1 6= a2, P 6= b2, S1 6= 0 and S2 = 0 there holds
I1 ∩ I2 = 〈∂xxxx, ∂xxxz, ∂xxy〉LT and I1 + I1 = 〈1〉.

ix) If a1 = a2 = a, b1 6= b2, az 6= 0 and T2 6= 0 there holds
I1 ∩ I2 = 〈∂xxyz, ∂xxzz, ∂xxx〉LT and I1 + I2 = 〈1〉.

================================================
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Ideal Intersections in Three-Space 2

Proof. Define differential polynomials

(4)
wx + a1wy + b1wz + c1w,

wx + a2wy + b2wz + c2w − ux − a2uy − b2uz − c2u.

Term order lex, w > u and x > y > z. If a1 6= a2 define

(5) U ≡ ux + a2uy + b2uz + c2u = O(ux)

Autoreduction of (4)

(6) wx +
a1b2 − a2b1

a1 − a2
wz +

a1c2 − a2c1

a1 − a2
w − a1

a1 − a2
U,

(7) wy +
b1 − b2

a1 − a2
wz +

c1 − c2

a1 − a2
w +

1

a1 − a2
U.

Single integrability condition between (6) and (7).

Pwz + Qw + V = 0

where

(8)
P ≡

(
b1 − b2
a1 − a2

)
x
−
(

a1b2 − a2b1
a1 − a2

)
y

+a1b2 − a2b1
a1 − a2

(
b1 − b2
a1 − a2

)
z
− b1 − b2

a1 − a2

(
a1b2 − a2b1

a1 − a2

)
z
,

(9)
Q ≡

(
c1 − c2
a1 − a2

)
x
−
(

a1c2 − a2c1
a1 − a2

)
y

+a1b2 − a2b1
a1 − a2

(
c1 − c2
a1 − a2

)
z
− b1 − b2

a1 − a2

(
a1c2 − a2c1

a1 − a2

)
z
,

(10)
V ≡ 1

a1 − a2
(Ux + a1Uy + b1Uz + c1U)

− 1
(a1 − a2)

2 [(a1 − a2)x + a1,zb2 − a2,zb1 + a1,ya2 − a2,ya1]U

If P = Q = 0 −→ case i). If P = 0, Q 6= 0 −→ case iii).

================================================
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Ideal Intersections in Three-Space 3

Example 6. Let d1 ≡ ∂x − ∂y and d2 ≡ ∂x − ∂z.

By Theorem 2, case i), there holds

Lclm(d1, d2) = ∂xx − ∂xy − ∂xz + ∂yz

Gcrd(d1, d2) = 〈∂x − ∂z, ∂y − ∂z〉

Example 7. Let d1 ≡ ∂x − ∂y + z and d2 ≡ ∂x − ∂z.

By Theorem 2, case ii), there holds

Lclm(d1, d2) = 〈∂xxx − 3∂xxz − ∂xyy + 2(∂xyz + ∂yzz)

−2z(∂xz + ∂yz − ∂zz)− (z2 − 4)(∂x − ∂z),

∂xxy − ∂xxx − +∂yyz − ∂yzz

−z(∂xx − ∂zz) + 2z(∂xy − ∂yz)− (z2 + 2)(∂x + ∂z)〉

================================================
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Basic Concepts from Differential Algebra

Theorem 3. The left ideals in the rings Q(x, y)[∂x, ∂y]
and Q(x, y, z)[∂x, ∂y, ∂z] have the following properties.

i) The ideals form a lattice w.r.t. Gcrd and Lclm.

ii) The ideals of differential type zero form a sublat-
tice.

iii) The principal ideals do not form a sublattice.

================================================
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Summary & Further Work

→ Sum and intersection of first-order left operators in the rings
Q(x, y)[∂x, ∂y] and Q(x, y, z)[∂x, ∂y, ∂z] are completely classi-
fied. This is the foundation for a theory of decomposing second-
and third-order operators.

→ Determine the possible right factors of higher-order operators
and the resulting structure of the solutions of the corresponding
equations.

→ The what extent can the factorization be performed algorith-
mically? Is the existence of first-order right factors in general
decidable? If not, what is the boarderline for decidability?
(Darboux polynomials, Laplace divisors).

→ Is it possible the generalize these algebraic methods to certain
classes of non-linear equations?

================================================
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What are Integro-Differential Operators?

Definition

For an integro-differential algebra F over a field K , we construct

F [∂,
r
] = F [∂] u F [

r
] u F [e],

as the K -algebra of integro-differential operators. Structure follows!

Construct summands as left F -submodules of K 〈B, ∂,
r
, e〉.

First summand F [∂], generated over F by (∂ i | i ≥ 0).

Second summand F [
r
], generated over F by (

r
b | b ∈ B).

Third summand F [e], generated over F by (e∂ i | i ≥ 0).

We have an action • : F [∂,
r
]×F → F given by:

∂ : F → F r
: F → F e = 1− r ◦ ∂
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What is an Integro-Differential Algebra?

Definition

Let F be an algebra over a field K . If (F , ∂) is a differential algebra,r
: F → F a K -linear section of the derivation (meaning ∂

r
= 1),

and the differential Baxter axiom

(
r
f ′)(

r
g ′) = (

r
f ′)g + f (

r
g ′)− r

(fg)′

is satisfied, we call (F , ∂,
r
) an integro-differential algebra.

We require (F , ∂) ordinary in the sense that dim Ker(∂) = 1.

Immediate consequences:

Plain Baxter axiom (
r
f )(

r
g) =

r
(f

r
g) +

r
(g

r
f )

Evaluation e = 1− r
∂ is a character.
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Algebra Structure

Think of the prototype model F = C∞(R) or F = K [x ].

∂ • f = df
dx

r • f =
w x

0
f (x) dx e • f = f (0)

Multiplication table:

gf = g • f ∂f = f ∂ + ∂ • f

e2 = e ∂
r

= 1

ef = (e • f ) e ∂e, e
r

= 0r
f
r

= (
r • f )

r − r
(
r • f )r

f ∂ = f − r
(∂ • f )− (e • f ) er

f e = (
r • f ) e
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Remarks on Integro-Differential Operators

Possible but cumbersome to define multiplication on K -basis.
Subalgebras F [∂],F [

r
],F [e] ≤ F [∂,

r
].

Unlike F [∂], the algebras F [
r
] and F [e] have no unit.

Third summand F [e] coincides with evaluation ideal (e):

F [∂,
r
] = F [∂] u F [

r
] u (e)

Connection to boundary problems (see next Talk):

∂−1 6= r
since ∂

r
= 1

but
r
∂ = 1− e 6= 1

Relation to localization:
See later!

(∂, [e])−1 =
r

in the monoid of boundary problems

(∂2 − x∂ + 1, [2e0∂ − e1, e0∂ + e1])
−1 = Green’s Operator

Boundary problems: More characters ep, analogous construction.
Green’s Operator: Combination of

r
and ep, algorithmic.
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An Integro-Weyl Algebra?

From now on, we specialize to F = K [x ]. Hence—skew polynomials!

Leibniz rule: [∂, x ] = 1 Baxter rule: [x , `] = `2

Definition

The skew polynomial ring A[ξ; σ, δ] consists of the elements
a0 + a1ξ + · · ·+ anξ

n with a0, . . . , an ∈ A. Addition is termwise,
multiplication via ξa = σ(a) ξ + δ(a). We use A[ξ; δ] ≡ A[ξ; 1, δ].

A = K [x ], ξ = ∂ A = K [x ], ξ = `

∂x = x∂ + 1
}

δ(x) , `x = x` + (−`2)
}

δ(x) /
A = K [∂], ξ = x A = K [`], ξ = x

x∂ = ∂x + (−1)
}

δ(∂) , x` = `x + `2
}

δ(`) ,
M. Rosenkranz, G. Regensburger (RICAM) DIFFOP’09, Hagenberg 6 / 19



An Integro-Weyl Algebra!

Definition

We write A1(`) for the integro Weyl algebra K [`][x ; δ] with
δ(`) = `2. Analogously, we denote the differential Weyl algebra
K [∂][x ; δ] with δ(∂) = −1 by A1(∂).

Similarities/Differences between A1(`) and A1(∂):

Both are Noetherian integral domains, but only A1(∂) is simple.

While A1(∂) acts canonically on K [x ], what is ` • 1?

Unlike in A1(∂), there is a natural grading in A1(`).

Similar to A1(∂), also A1(`) has K -bases (`ix j) and (x j`i).

But A1(`) additionally has the mid basis (xm, xm`xn).

−→ K [x ][
r
] ∼= A1(`).
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Ideals of the Integro-Weyl Algebra

Proposition (Lam ’91, Thm. 3.15)

For a Q-algebra A, the ring A[ξ; δ] is simple iff δ is not an inner
derivation and A does not have a nontrivial δ-ideal I . Otherwise, the
skew polynomials with coefficients in I form an ideal of A[ξ; δ].

Now this reveals A1(`) to be non-simple:

Lemma

An ideal I of K [`] is a nontrivial δ-ideal iff I = (`n) with n > 0.
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Going Integro-Differential

Up to now, only integro or differential Weyl algebra.

Also combined algebra representable as skew polynomial ring.

First construct appropriate coefficient ring with ∂ and `.

Combined algebra is “almost” K [x ][∂,
r
]. What’s missing?

Integral operators from localization? A more severe mutilation.
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Coefficient Ring

Choose coefficient ring A and derivation δ for A[x ; δ] such that:

∂, ` ∈ A Derivation δ

∂` = 1 ∂x − x∂ = 1 and x`− `x = `2

Definition

“Constant coefficient integro-differential operators”

K〈∂, `〉 = K〈D, L〉/(DL− 1)

with derivation δ(∂) = −1 and δ(`) = `2.

