
A Macsyma1 Implementation of Zeilberger’s Fast
Algorithm2

Fabrizio Caruso

August 20, 1999

1Comp. algebra system dev. by Macsyma Inc., ver. 419
2Supported by the SFB grant F1305 of the Austrian FWF

Abstract

We present the first implementation on the Macsyma computer algebra system
of Zeilberger’s fast algorithm for the definite summation problem for a very large
class of sequences; i.e. given a hypergeometric sequence F (n, k), we want to
represent f(n) =

∑n
k=0 F (n, k) in a “simpler” form. We do this by finding a

linear recurrence for the summand F (n, k), from which, by some conditions on
the support of F (n, k), we can obtain a homogeneous k−free recurrence for f(n).
The solution of this recurrence is left as a post-processing, and it will give the
“simpler” form we were looking for.

Zeilberger’s fast algorithm exploits a specialized version of Gosper’s Algorithm
for the indefinite summation problem; i.e. given a hypergeometric sequence t(k),
the problem of finding another sequence T (k) such that t(k) = ∆kT (k) = T (k +
1)−T (k). The implementation of this algorithm has also been carried out in the
Macsyma computer algebra system, and its details are also treated in this paper.

Contents

1 Introduction 3

2 Some Theory 4
2.1 Some Fundamental Definitions . 4
2.2 Some Fundamental Facts . 5

3 The Algorithms 6
3.1 Gosper’s Algorithm . 6

3.1.1 Why it works . 7
3.2 Zeilberger’s Algorithm . 8

3.2.1 Why it works . 9

4 The Implementation 10
4.1 Gosper’s Algorithm . 10
4.2 Zeilberger’s Fast Algorithm . 11

5 Performance 12
5.1 Timings . 12
5.2 Stability . 13

5.2.1 What can be done to improve this implementation 13

6 Manual 14
6.1 Loading the files . 14
6.2 The Commands . 15

6.2.1 Verbosity . 15
6.2.2 Gosper’s Algorithm . 15
6.2.3 Zeilberger’s Fast Algorithm 16
6.2.4 Settings . 16

7 Some Examples 17

8 The Code 24
8.1 Low Level Routines . 25
8.2 Gosper-form Related Routines . 26

1

8.3 Gosper’s Equation Routines . 27
8.4 Gosper’s Algorithm and Zeilberger’s Fast Algorithm 27

2

Chapter 1

Introduction

We present the first implementation within the Macsyma computer algebra sys-
tem of Zeilberger’s Fast Algorithm for the definite summation problem for the
large class of proper hypergeometric sequences, i.e. given a 2-variable sequence
F (n, k), we want to rewrite the definite sum f(n) =

∑n
k=0 F (n, k) in a form free of∑

. We do this by finding a special k−free linear recurrence with polynomial coef-
ficients for the summand F (n, k), which, under the condition of natural boundary
for F (n, k), can be extended into a k−free homogeneous linear recurrence with
polynomial coefficients. The desired linear recurrence for the summand has the
form:

∑m
i=0 ai(n)F (n + i, k) = G(n, k + 1) − G(n, k). The search for this recur-

rence is done by guessing the order m of the left hand side of this recurrence and
then trying to find the corresponding G(n, k) of the right hand side by means of
a specialized Gosper algorithm (We note that a priori upper bounds for m can
be given; however they turn out to be too large and therefore not useful from
practical use). A new version of Gosper’s algorithm for this purpose has also
been implemented and included in this package.

Gosper’s algorithm for the indefinite summation problem solves the hyper-
geometric telescoping problem, i.e. given a hypergeometric sequence t(k), it
decides if there is a hypergeometric sequence T (k) such that t(k) = ∆kT (k) =
T (k + 1)− T (k), and if it exists, it finds it.

The standard Gosper’s algorithm cannot be used in Zeilberger’s algorithm be-
cause it does not take into account that there are some polynomial parameters.
Therefore a specialized parametrized version of this algorithm, in which the poly-
nomial unknown parameters ai’s are taken into account, has been implemented
and it is used by our implementation of Zeilberger’s algorithm to compute the
right hand side of the desired recurrence.