Zero divisors: ∂ (1− `∂) = ∂ − ∂`∂ = ∂ − ∂ = 0

Jacobson ’50, Gerritzen ’00

Right inverses in rings, approach based on representation theory
K〈∂, `〉 is not Noetherian!
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Normal Forms

K -basis of K〈∂, `〉: `i∂j

(Normal forms modulo Gröbner basis DL− 1)

Define

e = 1− `∂ and eij = `ie∂j

Another K -basis of K〈∂, `〉: ∂j , `i , eij

K -vector space generated by eij is the evaluation ideal (e):

`eij = ei+1,j and ∂eij = ei−1,j , ∂e0j = 0

Decomposition

K〈∂, `〉 = K [∂] u K [`]\K u (e)

differential subrings (without unit), δ-ideal
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Ideal Structure

Proposition

Every nonzero ideal in K〈∂, `〉 contains the evaluation ideal (e).
Moreover, (e) is the only proper δ-ideal.

By our construction, ` is a right inverse of ∂.
Making it also a left inverse: e = 1− `∂ = 0
Laurent polynomials K [∂, ∂−1]: Making ∂ invertible in K [∂]

Proposition

The map with ∂ + (e) 7→ ∂ and ` + (e) 7→ ∂−1

ϕ : K〈∂, `〉/(e) → K [∂, ∂−1]

is a differential isomorphism.

Ideals in K〈∂, `〉 correspond to ideals in K [∂, ∂−1], which is a PID.
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Integro-Differential Weyl algebra

Definition

The integro-differential Weyl algebra is the skew polynomial ring

K〈∂, `〉[x ; δ]

denoted by A1(∂, `).

Skew polynomial construction works over arbitrary rings
Normal forms as before but deg fg ≤ deg f + deg g

K〈∂, `〉 is not Noetherian ⇒ A1(∂, `) is not Noetherian

(e) is a non-trivial δ-ideal in K〈∂, `〉 ⇒
Proposition

A1(∂, `) is not simple.
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Decomposition

Decomposition of coefficient ring

K〈∂, `〉 = K [∂] u K [`]\K u (e)

gives

A1(∂, `) = A1(∂) u A1(`)\K [x ] u (e)

where (e) is the evaluation ideal in A1(∂, `):

(e) ⊂ A1(∂, `)
= skew polynomials with coefficients in (e) ⊂ K〈∂, `〉
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Localization versus Evaluation

Integro-differential Weyl algebra

A1(∂, `)

` is some right inverse of ∂

↙
` should also be a left inverse
(two-sided inverse)

↘
` should be an integral with
integration constant c ∈ K
(evaluation x 7→ c)

Localization

K [∂, ∂−1][x ; δ]

Integro-differential operators

K [x ][∂,
r
]
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Localization

For coefficients

K〈∂, `〉/(e) ∼= K [∂, ∂−1]

lifting to skew polynomials (universal property) ⇒

Theorem

We have

A1(∂, `)/(e) ∼= K [∂, ∂−1][x ; δ]

as a differential isomorphism.

Analogously for general F ,

F [∂,
r
]/(e) ∼= F [∂] u F [

r
]
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Fixing the Integration Constant

Want to fix the integration constant c ∈ K meaning e • x = c in K [x ]

Construct a decomposition of the evaluation ideal (e)

In analogy to K [x ][e], consider

B ≤ A1(∂, `)

K -vector space with basis

(xke∂j)

Lemma

In A1(∂, `), we have

(e) = B u (e x − c e)

for every c ∈ K .
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Back to Integro-Differential Operators

From

(e) = B u (e x − c e),

A1(∂, `) = A1(∂) u A1(`)\K [x ] u (e)

we see that as K -vector spaces

A1(∂, `)/(e x − c e) = A1(∂) u A1(`)\K [x ] u B ∼= K [x ][∂,
r
]

Since this holds also as K -algebras:

Theorem

If
r

is an integral operator for the standard derivation ∂ on K [x ], then

A1(∂, `)/(e x − c e) ∼= K [x ][∂,
r
]

with c = e • x ∈ K as the constant of integration.
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Conclusion and Outlook

Constructed integro-differential operators as skew polynomials.

Integro-differential Weyl algebra: rich structure, first steps.

Useful for algorithmic treatment.

Compute Green’s operators, factor into lower order problems.

Extension to more evaluations → boundary problems.

From ordinary to partial differential equations.

Thank you.
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TH∃OREM∀ System
Construction of the Monoid Algebra

Integro-Differential Operators

Implementation of Integro-Differential Operators in
TH∃OREM∀

Loredana Tec
(joint work with: Bruno Buchberger, Georg Regensburger and

Markus Rosenkranz)

Hagenberg, February 6, 2009

L. Tec, B. Buchberger, G. Regensburger, M. Rosenkranz Integro-Differential Operators in TH∃OREM∀

TH∃OREM∀ System
Construction of the Monoid Algebra

Integro-Differential Operators

Goals

Build up domains for various types of polynomials.

Functor based approach in TH∃OREM∀.
Implement polynomial reduction for systems with infinitely
many generators.

Implementation of integro-differential operators.

Applications for solving/manipulating boundary problems.
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TH∃OREM∀ System
Construction of the Monoid Algebra

Integro-Differential Operators
Example of a Functor

The TH∃OREM∀ System

The TH∃OREM∀ System is an integrated environment for

proving

computing

solving

in various domains of mathematics.

A unified logical frame for

Generic programming by functors.

Proving (correctness proofs for algorithms).
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TH∃OREM∀ System
Construction of the Monoid Algebra

Integro-Differential Operators
Example of a Functor

An Example of a Functor

The following functor takes an ”alphabet domain” (ordered set of
”letters”) and builds the corresponding domain of ”words” over it.

DefinitionB"Word Monoid", any@LD,
LexWords@LD = FunctorBW, anyAv, w, Ξ, Η, Ξ

�
, Η
�E,

s = X\

Î
W
@wD�í

is|tuple@wD
"

i=1,¼, w¤
Î
L
@wiD

î
W
= X\

v*
W
w = v ^ w

KXΗ, Η�\ >
W
X\O � True

KX\ >
W
XΗ�\O � False

KXΗ, Η�\ >
W
YΞ, Ξ�]O �ë

Η >
L
Ξ

HΗ = ΞL íXΗ�\ >
W
XΞ�\

FF
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TH∃OREM∀ System
Construction of the Monoid Algebra

Integro-Differential Operators
The MonoidAlgebra Functor

The Construction of the Monoid Algebra

MonoidAlgebra[K, W], leading to:

Standard commutative polynomials: W = Nn.

Noncommutative polynomials: W = {x1, ..., xn}∗.
Exponential polynomials: W = N×C.
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TH∃OREM∀ System
Construction of the Monoid Algebra

Integro-Differential Operators
The MonoidAlgebra Functor

The MonoidAlgebra Functor
DefinitionB"Monoid Algebra", any@K, WD,
MonoidAlgebra@K, WD = FunctorBP, any@c, d, f, g, ¼D,

s = X\

Î
P
@fD�í

is|tuple@fD

"
i=1,¼, f¤

í

is|tuple@fiD
 fi¤ = 2
Î
K
@HfiL1D
Î
W
@HfiL2D

HfiL1 ¹ 0
K

"
i=1,¼, f¤-1

HfiL2 >
W
Hfi+1L2

1
P
= ZZ1

K
, î

W
^^

0
P
= X\
X\*

P
g = X\

f*
P
X\ = X\

XXc, Ξ\, m
�\*

P
XXd, Η\, n

�\ =
JZZc*

K
d, Ξ *

W
Η^^ +

P
Xc, Ξ\*

P
Xn�\N +

P
Xm�\*

P
XXd, Η\, n

�\
f +

P
g = ¼

FF
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TH∃OREM∀ System
Construction of the Monoid Algebra

Integro-Differential Operators
Examples

Integro-Differential Operators

F [∂,
r
]: free K -algebra generated by the symbols ∂ and

r
, the

functions f ∈ F and the characters ϕ, modulo the equations:

fg = f • g ∂f = ∂ • f + f ∂

ϕψ = ψ ∂ϕ = 0

ϕf = (ϕ • f )ϕ ∂
r

= 1r
f
r

= (
r • f )

r − r
(
r • f )r

f ∂ = f − r
(∂ • f )− (E • f )Er

f ϕ = (
r • f )ϕ

where f , g ∈ F functions, ϕ,ψ characters.

It is an infinite parametrized noncommutative Groebner Basis.

Arithmetic is done by computing with normal forms.
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� Int-Diff Op Computations

Example1:  Baxter Rule: ºº  = -º  x +º  x

ComputeBAsGreen
g

BYY1, Y"Ù "]]] *
I

YY1, Y"Ù "]]]FF
-1 A `xp + `xp A

Example2: Ix3 ¶ +e-x Ù e2 x x M · x2 ex

ComputeBAsGreen
g

BYX1, XX"`p", X3, 0\\, "¶"\\,
Y1, YX"`p", X0, -1\\, "Ù ", X"`p", X0, 2\\, X"`p", X1, 0\\]]] �

F

XX1, X2, 1\\\FF
-1

3
 ae

2*x
*x2q +

-2

27
 ae

2*xq +

2

9
 ae

2*x
*xq +

1

3
 ae

2*x
*x3q + 2 ae

x
*x4q + ae

x
*x5q

� Examples of Boundary Problems

� Solution Method for Two-Point Boundary Problems

Given f Î C¥@a, bD, find u Î C¥@a, bD s.t. : D u = f

B1 u = ¼ = Bn u = 0
. 

We want to find an operator G : f # u.

The Green's operator can be computed as:

GreensOp
P

@D, BD = whereBf = FundSys@DD,
1
A

-
A
Proj

P
@B, fD *

A

RightInv
P

@DDF
where the projector is computed as follows:

Proj
P

@B, FD = F *
MatOps@AD Ñ

MatOps@KD KEvalMat
A

@B, FDO ×
MatOps@AD B

Currently, D is assumed to have constant coefficients, so the fundamental right inverse is computed by:

RightInv
P

@DD = whereBn = deg@DD, Λ = CharRoots@DD,
J1
K

�
K
lc@DDN Ûi=1,¼,n aãΛi xq Ù aã-Λi xqF

� Example 1

Given f Î C¥@0, 1D, find u Î C¥@0, 1D s.t. : D2 u = f

E0 u = E1 u = 0
 .



ComputeBAsGreen
g

BGreensOp
B

AD2, XXX1, XX"dt", 0\\\\, XX1, XX"dt", 1\\\\\EFF �� Timing

81.89006, -1 A `xp + -1 `xp B + `xp A `xp + `xp B `xp<

So the Green's function: g(x,Ξ) = 
Hx - 1L Ξ Ü 0 £ Ξ £ x £ 1

xHΞ - 1L Ü 0 £ x £ Ξ £ 1
.

� Example 2 

Given f Î C¥@0, 1D, find u Î C¥@0, 1D s.t. : D4 u = f

E0 u = E1 u = E0 D2 u = E1 D2 u = 0
 .

ComputeBAsGreen
g

BGreensOp
B

AD4, XXX1, XX"dt", 0\\\\, XX1, XX"dt", 1\\\\,
XX1, XX"dt", 0\, "¶", "¶"\\\, XX1, XX"dt", 1\, "¶", "¶"\\\\EFF �� Timing

:8.59186,
-1

2
 `xp B ax2q +

-1

2
 ax2q A `xp +

-1

6
 A ax3q +

-1

6
 ax3q B +

1

6
 `xp A ax3q +

1

6
 `xp B ax3q +

1

6
 ax3q A `xp +

1

6
 ax3q B `xp +

1

3
 `xp A `xp +

1

3
 `xp B `xp>

So the Green's function: g(x,Ξ) = 
-

1
2

 x2 Ξ -
1
6

 Ξ3 +
1
6

 x Ξ3 +
1
6

 x3 Ξ +
1
3

 x Ξ Ü 0 £ Ξ £ x £ 1

-
1
2

 x Ξ2 -
1
6

 x3 +
1
6

x Ξ3 +
1
6

 x3 Ξ +
1
3

 x Ξ Ü 0 £ x £ Ξ £ 1
.

� Example 3 

Given f Î C¥@0, ΠD, find u Î C¥@0, ΠD s.t. : ID2 + D + 1M u = f

E0 u = EΠ u = 0
. 

ComputeB AsGreen
GreensAlg@Exp,KDBGreensOp

B

AD2 + 2 D + 1, XXX1, XX"dt", 0\\\\, XX1, XX"dt", Π\\\\\EFF ��
Timing

92.95596,
-1 ae

-1*xq A `e
x

*xp + -1 ae
-1*x

*xq B `e
xp + Π

-1
 ae

-1*x
*xq A `e

x
*xp + Π

-1
 ae

-1*x
*xq B `e

x
*xp=

So the Green's function: g(x,Ξ) = 

1
Π

 Hx - ΠL Ξ ãΞ-x Ü 0 £ Ξ £ x £ Π

1
Π

 HΞ - ΠL x ãΞ-x Ü 0 £ x £ Ξ £ Π
.

2  DiffOpExamples.nb
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Example

Consider system of differential equations

y ′′
1 (t) + (t + 2)y1(t) + t2y ′′

2 (t) + y2(t) + y ′
3(t) + y3(t) = 0

y ′
1(t) + 3y1(t) + y ′′′

2 (t) + 2y ′
2(t)− y2(t) + y ′′′

3 (t)− 2t2y3(t) = 0
y ′

1(t) + y1(t) + y ′′
2 (t) + 2ty ′

2(t)− y2(t) + y ′′′′
3 (t) = 0.

We usually deal with such systems by first converting them to
first order systems

A(t)Y ′(t) = B(t)Y (t) + C(t)

and then using various techniques to build various solutions or
solution types (e.g. existence of rational function or exponential
solutions).
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Example : Matrix Form

Our original example can be represented by a differential matrix
equation

 D2 + (t + 2) t2D2 + 1 D + 1
D + 3 D3 + 2D − 1 D3 − 2t2

D + 1 D2 + 2tD + 1 D4

 ·
y1(t)

y2(t)
y3(t)

 = 0.

In general, systems that we are looking at are of the form

A(D)Y (t) = B(t).

Question : What form does A(D) need to be in order that one
can convert easily to a first order system?
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Example (cont.)

Let D be the differentiation operator on t . If the system of
equations is represented by: D2 + (t + 2) t2D2 + 1 D + 1

D + 3 D3 + 2D − 1 D3 − 2t2

D + 1 D2 + 2tD + 1 D4

 ·
y1(t)

y2(t)
y3(t)

 = 0,

then we can rewrite

y ′′1 (t) = −(t + 2)y1(t)− t2y ′′2 (t)− y2(t)− y ′3(t)− y3(t)

y ′′′2 (t) = −y ′1(t)− 3y1(t)− 2y ′2(t) + y2(t)− y ′′′3 (t) + 2t2y3(t)
y ′′′′3 (t) = −y ′1(t)− y1(t)− y ′′2 (t)− 2ty ′2(t)− y2(t)
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Example (cont.)

For systems not having this ‘special form’ one can always
do row operations, derivations and eliminations to put a
matrix of differential operators into the correct form.
Basically given A(D) one looks for an invertible U(D) such
that

U(D) · A(D) = P(D) = matrix in special form

Special form needs to have columns of highest order in
each row and one row cannot ‘interfere’ with columns of
higest order in other rows.
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Questions

What are these special normal forms?

How to compute such normal forms?

Where does one go for ideas for these normal forms?

WARNING : this is only a preliminary report on this topic.
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Outline

1 Motivation

2 Matrix Normal Forms
Introduction
Examples

3 Popov Normal Form
Basic Popov Facts

4 Computation of Popov Forms
History
Popov Form via Matrix GCLD
Method of Mulders-Strojohann
Fraction-Free Popov Computation
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Todays Topic

Given : A(D) ∈ Km×n[D].

Do row operations U(D)

U(D)A(D) = easier

(easier = B(D) ∈ Km×n[D] in some sort of normal form)

U(D) ∈ Km×m[D] invertible

Also wish to do this with matrices of Ore operators

Useful to see how one does these with matrices of polynomials
RISC Diffop Workshop 2009 Popov Forms of Matrices of Differential Polynomials



Motivation
Matrix Normal Forms
Popov Normal Form

Computation of Popov Forms

Introduction
Examples

Why useful for Matrix Polynomials? : Matrix GCD

Given B(z), C(z) ∈ Km×m[z]:

Find Greatest Right Common Divisor (gcrd) D(z) ∈ Km×m[z].

[
U11(z) U12(z)
U21(z) U22(z)

]
·
[

B(z)
C(z)

]
=

[
D(z)

0

]
[

V11(z) V12(z)
V21(z) V22(z)

]
·
[

U11(z) U12(z)
U21(z) U22(z)

]
=

[
Im 0
0 Im

]
U11(z)V11(z) + U12(z)V21(z) = Im
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Introduction
Examples

Why useful for Matrix Polynomials? : Matrix GCD

Given B(z), C(z) ∈ Km×m[z]:

Find Greatest Right Common Divisor (gcrd) D(z) ∈ Km×m[z].

[
U11(z) U12(z)
U21(z) U22(z)

]
·
[

B(z)
C(z)

]
=

[
V11(z)D(z)
V21(z)D(z)

]
[

U11(z) U12(z)
U21(z) U22(z)

]
·
[

V11(z) V12(z)
V21(z) V22(z)

]
=

[
Im 0
0 Im

]
U11(z)V11(z) + U12(z)V21(z) = Im
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Introduction
Examples

Why useful for Matrix Polynomials? : Matrix GCD

Given B(z), C(z) ∈ Km×m[z]:

Find Greatest Right Common Divisor (gcrd) D(z) ∈ Km×m[z].

[
U11(z) U12(z)
U21(z) U22(z)

]
·
[

B(z)
C(z)

]
=

[
V11(z)D(z)
V21(z)D(z)

]
[

V11(z) V12(z)
V21(z) V22(z)

]
·
[

U11(z) U12(z)
U21(z) U22(z)

]
=

[
In 0
0 In

]
U11(z)V11(z) + U12(z)V21(z) = Im
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Introduction
Examples

Matrix polynomials (in fact rational expressions of form
A(z) = U(z) · V (z)−1) used in linear control theory

v −→ −→ Av

Matrix GCDs needed for minimal rational matrix
expressions

Builds input-output model for control system

Concept of Transfer frunctions also seems to exist for
nonlinear control (Ziming Li [FoCM’08])
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Example : Hermite Normal Form

H(z) =



h1,1(z) h1,2(z) · · · h1,m(z)

0 h2,2(z)
...

...
. . . . . .

...
... hm−1,m(z)
0 · · · 0 hm,m(z)


is in Hermite Normal Form if:

Upper triangular
diagonal entries monic
degrees of diagonal entries max in columns
any zero rows at bottom

Useful in solving linear system H(z)~x(z) = ~b(z)
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Introduction
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Example

Input : A(z) =

 z2 + 1 z z3

z 0 z
z z z3 − 1



Output : B(z) =

 1 0 −z2 + z + 1
0 z z2 − z − 1
0 0 z3 − z2
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Some Additional Remarks

Also have Smith Normal Form for row and column
equivalence.