These implementations do not consider the more general q−case, for which
a Mathematica version has already been developed at RISC (see [7]). Moreover
we remark that at RISC a Mathematica version of Zeilberger’s fast algorithm for
the ordinary case q = 1, considered in this report, has already been implemented
by Paule and Schorn [6]. Both packages can be downloaded from the home page
http://www.risc.uni-linz.ac.at/research/combinat/risc/.

3

Chapter 2

Some Theory

We now introduce the basic definitions of the theory of definite and indefinite
hypergeometric summation and some fundamental results of the theory which
are necessary for the correctness of Zeilberger’s fast algorithm and Gosper’s al-
gorithm.

For a formal description of Gosper’s algorithm and Zeilberger’s fast algorithm
and of the proofs of their correctness we refer respectively to the original paper
[3] for Gosper’s algorithm and to the papers [9], [10]. For a tutorial description
of these algorithms we refer to [4] and to [8].

2.1 Some Fundamental Definitions

Definition Given a hypergeometric sequence t(n) over a field K of charac-
teristic 0, we call t(n + 1)/t(n) shift quotient of t(n).

Definition A sequence t(n) over a field K of characteristic 0 is said to be
hypergeometric if and only if the shift quotient t(n+1)/t(n) is a rational function
in n with coefficients in K.

We can extend this definition to multivariate sequences in the natural way:

Definition A sequence t(x1, . . . xm) over a field K of characteristic 0 is said
to be hypergeometric with respect to xs, where 1 ≤ s ≤ m, if and only if the
quotient t(x1, . . . , xs + 1, . . . xm)/t(x1, . . . , xm) is a rational function in n with
coefficients in K.

4

Definition Given a 2-variable sequence f(k, n) over a field K of characteristic
0 is said proper hypergeometric if and only if it is in the following form:

f(k, n) = p(k, n)

∏I
i=0(aik + bin + c)!∏J

j=0(djk + ejn + f)!
xk

where p(k, n) is a polynomial in k and n, and c, f , x are complex numbers, I, J
and the ai’s, bi’s, dj’s, ej’s are fixed integers,

This definition extends in the natural way to m−variable case, where m ≥ 2.

2.2 Some Fundamental Facts

Proposition
Given a hypergeometric sequence t(n) over a field K. If there is a hypergeometric

sequence T (n) such that t(n) = T (n + 1) − T (n), then we have t(n + 1)/t(n) =
r(n)T (n) where r(n) is a rational function.

Proposition
Any proper hypergeometric sequence F (n, k) is hypergeometric w.r.t. n and k.

Theorem (Existence of a k-free recurrence)
Let F (n, k) be a proper hypergeometric sequence, then F satisfies a nontrivial

recurrence of the form:

m∑
i=0

ai(n)F (n, k) = G(n, k + 1)−G(n, k),

where G(n, k)/F (n, k) is a rational function in n and k.

5

Chapter 3

The Algorithms

3.1 Gosper’s Algorithm

Gosper’s algorithm solves the hypergeometric indefinite summation problem:
given a hypergeometric sequence t(n), it decides whether there exists another
hypergeometric sequence T (n) such that t(n) = T (n + 1)− T (n).

INPUT : A hypergeometric sequence t(n) over a field K of characteristic 0.

OUTPUT : If there is a hypergeometric sequence T (n) s.t. t(n) = T (n + 1) −
T (n), then return T (n), else return “NO HYPERGEOMETRIC SOLUTION”

Pseudocode

- STEP 0 ratt(n) := t(n + 1)/t(n)

-- STEP 1 Write ratt(n) in the following form:

ratt(n) =
p(n + 1)

p(n)

q(n)

r(n + 1)

where gcd(q(n), r(n + j)) = 1 for all positive integers j’s, and p, q, and r
are polynomials.

- STEP 2 Solve the following linear polynomial recurrence equation:

p(n) = q(n)s(n + 1)− r(n)s(n)

where the polynomial s(n) is the unknown.

If no such polynomial exists,
then

6

RETURN “NO HYPERGEOMETRIC SOLUTION”,

else
RETURN

T (n) =
1

(s(n+1)
s(n)

q(n)
r(n)

− 1)
· t(n).

Remark (Step 1)
The special form for the rational function ratt described in step 1 can be

computed by forcing the gcd condition by resultant computation and simple
rewriting. In the proper hypergeometric case, this step can also be done by
simple inspection.