U(z) · A(z) · V(z) = diag(s1(z), · · · , sm(z))

where si(z)|si+1(z) for all i . Determinantal divisors.
Invariant factors. Useful for solving

A(z)~x(z) = ~b(z).

Also have noncommutative versions of these normal forms
- e.g. for matrices A(D) of differential operators
- again useful for solving systems, but now of the form

A(D)~x(z) = ~b(z).

- e.g. used by Singer [1985] for LODE decision procedures
for systems
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Basic Popov Facts

This talk : Popov Form

Hermite Normal Form does not have controlled degrees
- e.g. degrees of HNF can be larger than input degree

Popov’s form (1969) : purpose was to allow for simple
conversion of state space to transfer functions in linear
systems theory.

Villard (1996) introduced Popov form to computer algebra
community

Popov form related to Gröbner bases

Can extend to noncommutative domains
(e.g. Ore domains)

Question : How to compute (effectively)?
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Definition : Row Popov Form

F =



f11 f1,2 f1,3 · · · f1,n−1 f1,n
f21 f2,2 f2,3 · · · f2,n−1 f2,n
f31 f3,2 f3,3 · · · f3,n−1 f3,n
...

fn−1,1 fn−1,,2 fn−1,3 · · · fn−1,n−1 fn−1,n
fn,1 fn,,2 · · · · · · fn,n−1 fn,n


Diagonal entries monic and of row degree
deg fj,i < deg fi,i for j 6= i
deg fi,j < deg fi,i for j < i
deg fi,j ≤ deg fi,i for j > i
zero rows at bottom

Lots of variations (via reordering).

Can also define for matrices of Ore operators.
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Example

E.g. : Input degree bounds
3 3 2 3
3 4 3 3
4 4 4 4
6 7 6 7


Output degree bounds for Popov form

3 3 2 3
2 4 3 3
2 3 4 4
2 3 3 7
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Alternatively

An polynomial matrix A(z) is in Popov Form if:

1 it has rank A(z) non-zero rows;
2 the leading row coefficient is triangular, with monic leading

entries;
3 the leading entry of each row has the highest degree in its

columns.

Also called a Polynomial Echelon Form (Kailath book [1980]).

Any input matrix A(z) can be transformed into a unique Popov
form by row operations.
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Basic Popov Facts

Popov form as Gröbner Bases

Monomials on vectors K1×n[z] :

zαej = [0, . . . , 0, zα, 0, . . . , 0]

Ordering on monomials of K1×n[z] :
Position over Term (POT):

zαei < zβej ⇐⇒ i < j or i = j and α < β

Term over Position (TOP):

zαei < zβej ⇐⇒ α < β or α = β and i < j .

If M is a submodule of K1×n[z] then we can now speak of
Gröbner bases for the module M.
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Popov form as Gröbner Bases

(Kojima, Rapisarda, Takaba [System & Control Letters 2007])

Let M be a submodule of K1×m[z] with a term over position
ordering. Then

{fi}i=1,..,s is a reduced Gröbner basis for the module M ⇐⇒ :

(a) M = 〈f1, . . . , fs〉;
(b) The matrix row(f1, . . . , fs) is in Popov form.

If TOP is replaced by position over term ordering then Popov
form in (b) is replaced by Hermite form.
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History
Popov Form via Matrix GCLD
Method of Mulders-Strojohann
Fraction-Free Popov Computation

Previous Works

Popov form algorithm for polynomial matrices:
Villard
Mulders and Storjohann
Beckermann, Labahn, Villard
. . .

A number of other algorithms for row/column-reduced form
of polynomial matrices:

Beelen, van den Hurk, Praagman
Neven and Praagman
. . .
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Previous Works (cont.)

Elimination-based approaches for Ore Popov form
(Giesbrecht, Labahn, Zhang).

EG elimination and variants
(Abramov, Abramov and Bronstein).

The FFreduce algorithm (Beckermann, Cheng, Labahn)
computes:

a minimal polynomial basis for the left nullspace
(in Popov form);
GCRD and LCLM (special cases only)

The FFreduce algorithm is fraction-free.
i.e. No fractions are introduced while controlling coefficient
growth.

A modular algorithm (Cheng, Labahn) for the same
computations.RISC Diffop Workshop 2009 Popov Forms of Matrices of Differential Polynomials
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Method of G. Villard (1996)

A(z)−1 = ∆(z)−1A∗(z) where:

A∗(z) is adjoint of A(z)
∆(z) is diagonal matrix with det A(z) on diagonals.

A∗(z)A(z) = ∆(z) and A∗(z) · I = A∗(z) so :

A∗(z) is a gcld of ∆(z) and A∗(z).
All other gcld’s G(z) are then multiples, i.e.

G(z) = A∗(z)V(z) with V(z) unimodular
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Method of G. Villard (1996)

A(z)−1 = ∆(z)−1A∗(z)

If A(z)−1 = D(z)−1N(z) with D(z) of minimal determinant
degree in Popov form then

D(z) = G(z)−1∆(z) = V(z)−1A∗(z)−1∆(z) = U(z)A(z)

with U(z) unimodular.

Therefore find a minimal realization of A(z)−1 having a
denominator in Popov form.

Algorithm exists for the above computation.

Good for parallel computation
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Mulders-Storjohann Procedure

First transform A(z) to Weak Popov Form - basically where
pivots are on seperate rows but nothing more. Then convert to
Popov Form
E.g. : degree bounds

3 3 2 3
3 4 3 3
4 4 4 4
6 7 6 7

 or


2 3 3 3
3 3 3 4
4 4 4 4
6 6 7 7
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Mulders-Storjohann Procedure

First transform A(z) to Weak Popov Form - basically where
pivots are on seperate rows but nothing more. Then convert to
Popov Form
E.g. : degree bounds

3 3 2 3
2 4 3 3
4 4 4 4
6 7 6 7

 or


2 3 3 3
3 2 3 4
4 4 4 4
6 6 7 7
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Mulders-Storjohann Procedure

First transform A(z) to Weak Popov Form - basically where
pivots are on seperate rows but nothing more. Then convert to
Popov Form
E.g. : degree bounds (and so on .. )

3 3 2 3
2 4 3 3
2 3 4 4
2 3 3 7

 or


2 3 3 3
3 2 3 4
4 2 4 4
3 2 7 3
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Symbolic Domains

Basic coefficient domain: Quotient field: F(α1, . . . , αk )
- symbols are first class objects in CA environments.

Polynomial arithmetic easier than arithmetic with rational
functions

a(x)

b(x)
+

c(x)

d(x)
=

a(x) · d(x) + b(x) · c(x)

b(x) · d(x)

Need to rcognize 0 : need to normalize out gcd’s at every
step
Basic goal:

To work with polynomial arithmetic in integral domain (e.g.
in F[α1, . . . , αk ]) rather than in quotient field.

Want to do our arithmetic fraction-free but at the same
time to minimize growth of intermediate computation.
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Symbolic Domains

A =


a b c · · · · · ·
d e f · · · · · ·
g h i · · · · · ·
...

...
...

 ≈


a b c · · · · · ·
0 ẽ f̃ · · · · · ·
0 h̃ ĩ · · · · · ·
...

...
...


Cross multiplication gives exponential growth of coeffs
Fraction-free Gaussian elimination (FFGE)

A ≈


a b c · · · · · ·
0 ẽ f̃ · · · · · ·
0 0 a(..) · · · a(...)
...

...
...

0 0 a(..) · · · a(...)

 .

Allows for linear growth of coefficient size.
Important : computes Cramer solution of linear problem.
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Popov Form via Order Basis

U(z)A(z) = T(z) same as [U(z), T(z)]

[
A(z)
−In

]
= 0

U(z)A(z) = T(z) same as [U(z), T(z)z~r ]

[
A(z)z~r

−In

]
= 0

for any vector ~r .
Choose ~r intelligently so that [U(z), T(z)z~r ] has leading
coefficient the same as leading coefficient of [0, T(z)].
Find Popov form for [U(z), T(z)z~r ]

Works because we can use order bases to solve last problem.

Good because order basis computation can be done via
fraction-free methods (FFGE method of Beckermann-Labahn)

RISC Diffop Workshop 2009 Popov Forms of Matrices of Differential Polynomials

Motivation
Matrix Normal Forms
Popov Normal Form

Computation of Popov Forms

History
Popov Form via Matrix GCLD
Method of Mulders-Strojohann
Fraction-Free Popov Computation

Popov Form via Order Basis (cont.)

Order basis finds a module basis for problem:

f1(z)m1(z) + · · ·+ fn(z)mn(z) = O(zσ)

Order basis is form of an n × n matrix polynomial
FFGE computes order basis in a shifted Popov Form using
fraction-free arithmetic
Choose vector ~r intelligently (use adjoint of A(z)) so that
one can embed Popov computational inside[

M11(z) M12(z)
M21(z) M22(z)

] [
A(z)z~r

−In

]
=

[
R(z)z~σ

0

]
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Future Topics

1 Want fraction-free reduction procedure
2 Relationship of Popov Form (and its computation) to work

of Pryce [2001] with Taylor series for numerical solution of
DAEs

3 Higher order methods for systems of linear odes without
conversion to first order systems

4 Involve adjoint calculation in process.
Did this in case of Order Basis (B & L, submitted to ISSAC
2009)
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Moving Frames and Noether’s Theorem
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Running Example: projective SL(2) action

g · x = x, g · t = t, g · u =
au + b

cu + d

g =

 a b

c d

 , ad− bc = 1

Via the chain rule, induce an action on ux etc:

g · ux =
∂(g · u)

∂(g · x) =
ux

(cu + d)2

Lowest order invariants are

W =
ut

ux
, V =

uxxx

ux
− 3

2

u2
xx

u2
x

:= {u;x}.



V and W are functionally independent, but there is a

differential identity or syzygy, in this case

∂

∂t
V = (

∂3

∂x3
+ 2V

∂

∂x
+ Vx)︸ ︷︷ ︸

KdV operator

W.

Interesting note: If W = V , then V (x, t) satisfies the Korteweg

de Vries equation. That is, if ut = ux{u;x}, then {u;x} satisfies

KdV.

Many examples like this. Gloria Mari Beffa has papers exploring

moving frames and Poisson structures for Hamiltonian PDE.

For many applications, want:

Given the Lie group action, derive the invariants and their

syzygies algorithmically, that is, without prior knowledge of 100

years of differential geometry, and with minimal effort.

Major progress: Fels and Olver’s∗ reformulation of Cartan’s

moving frame, and recent preprints by Hubert.

Why: ease of calculations, from variational calculus, solution of

DEs via symmetries, . . . numerics, computer vision . . .

∗Acta App. math 51 (1998) and 55 (1999)



Moving Frame if G×M → M is a regular, free action

K

different

orbits
•

•k
z

h∈G

ρ : M → G ρ(z) = h is equivariant

Calculation of a moving frame

Specify K, the cross-section, as the locus of Φ(z) = 0. Then

solve Φ(g · z) = 0 for g. In practice, solve

φj(g · z) = 0, j = 1, . . . , r = dim(G)

for the r independent parameters describing g. Call the solution

ρ(z). Invoke IFT. Unique solution yields

ρ(g · z) = ρ(z) · g−1.

• local solutions only this way: but see Hubert and Kogan,

FoCM 7 (2007) and J. Symb. Comp., 42 (2007).



Recall running example:

g · u =
au + b

cu + d
, g · ux =

ux

(cu + d)2
, g · uxx =

∂

∂x
(g · ux)

We have z = (u, ux, uxx) and we take

Φ(g · z) = 0 : g · u = 0, g · ux = 1, g · uxx = 0

to get

a =
1√
ux

, b = − u√
ux

, c =
uxx

2u
3/2
x

.

Hence in matrix form,

ρ(u, ux, uxx) =


1√
ux

− u√
ux

uxx

2u
3/2
x

2u2
x−uuxx

2u
3/2
x

 .

Seeing is believing! The equivariance looks like

ρ(g · z) =


1√

g · ux
− g · u√

g · ux

g · uxx

2(g · ux)3/2

2(g · ux)2 − (g · u)(g · uxx)

2(g · ux)3/2



=


1√
ux

− u√
ux

uxx

2u
3/2
x

2u2
x − uuxx

2u
3/2
x


 d −b

−c a


= ρ(z)g−1

Recall g · ux = ux/(cu + d)2 . . .



Invariants: The components of I(z) = ρ(z) · z are invariant.

I(g · z) = ρ(g · z) · (g · z) = ρ(z)g−1g · z = ρ(z) · z.

In practice for our running example

V = g · uxxx|frame, W = g · ut|frame

Various notations exist in the literature:

g · uα
K|frame = Iα

K = ι(uα
K) = ῑ(uα

K)

The same construction yields invariant differential operators,

Dj =
∂

∂g · xj

∣∣∣
frame

,

also exterior forms, integral moments, difference expressions,
and so on.

All differential invariants are functions of the Iα
K by the

Replacement Theorem:

If F(x, u, ux, uxx. . . .) is an invariant, then

F(x, u, ux, uxx. . . .) = F(g · x, g · u, g · ux, g · uxx. . . .)

= F(g · x, g · u, g · ux, g · uxx. . . .)|frame

= F(ι(x), Iu, Iu
1 , Iu

11, . . .)



∂
∂xj

uα
K = uα

Kj

uα uα
x uα

xx uα
xxx

uα
y uα

xy

uα
xyyuα

yy

uα
xxy

∂x

∂y
b b

b b

b

b b

bb b

♣ Generated by uα

♣ The lattice has no “holes”.

♣ The operators commute.

DjI
α
K = Iα

Kj + Mα
Kj

0 01

I2

I111

I12

I122I22

I112 I1112
Dx

b b

b

b

b b

bb b

Dt

Picture for running SL(2) example

♣ More than one generator
♣ Differential syzygies.
♦ Symbolic formulae for the Mα

Kj.



Variational problems with Symmetry

Motivating problem

Given an occluded curve, want to fill in the missing bits, but

how?

Possible infillings:

The solution should be equivariant with respect to translation

and rotation in the plane:

complete complete

rotate

rotate

The solution should be simplest possible while still fooling the

human eye.



The actual problem is “solved”, actually, set up to be solved,

by taking the solution to minimize an integral of the form

L[u] =
∫

L(κ, κs, . . .) ds

where κ is the Euclidean curvature and s the Euclidean

arclength. That is, a variational problem with the relevant Lie

group invariance.

So many applications of variational problems with Lie group

symmetry!

• Find the Euler Lagrange equations directly in terms of the

invariants†

• Minimal effort and required prior information

• Noether’s theorem in these variables

• Obtain extremals in the original variables

†Kogan and Olver, Acta Appl. Math 76 (2003)



Recall how to calculate Euler Lagrange equations:

0 = d
dǫ|ǫ=0L[u + ǫv]

= d
dǫ|ǫ=0

∫ b
a L(x, u + ǫv, ux + ǫvx, uxx + ǫvxx, . . .) dx

=
∫ b
a

(
∂L
∂uv + ∂L

∂ux
vx + ∂L

∂uxx
vxx + . . .

)
dx

=
∫ b
a

[(
∂L
∂u − d

dx
∂L
∂ux

+ d2

dx2
∂L

∂uxx
+ . . .

)
v

+ d
dx

(
∂L
∂ux

v + ∂L
∂uxx

vxx −
(

d
dx

∂L
∂uxx

)
v + . . .

)]
dx

=
∫

E(L)v dx +
[

∂L
∂ux

v + . . .
]b
a

In other words:

Step 1: a derivative wrt u and its derivatives

Step 2: integration by parts

Note: the variation is with respect to u, and not the invariant.
The EL equation for

∫
κ2 ds is

κss +
1

2
κ3 = 0

Since κ is a second order invariant, not hard to see will get a
fourth order equation.

But where does the κ3 come from?

Answer: a syzygy!



Trick one To get

d

dǫ

∣∣∣
ǫ=0

L[uα + ǫvα]

where uα is implicit, set

uα = uα(x, t)

where t is a dummy variable, both x and t are invariant and

∂

∂x

∂

∂t
=

∂

∂t

∂

∂x
.

Setting

vα
K ↔ uα

Kt

yields the same symbolic result.

Looking at our running example, suppose we have a Lagrangian

of the form

L[u] =
∫

L(V, Vx, Vxx, . . .) dx︸ ︷︷ ︸
involves x only

Introduce the dummy variable t to effect the derivative wrt u.

Hence, we obtain a new invariant I2 = ι(ut) = ut/ux, with the

syzygy we saw already,

∂

∂t
V = HI2 =

(
∂3

∂x3
+ 2V

∂

∂x
+ Vx

)
I2.



∂
∂t

∫
L(x, V, Vx, Vxx, . . .) dx

=
∫ (∂L

∂V + ∂L
∂Vx

∂
∂x + · · ·

)
∂
∂tV dx

=
∫ (∂L

∂V
− ∂

∂x

∂L

∂Vx
+

∂2

∂x2

∂L

∂Vxx
+ · · ·

)
︸ ︷︷ ︸

EV (L)

H(I2) dx + B.T’s

=
∫ H∗ (EV (L)

)
I2 dx + more B.T’s

where H∗ is the adjoint of H. Thus in this case,

Eu(L) = H∗
(
EV (L)

)

Examples Since in this case H∗ = −H:

1. for L =
∫

V dx =
∫ {u;x}dx we obtain

Eu(L) = −(
∂3

∂x3
+ 2V

∂

∂x
+ Vx)(1) = −Vx

2. for L =
∫ 1

2V 2 dx =
∫ {u;x}2 dx we obtain

Eu(L) = −(
∂3

∂x3
+ 2V

∂

∂x
+ Vx)(V ) = −(Vxxx + 3V Vx)



To handle
∫

κ2 ds, where s is arclength, note s is such that

u2
s + x2

s = 1, that is, there is an arclength constraint.

• Main trick: reparameterize to u = u(s), x = x(s), so that

there are 2 dependent variables.

• For frame given by g · x = g · u = g · ux = 0, the syzygies are

∂

∂t

 Iu
11

Ix
1

 = H
 Iu

2

Ix
2


where H is a matrix of operators. Apply method to∫

[L(Iu
11, . . .)− λ(s) (Ix

1 − 1)] ds

Carefully eliminating λ from the EL system yields the result.

Noether’s Theorem

provides, for one dimensional problems, first integrals of
E(L) = 0 in the case Ldx is invariant under a Lie group action.

The formula for the integrals, one for each group parameter, is
obtained by careful collection of the boundary terms in the
integration by parts process we’ve just seen.

The formula is well known and can be calculated symbolically
in Maple.

I decided “to see what I could see” by obtaining the first
integrals in the original variables, and writing what I could in
terms of the invariants. The result was beyond my wildest
dreams.



For Lagrangians of the form
∫

L(V, Vx, . . .) dx where V = {u;x},
I obtained

c =


d2 2bd −b2

cd ad + bc −ab

−c2 −2ac a2


︸ ︷︷ ︸

R(g)

∣∣∣
frame


∂2

∂x2EV (L) + V EV (L)

−2 ∂
∂xEV (L)

−2EV (L)



Recall the frame is

a =
1√
ux

, b = − u√
ux

, c =
uxx

2(ux)3/2
, ad− bc = 1.