Remark (Step 2)
The linear recurrence equation of step2 can be computed by plugging into it

a polynomial with unknown coefficients, whose degree can be properly bounded
from the degrees of the polynomials p, qr

+ := q−r, qr
− := q +r and by the leading

coefficients of the qr
+, qr

−.

3.1.1 Why it works

For a formal proof of the correctness of this algorithm we refer to [4], [8], [3].
The idea of this algorithm is that we can rewrite an indefinite hypergeometric
summation problem into a linear recurrence. In fact, from the propositions in
section 2.2, we have that the solution T (n) and the input must differ by a factor
given by rational function r(t):

T (n) = r(n)t(n).

By plugging this into the desired property: t(n) = T (n + 1) − T (n) and by
dividing both sides by t(n), we obtain the following recurrence equation over
rational functions:

1 = r(n + 1)ratt(n)− r(n)

where ratt(n) := t(n + 1)/t(n). Gosper could not solve this kind of recurrence
equations, which today can be solved by Abramov’s method [1]. For an alterna-
tive approach and a detailed explanation of the connection between these strate-
gies see, for instance, [5]. Gosper had to find a way to get round this problem:
he rewrites ratt in a special form that leads to simpler linear recurrence equation
in which the unknown is a polynomial, and that can be solved by simple linear
algebra.

7

3.2 Zeilberger’s Algorithm

Zeilberger’s algorithm solves the proper hypergeometric problem: given a proper
hypergeometric sequence F (n, k) with natural boundary, (i.e. for any fixed n,
F (n, k) has finite support with respect to k), it finds a k − free recurrence for
F (n, k) of the form:

∑m
i=0 ai(n)F (n+i, k) = G(n, k+1)−G(n, k), which under the

condition of natural boundary for F (n, k) yields a homogeneous linear recurrence
for the sum f(n) =

∑n
k=0 F (n, k).

INPUT : A proper hypergeometric sequence F (n, k) w.r.t k over a field K and
an a priori bound on the order m of the recurrence that will be searched.

OUTPUT : A k−free linear recurrence with polynomial coefficients for F (n, k)
of the form:

m∑
i=0

ai(n)F (n + i, k) = G(n, k + 1)−G(n, k)

Pseudocode

- STEP 0 Try m = 0, i.e. Gosper’s algorithm, on F (n, k);
if it finds a solution,
then

RETURN this solution, else continue.

-- STEP 1 Try a parametrized version of Gosper’s algorithm on the sequence

m∑
i=0

ai(n)F (n, k)

in which the ai’s are polynomial unknowns.

- STEP 2 m := 1

- STEP 3 If some polynomials ai’s and a hypergeometric sequence G(n, k)
can be found for which the above-mentioned special recurrence is satisfied,
then

RETURN [G, [a0, . . . , am]],
else

increase m and GO TO STEP 1.

Remark (Step 1)
The parametrized version of Gosper’s algorithm is formally the same as

the standard one; the only difference is that in this version the ai’s appear

8

as polynomial parameters and the solving of the recurrence equation p(n) =
q(n)s(n + 1)− r(n)s(n) is now done by plugging in unknown polynomials whose
coefficients are no more in the ground field K, but in the ring of rational functions
with coefficients in K.
Therefore the problem of definite summation can be rewritten as the problem of
solving systems of linear equations with polynomial coefficients.

Remark (Step 3)
Under the hypothesis of natural boundary (finite support) of F (n, k), for

instance let us assume that the support is strictly contained in the interval
[0, p], with p > 0, the special recurrence for the summand F (n, k), namely∑m

i=0 ai(n)F (n+i, k) = G(n, k+1)−G(n, k) leads to a (homogeneous) recurrence
for the sum f(n), which is what we are ultimately looking for.
In fact, summing the left hand side and right hand side of the special recurrence
over a boundary larger than the support of F (n, k) we get:

p∑

k=0

m∑
i=0

ai(n)F (n + i, k) =

p∑

k=0

(G(n, k + 1)−G(n, k)) = G(n, p + 1)−G(n, 0) = 0

Hence:
n∑

i=0

f(n + i) = G(n, p + 1)−G(n, 0) = 0

When the summand does not have finite support the above equation will be
non-homogeneous.