• R(gh) = R(h)R(g), and so R(ρ(z)) is equivariant

Which representation yields R(g)? And how to calculate the
vector of invariants directly?

The Adjoint representation of G on infinitesimal vector fields

Infinitesimal vector fields For

g · u =
au + b

cu + (1 + bc)/a

the identity element e is given by a = 1, b = c = 0. Then

∂

∂a

∣∣∣
e

g · u = 2u,
∂

∂b

∣∣∣
e

g · u = 1,
∂

∂c

∣∣∣
e

g · u = −u2

If g(t) is a path in G = SL(2) with g(0) = e, then we have the

vector field

d

dt

∣∣∣
t=0

g(t) · u =
(
2αu + β − γu2

)
∂u

for constants α, β, γ. These comprise the set XSL(2)(M) which

is a three dimensional subspace of X(M).



Given G×M → M , the induced Adjoint action on X(M) is

g · (f(u)∂u) = f (g · u) ∂g·u = f (g · u)
(

∂g · u
∂u

)−1
∂u

Theorem

g · XG(M) ∈ XG(M)

Can be easier to calculate induced action on the arbitrary

constants α, β, γ (the coAdjoint action)

Calculating(
2α(g · u) + β − γ(g · u)2

) (
∂g·u
∂u

)−1
∂u

=
(
2α(au + b)(cu + d) + β(cu + d)2 − γ(au + b)2

)
∂u

=
(
2(g · α)u + (g · β)− (g · γ)u2

)
∂u

yields 
g · β
g · α
g · γ

 =


d2 2bd −b2

cd ad + bc −ab

−c2 −2ac a2


︸ ︷︷ ︸

Ad(g)T


β

α

γ





Noether’s Theorem via Moving frames (Gonçalves, ELM)

Let
∫

L(κα, κα
x , . . .) dx be invariant under G×M → M ,

M = JN((x, uα)) with generating invariants κα and g · x = x.
Introduce the dummy variable t to effect the variation, and
suppose that∫

∂

∂t
Ldt =

∫ ∑
Eα(L)Iα

2 dx +
d

dx

 ∑
α,J=1···1

Iα
2JCα

J


where this defines the vector Cα = (Cα

J ). Let (a1, a2, . . . ar) be
coordinates of G about e. Define the matrix of invariantized
infinitesimals

Ωα =


· · · uα

J · · ·
... · · · ... · · ·
aj g ·

(
∂

∂aj
uα

J |e
) ∣∣∣

frame
... · · · ... · · ·



Then the r first integrals obtained via Noether’s theorem can
be written in the form

Ad(ρ)−1

r×r

∑
α

Ωα

r×N

Cα

N×1

= c

r×1

• Can see straightaway what the induced action on these first
integrals is, since Ad(ρ) is equivariant. The infinitesimal form
of this action was well known.

• An invariant ODE ∆ = 0 can be converted to the triangular
system I(∆) = 0, ρx = A(I)ρ, where A(I) is known for any
representation (ELM). Under favourable conditions, need only
to solve the invariantized EL equations for the invariants as
functions of x: no further integration is needed!!!



Open problems

• Know in principle, but have not calculated, how to do higher

dimensional problems

• Method relies on having a dummy variable t, invariants κα,

Iα
2 = g · uα

t |frame and a syzygy of the form

∂

∂t

(
κα

)
= H

(
Iα
2

)
Hubert’s recent papers on syzygies inform this part

• Can the method be adopted to finite difference variational

problems
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Linear differential equations: M. Janet (1920’s)

Given a linear system of pdes. Find free Taylor coefficients!

Example: u = u(x, y)

I System 1:

u + x ux = 0

uy,y − uy = 0

Parametric derivatives: u, uy

I System 2:

u + x ux = 0

Parametric derivatives:u, uy, uy,y, . . .
Enumeration: 1

1−y

Algebraic systems: J. M. Thomas (1930s)

Decompose system into pairwise disjoint simple systems.
by using equations and inequations

Example: x3 − y2 − 1 = 0 decomposes into

x3 − y2 − 1 = 0

y2 + 1 6= 0,

and x = 0,

y2 + 1 = 0

Number of solutions:
3 ∗ (∞− 2) 1 ∗ 2

adding up to

3∞− 4 solutions.



People involved:

Present project:

I V. Gerdt (insisted on importance of Thomas’ work)
I T. Bächler (implements algebraic Thomas decomposition)
I M. Lange-Hegermann (implements differential Thomas

decomposition)
I D. Robertz (packages Involutive, Janet)
I myself (defined counting polynomials)

Other work on triangular systems:

I (with some reference to Thomas): Wu, D. Wang
I F. Boulier, E. Hubert, . . .
I (disjoint decompositions) Moreno Maza e. a.

Plan of this talk

Aim: Connect
I enumeration of Taylor coefficients for linear pdes
I the count of the solutions of algebraic systems
I to obtain a
I count of holomorphic solutions for polynomial pde systems.

Outline:
I The counting polynomial (algebraic case)
I Thomas algorithm (algebraic case)
I Thomas algorithm (differential case)
I Ideas for the counting polynomial in the differential case



Introduction

Counting polynomials (algebraic case)

Differential Thomas Algorithm

x3 − y2 − 1 = 0 revisited: bad news

I 1st decomposition (x > y):

x3 − y2 − 1 = 0

y2 + 1 6= 0,

and x = 0,

y2 + 1 = 0

# 3 ∗ (∞− 2) 1 ∗ 2

adding up to 3∞− 4 solutions.
I 2nd decomposition (y > x):

x3 − y2 − 1 = 0

x3 − 1 6= 0,

and y = 0,

x3 − 1 = 0

# 2 ∗ (∞− 3) 1 ∗ 3

adding up to 2∞− 3 solutions.



Two basic ideas:

K algebraically closed field, characteristic zero.

1. p(x) ∈ K[x] squarefree of degree n > 0.
Number of solutions a ∈ K of

I p(a) = 0 is n.
I p(a) 6= 0 is ∞− n.

2. q(x, y) ∈ K[x, y] squarefree of degree m > 0.
Assume q(a, y) ∈ K[y] squarefree of degree m > 0 for all
a ∈ K with p(a) = 0. Then
Number of solutions (a, b) ∈ K2 of

I p(a) = 0, q(a, y) = 0 is n ∗m.
I p(a) = 0, q(a, y) 6= 0 is n ∗ (∞−m).

Assume q(a, y) ∈ K[y] squarefree of degree m > 0 for all
a ∈ K with p(a) 6= 0. Then
Number of solutions (a, b) ∈ K2 of

I p(a) 6= 0, q(a, y) = 0 is (∞− n) ∗m.
I p(a) 6= 0, q(a, y) 6= 0 is (∞− n) ∗ (∞−m).

Geometric view: iterated fibrations

Notation:
I Projections πi : Ki → Ki−1 : (a1, . . . , ai) 7→ (a1, . . . , ai−1).
I Equations E ⊆ K[x1, . . . , xn] finite.
I Inequations:: U ⊆ K[x1, . . . , xn] finite.
I Set of solutions

V (E,U) := {a ∈ Kn|p(a) = 0, q(a) 6= 0 for p ∈ E, q ∈ U}.
I Truncated sets of solutions:

Vn(E,U) := V (E,U)

Vn−1(E,U) := πn(Vn(E,U))

. . .

V1(E,U) := π2(V2(E,U))

Note: Each fibre of πi : Vi(E,U) → Vi−1(E,U) either finite or
cofinite in K.



Simple systems and their counting polynomial

(E,U) is a simple system if for each i:
I all fibres of πi : Vi(E,U) → Vi−1(E,U) have the same

cardinality in K,
I namely fi in case of finiteness
I and f i for their complements in K otherwise.

Counting polynomial for simple system (E,U):

c(E,U) :=
∏
j

fj ∗
∏
j

(∞− f j) ∈ Z[∞]

I fj defined ⇐⇒ E ∩ (K[x1, . . . xj ]−K[x1, . . . xj−1]) 6= ∅.
I f j > 0 ⇐⇒ U ∩ (K[x1, . . . xj ]−K[x1, . . . xj−1]) 6= ∅.

Describable sets and their counting polynomials

I Def.: M ⊆ Kn describable if M =
⊎

i V (Ei, Ui) with each
(Ei, Ui) simple

I Thomas: V (E,U) describable
I Counting polynomial cM :=

∑
i c(Ei, Ui) (independent of

decomposition)
I M,N ⊆ Kn describable, then also M ∩N,M ∪N,Kn−M .
I cM + cN = cM∪N + cM∩N .
I M ⊆ Km, N ⊆ Kn decribable, then also M ×N ⊂ Km+n

and cM×N = cM ∗ cN .



Example: Projective describable sets

All elements of E ∪ U homogeneous. Then:
I K∗ acts on V (E,U)− {0} by multiplication
I (∞− 1)|(c(E,U)− 1)

I cp(E,U) := c(E,U)−1
(∞−1 projective counting polynomial of

(V (E,U)− {0})/K∗ ⊆ Pn−1(K).
I cp(E,U) = cp(E ∪ {xn}, U) + c(E ∪ {xn − 1}, U)

Example: Generic counting polynomials

Counting polynomials depend on coordinate system x! To
make it independent :

I Apply substitution x = Ay to E and U

I where A is n× n-matrix of indeterminates.
I generic counting polynomial cg(E,U) computed over

algebraic closure of K(Aij).



Thomas’ Algorithm

Use Euclidean algorithm iteratively:
I Write equations and inequations as polynomials in xn with

coefficients in K(x1, . . . , xn−1) by dealing only with
numerators. (Denominators go into subsystem as
inequations)

1. Leading coefficient splitting
2. Resultant splitting
3. Minimize |En ∪ Un|
4. Avoid multiple roots for equations (discriminants)
5. Remove roots of inequations from equations (resultants)
6. Avoid multiple roots of inequations (discriminants)

Introduction

Counting polynomials (algebraic case)

Differential Thomas Algorithm



Differential Thomas’ Algorithm

Basic ideas:
I Use jet coordinates to obtain algebraic equations in these
I Go only for analytic solutions
I Repeat the follwing two steps

I Apply algebraic Thomas algorithm to split into
(algebraically) simple systems

I Differentiate equations in the spirit of Janet to move
towards passivity

until one has only differentially simple systems

Difficulty: Differential Inequations

Example: x dependent variable, t is independent variable
System: ({x′′ − x = 0}, {x′ 6= 0})

Equivalent system: ({x′′ − x = 0}, {x 6= 0})

Not reachable by the above steps!



Some Ideas

1.) Count Taylor coefficients
2.) only for a restricted class of systems (e. g. orthonomic)
3.) Investigate effect of variable transformation of independent

variables

Example:u dependent, x, y is independent variable, x > y
System: ({uxuxx + uyy = 0})
splits into two systems:

g) uxuxx + uyy = 0, ux 6= 0

s) ux = 0, uy = 0

Clearly, there are solutions with ux(0, 0) = 0, ux 6= 0! Not clear
how to deal with this in general!
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Differential characteristic sets by example

Consider the system

∂f2

∂x1
+ f1 = 0

∂f2

∂x2
= 0

f2f3 = 0

where f1, f2, f3 ∈ R(x1, x2). Characteristic set computations yield that each solution
satisfies either

f1 = 0
∂f2

∂x1
+ f1 = 0

f2 = 0 or
∂f2

∂x2
= 0

f3 = 0

2

Setting for characteristic set computations

We fix F, ∆, and I such that

• F is a field of characteristic 0,

• ∆ is a finite set of commuting derivations on F, and

• I is a finite index set.

Therewith we define

• Y as the family (yi)i∈I .

We model differential equations by elements in F {Y }.

3



Differential characteristic set computation strategy by example

• f1, f2, f3 ∈ R(x1, x2) with

∂f2

∂x1
+ f1 = 0,

∂f2

∂x2
= 0, f2f3 = 0

• In F {Y }
y2,δ1 + y1 = 0, y2,δ2 = 0, y2y3 = 0

• Characteristic decomposition in F {Y }√
[ y2,δ1 + y1, y2,δ2, y2y3 ] = [C1] : H∞C1

∩ [C2] : H∞C2
, where

C1 = { y1, y2 } C2 = { y2,δ1 + y1, y2,δ2, y3 } .

• f1, f2, f3 ∈ R(x1, x2) with either

f1 = 0
∂f2

∂x1
+ f1 = 0

f2 = 0 or
∂f2

∂x2
= 0

f3 = 0

4

Strategy for characteristic decomposition

√
[P ] =

⋂
i∈{1,2,...,r}

[Ai] : H∞Ai =
⋂

i∈{1,2,...,r}

⋂
j∈{1,2,...,mi}

[Ci,j] : H∞Ci,j

• First decomposition
√

[P ] =
⋂
i∈{1,2,...,r}[Ai] : H∞Ai

– is performed in F {Y }
– each Ai is a coherent autoreduced set
– each [Ai] : H∞Ai is radical

• Second decomposition [Ai] : H∞Ai =
⋂
j∈{1,2,...,mi}[Ci,j] : H∞Ci,j

– is performed over algebraic polynomial rings
– each Ci,j is a coherent autoreduced set
– each [Ci,j] : H∞Ci,j is radical

– each Ci,j is a characteristic set for [Ci,j] : H∞Ci,j

5



Properties of classical differential reduction (for non-contants)

cdremas(p, A) = q,

where p ∈ F {Y } \F,A is an autoreduced set of F {Y } , and q ∈ F {Y } .

• dredas(q, A)

• ∃h ∈ HM
∞ : hp ≡ q (mod J) ,

where J is an ideal and M ⊆ A

• cdremas is a function

• One reduction function per paper

6

Differential reduction by predicates (for non-constants)

dredas(q, A) M J dremas dremndias

dremdias(p, A, q) yes A [A] yes no

dremaias(p, A, q) yes A 〈A≤lead(p)〉 yes yes

dremraias(p, A, q) yes
p
A 〈 pA≤lead(p)〉 yes yes

The congruence relation is

∃h ∈ HM
∞ : hp ≡ q (mod J) .
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The classic Coherent-Autoreduced program

Input: P : a finite set of elements in F {Y }
Output: A: s.t. A ⊆√

[P ] ⊆ [A] : H∞A ; A is coherent

1: S ← ∅
2: A← ∅
3: R← P
4: D ← ∅
5: while (R∪D) 6= ∅ do
6: S ← S ∪R∪D
7: A← “lowest ranking” autoreduced set of S
8: R← {cdremas( s , A) | s ∈ S } \ {0}
9: D ← {cdremas(∆ (a, a′) , A) | a, a′ ∈ A} \ {0}

10: end while

8

Remainder sets

Let S ⊆ F {Y },
dremas be any of the given specifications of reduction,
A be an autoreduced subset of F {Y }, and
R ⊆ F {Y } .

Then R is called a remainder set of S with respect to dremas and A
(or RemainderSet(S, dremas, A,R)) if and only if

∀s ∈ S : (dremas(s, A, 0) ∨ ∃r ∈ R : dremas(s, A, r))

∧ ∀r ∈ R ∃s ∈ S : dremas(s, A, r)

∧ 0 6∈ R.
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The Coherent-Autoreduced program using abstracted reduction

Input: P : a finite set of elements in F {Y }
Output: A: s.t. A ⊆√

[P ] ⊆ [A] : H∞A ; A coherent

1: S ← ∅
2: A← ∅
3: R← P
4: D ← ∅
5: while (R∪D) 6= ∅ do
6: S ← S ∪R∪D
7: A← “lowest ranking” autoreduced set of S
8: R← a R′ ⊆ F {Y } such that

RemainderSet( S , dremas , A,R′)
9: D ← a D′ ⊆ F {Y } such that

RemainderSet({∆ (a, a′) | a, a′ ∈ A} , dremndias, A,D′)
10: end while

10

The classical Rosenfeld-Gröbner program
Input: P : a finite set of elements in F {Y }
Output: A: s.t.

p
[P ] =

T
i∈{1,2,...,|A|}[Ai] :H

∞
Ai

; each Ai coherent

1: S ← {(P, ∅, ∅, ∅)} ; A ← ∅
2: while S 6= ∅ do
3: (G,D,A,H)← an element of S; S ← S\ {(G,D,A,H)}
4: if G∪D = ∅ then
5: A ← A∪ auto-partial-reduce(A,H)

6: else
7: p← an element of G∪D
8:

9: q ← cdremas(p,A)

10:

11:

12:

13: G← G \ {p} ; D ← D \ {p}
14: if q = 0 then
15: S ← S ∪{(G,D,A,H)}
16: else if q 6∈ F then
17: S ← S ∪ splittings(G,D,A,H, q)
18: end if
19: end if
20: end while

11



The Rosenfeld-Gröbner program using abstracted reductions
Input: P : a finite set of elements in F {Y }
Output: A: s.t.

p
[P ] =

T
i∈{1,2,...,|A|}[Ai] :H

∞
Ai

; each Ai coherent

1: S ← {(P, ∅, ∅, ∅)} ; A ← ∅
2: while S 6= ∅ do
3: (G,D,A,H)← an element of S; S ← S\ {(G,D,A,H)}
4: if G∪D = ∅ then
5: A ← A∪ auto-partial-reduce(A,H)

6: else
7: p← an element of G∪D
8: if p 6∈ D then
9: q ← a q′ ∈ F {Y } such that dremas

`
p,A, q′

´
10: else
11: q ← a q′ ∈ F {Y } such that dremraias

`
p,A, q′

´
12: end if
13: G← G \ {p} ; D ← D \ {p}
14: if q = 0 then
15: S ← S ∪{(G,D,A,H)}
16: else if q 6∈ F then
17: S ← S ∪ splittings(G,D,A,H, q)
18: end if
19: end if
20: end while

12

Conclusion

• Differential reductions can be modelled via predicates.

• Differential reductions need not be deterministic.

• To closely model requirements of programs, we need more than one reduction
per program.

13
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Ngô Lâm Xuân Châu
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Introduction

Let K = Q(x), y be an indeterminate over K. y ′ := dy
dx .

Autonomous ODEs

y ′3 + 4y ′2 + (−27y2 + 4)y ′ + 27y4 − 4y2 = 0.

F (y , y ′) = 0,

where F ∈ Q[y , y ′].
Feng and Gao:

F (y , y ′) = 0 has a nontrivial rational solution⇒ F (y , z) = 0

is a rational curve.

It is enough to find a nontrivial rational solution of F (y , y ′) = 0.
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Non-autonomous ODEs

2xy ′2 + (4y2x − 8yx + 4x + 2y)y ′+

2y4x − 8y3x + 12y2x − y4 + 4y3 − 8yx − 5y2 + 2x + 2y = 0

F (x , y , y ′) = 0,

where F ∈ Q[x , y , z ].
A rational solution y = f (x) defines a rational space curve

γ(x) = (x , f (x), f ′(x))

on the surface defined by F (x , y , z) = 0.
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Construction

Let’s assume that the surface F (x , y , z) = 0 can be parametrized by a
birational map

P(s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)).

Suppose that the invert map is

P−1(x , y , z) = (s(x , y , z), t(x , y , z)).

In particular, the parametric curve

P−1(x , f (x), f ′(x)) = (s(x), t(x))

is a rational plane curve and satisfies the relation
χ1(s(x), t(x)) = x

χ2(s(x), t(x)) = f (x)

χ3(s(x), t(x)) = f ′(x).
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Hence
∂χ1(s(x), t(x))

∂s
· s ′(x) +

∂χ1(s(x), t(x))

∂t
· t ′(x) = 1

∂χ2(s(x), t(x))

∂s
· s ′(x) +

∂χ2(s(x), t(x))

∂t
· t ′(x) = χ3(s(x), t(x)).

Let

f1(s, t) =
∂χ2(s, t)

∂t
− χ3(s, t) · ∂χ1(s, t)

∂t
,

f2(s, t) =
∂χ2(s, t)

∂s
− χ3(s, t) · ∂χ1(s, t)

∂s

and

g(s, t) =
∂χ1(s, t)

∂s
· ∂χ2(s, t)

∂t
− ∂χ1(s, t)

∂t
· ∂χ2(s, t)

∂s
.
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Either 
g(s(x), t(x)) = 0

f1(s(x), t(x)) = 0

f2(s(x), t(x)) = 0

or 
s ′(x) =

f1(s(x), t(x))

g(s(x), t(x))

t ′(x) = − f2(s(x), t(x))

g(s(x), t(x))
.
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Conversely, suppose that (s(x), t(x)) is such that

g(s(x), t(x))) = f1(s(x), t(x)) = f2(s(x), t(x)) = 0.

If
∂χ1(s(x), t(x))

∂s
· s ′(x) +

∂χ1(s(x), t(x))

∂t
· t ′(x) = 1

then there is a constant c such that

f (x) = χ2(s(x − c), t(x − c))

is a rational solution of F (x , y , y ′) = 0.
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Suppose that (s(x), t(x)) is a rational solution of the system
s ′(x) =

f1(s, t)

g(s, t)

t ′(x) = − f2(s, t)

g(s, t)
.

(1)

Then
χ1(s(x), t(x)) = x + c

for some constant c. Hence

y = χ2(s(x − c), t(x − c))

is a rational solution of F (x , y , y ′) = 0.
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Definition

A rational solution y = f (x) of F (x , y , y ′) = 0 is called a rational general
solution if for any differential polynomial G ∈ K{y} we have

G (y) = 0⇔ prem(G ,F ) = 0.

Definition

A rational solution (s(x), t(x)) of the system
s ′(x) =

N1(s, t)

M1(s, t)

t ′(x) =
N2(s, t)

M2(s, t)
.

is called a rational general solution if for any G ∈ K{s, t} we have

G (s(x), t(x)) = 0⇔ prem(G , {M1s
′ − N1,M2t

′ − N2}) = 0.
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Theorem

Let ȳ = f (x) be a rational general solution of F (x , y , y ′) = 0. Let

(s̄(x), t̄(x)) = P−1(x , f (x), f ′(x)).

If g(s̄(x), t̄(x)) 6= 0, then (s̄(x), t̄(x)) is a rational general solution of (1).
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Proof of the theorem 1

It turns out that (s̄(x), t̄(x)) is a solution of (1). Suppose that
P ∈ K{s, t} is a differential polynomial such that P(s̄(x), t̄(x)) = 0. Let

R = prem(P, {s ′M1(s, t)− N1(s, t), t ′M2(s, t) + N2(s, t)}).

Then
R ∈ K[s, t].

We have to prove that R = 0. We know that

R(s̄(x), t̄(x)) = R(P−1(x , f (x), f ′(x))) = 0.

Let’s consider the rational function R(P−1(x , y , z)) =
U(x , y , z)

V (x , y , z)
. Then

U(x , y , y ′) is a differential polynomial satisfying the condition

U(x , f (x), f ′(x)) = 0.
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Since f (x) is a rational general solution of F = 0 and both F and U are
differential polynomials of order 1, we have

U(x , y , y ′) = Q0F ,

where Q0 is a differential polynomial of order 1 in K{y}. Therefore,

R(s, t) = R(P−1(P(s, t))) =
U(P(s, t))

V (P(s, t))
=

Q0(P(s, t))F (P(s, t))

V (P(s, t))
= 0.

Thus (s̄(x), t̄(x)) is a rational general solution of (1).
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Theorem

If the associated system (1) has a rational general solution, then there
exists a constant c such that

ȳ = χ2(s̄(x − c), t̄(x − c))

is a rational general solution of F (x , y , y ′) = 0.
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Proof of the theorem 2

Assume that (s̄(x), t̄(x)) is a rational general solution of the system (1).
Then there exists a constant c such that

ȳ = χ2(s̄(x − c), t̄(x − c))

is a rational solution of F (x , y , y ′) = 0. Let G be an arbitrary differential
polynomial in K{y} such that G (ȳ) = 0. Let

R = prem(G ,F )

be the differential pseudo-remainder of G with respect to F . It follows that

R(ȳ) = 0.

We have to prove that R = 0.
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Assume that R 6= 0. Then

R(χ1(s, t), χ2(s, t), χ3(s, t)) =
W (s, t)

Z (s, t)
∈ Q(s, t).

Since

R(χ1(s̄(x−c), t̄(x−c)), χ2(s̄(x−c), t̄(x−c)), χ3(s̄(x−c), t̄(x−c))) = 0.

we have
W (s̄(x − c), t̄(x − c)) = 0.

On the other hand, (s̄(x − c), t̄(x − c)) is also a rational general solution
of (1), it follows that W (s, t) = 0. Thus

R(χ1(s, t), χ2(s, t), χ3(s, t)) = 0.

Since F is irreducible and degy ′ R < degy ′ F , we have R = 0. Therefore, ȳ
is a rational general solution of F (x , y , y ′) = 0.
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Example

y ′x2 + xy2 − 2xy − y2 = 0.

A rational parametrization is

P(s, t) =

(
t,

t2

s + 1
,
−t(−2s − 2 + t2 − t)

(s + 1)2

)
.

The associated system is {
s ′(x) = t − 1

t ′(x) = 1.

Solving this system we obtain

s̄(x) =
x2

2
+ (c1 − 1)x + c2, t̄(x) = x + c1.
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Therefore,

ȳ =
2x2

x2 − 2x + 2C

is a rational general solution, where C = c2 + c1 − c2
1

2
is an arbitrary

constant.

(In this example g(s, t) =
t2

(s + 1)2
. It gives us a solution y = 0.)
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Example

y ′3 − 4xyy ′ + 8y2 = 0.

A rational parametrization is

P(s, t) = (t,−4s2(2s − t),−4s(2s − t)).

The associated system is s ′(x) =
1

2
t ′(x) = 1.

Hence s̄(x) =
x

2
+ c2, t̄ = x + c1 for arbitrary constants c1, c2. The general

solution is
ȳ = −C (x + C )2

where C = 2c2 − c1.
Note that in this example g(s, t) = −8s(t − 3s). Let g(s, t) = 0 we get
s = 0, or t = 3s. This gives us y = 0, or y = 4

27x3.
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Minutes of: Differential Equations by Algebraic Methods (DEAM) workshop meeting
Date: 8th February 2009
Place: Johannes-Kepler-University, Linz, Austria

Participants Evelyne Hubert, George Labahn, Arne Lorenz, Elizabeth Mansfield, Johannes Middeke, Ngô Lâm
Xuân Châu, Franz Pauer, Wilhelm Plesken, Markus Rosenkranz, Fritz Schwarz, Ekaterina Shemyakova, Franz Win-
kler

Overview We met at the end of the DEAM workshop to discuss further cooperations and continuation of the
workshop.

Research topics The aim of the workshop and the basis for further cooperation were to solve differential equa-
tions and to extract and understand the structure of differential equations. There were four main topics and several
subtopics.

1. Linear algebra for differential operators.

Possible directions of research are normal forms of matrices of partial differential equations and partial dif-
ferential equations, their connection to Gröbner bases, and possible applications.

It was suggested to make a connection to the work of F. Nataf and V. Dolean.

2. Factorisation/(Loewy) Decomposition/Symmetry

One goal is to use invariants to classify and solve differential equations. Invariants should be collected in a
database (proposed by Elizabeth Mansfield). Connected to invariants is the questions about the geometry of
differential equations in analogy to algebraic geometry for algebraic equations.

An application could be provided by analysing nonlinear control systems. Furthermore, Fritz Schwarz sug-
gested to study the connection to similarity solutions.

3. Invariants

A possible project is to compute differential operators for higher orders. The question arose, what the connec-
tion between the different methods of invariant computation presented during the talks was. Wilhelm Plesken
proposed to study other applications of the Vessiot method. Additionally, Evelyne Hubert suggested to relate
this to the Cartan equivalence and the work of S. Neut.

4. Integral operators and Boundary conditions

George Labahn suggested to study the classical analytic methods for solving boundary problems in the context
of integro-differential operators. Further research should be done on their representation and on integral
transforms.

Elizabeth Mansfield put it to use this to study moments and similar concepts.

Next DEAM workshop We agreed that there should be a next meeting. Proposed times were September 2010
(proposed by Fritz Schwarz) or February 2011 (Franz Winkler/George Labahn). No decision was made on the
exact date.

There was also a proposal of inviting more people to the next workshop in dependence of the research topics
treated until then.

Student exchange We discussed the possibility of exchanging students between the different groups. We had
some discussions of financing these visits. Franz Winkler explained the conditions of the SCIEnce project: This
makes exchange inside Europe possible, but cannot be used for exchange with Canada. A proposal was to link
research projects between different countries to get extra travel money.

Further topics We might try to draw a connection to D-module theory or differential Galois theory.

A possible application would be the integration of Hamiltonian systems.

Markus Rosenkranz proposed to write a survey of differential computer algebra in order to attract people to this
area. We recommended taking this as a possible project for the next DEAM workshop. The suggestion was to
reserve a session for this.