3.2.1 Why it works

For a proof of the correctness we refer to the literature on this topic ([8], [9],
[10]).
Here we present the basic idea behind it:
From the theorem that states the existence of a k−free recurrence (see previous
chapter) we know that for any proper hypergeometric sequence F (n, k), there
exists a recurrence of the form:

∑m
i=0 ai(n)F (n + i, k) = G(n, k + 1) − G(n, k).

Zeilberger’s algorithm tries to find this recurrence by iteratively increasing the
order of the recurrence and by using a parametric version of Gosper’s algorithm
to find its right hand side; this procedure stops because of the termination of
Gosper’s algorithm and because of the theorem mentioned above.

9

Chapter 4

The Implementation

In this chapter we report on some of the details of our implementation of “Zeil-
berger’s fast algorithm” and of “Gosper’s algorithm”.

The implementation of these two algorithms has been done in the internal
LISP-like language of the Macsyma computer algebra system.

I implemented both algorithms in Macsyma in a straightforward way and no
significant changes have been made in the original algorithms.

4.1 Gosper’s Algorithm

• This version of Gosper’a algorithm works in the special case of proper hy-
pergeometric sequences, but it can be easily extended to the general hy-
pergeometric case by substituting the Gosper-form related routine with a
more general routine in which the Gosper-form is achieved by a resultant
computation. (See [4] for more details).

• As a consequence of this implementation choice the desired special form
at step 1 for the rational function ratt(n) is constructed by initializing
p(n) := 1, q(n) := numerator(ratt), r(n + 1) := denominator(ratt) and by
simple inspection and rewriting of the factors of the polynomials q and r.

10

4.2 Zeilberger’s Fast Algorithm

• This version of Zeilberger’s algorithm works in the proper hypergeometric
case. We remark that there are implementations that could work at least
in principle in a slightly larger class of sequences (holonomic hypergeomet-
ric sequences, see [2]). Our choice makes the implementation simpler and
allows us to use our implementation of Gosper’s algorithm for the proper
hypergeometric case.

• The computation of the recurrence for the sum and its solution is left to the
user as a post-processing. Moreover the existence of a solution expressible
in elementary terms is not always guaranteed, therefore leaving the solution
as a recurrence is a reasonable choice.

11

Chapter 5

Performance

First of all we must point out that this implementation is only the first attempt
to incorporate Zeilberger’s fast algorithm into the Macsyma computer algebra
system and therefore it is very far from being competitive with the best existing
optimized implementations (for example see [6]).

No large scale test has been carried out to assess the speed of this implementa-
tion. The only test that has been run on this implementation is the collection of
sequences contained in the files testGosper.macsyma and testZeilberger.ma-

csyma, among which there are some powers of the binomial coefficient. Increasing
powers of the binomial coefficients have been used to test the stability of the sys-
tem and to obtain a rough idea of the performance of the system and to compare
it to some other implementations. I used this test suite because of its simplic-
ity and because we know a priori the order of the recurrence for the summand
(d exponent

2
e).

5.1 Timings

We present some timings obtained by testing the function parGosper on increas-
ing powers of the binomial coefficients in which no loop on the order of the
recurrence is run (we know it in advance) and the environment variable OUT-
PUT FORMAT is set to NON SIMPLIFIED. In these tests the Paule-Schorn
Mathematica implementation [6] and our Macsyma implementation are com-
pared. These implementations have been run on an SGI Octane with 2 giga-
bytes of ram and two 250 Mhz RISC processors (although much less memory was
necessary for running the program on these examples).

Results Note:Timings are in seconds

power order Paule/Schorn Mathematica Macsyma difference ratio
3 2 0.36s 3.31s 9.19
4 2 0.92s 3.95s 4.29
5 3 4.47s 37.11s 8.30
6 3 16.98s 121.64s 7.16

Average ratio : 7.23

12

5.2 Stability

Our Macsyma implementation tested on an SGI Octane equipped with 2 gi-
gabytes of ram could no go beyond the sixth power of the binomial coeffi-
cient whereas Paule-Schorn Mathematica implementation was able to handle the
eleventh power. The sixth power of the binomial coefficient required less than 50
megabytes of memory.

5.2.1 What can be done to improve this implementation

An analysis on the distribution of the computation time shows that in the “heavy
cases” (binomial coefficient to the fifth and sixth powers) the bottle neck is the
computation of the solution of the linear systems of equations that is required to
solve the recurrence equation (Gosper’s equation).

Therefore future optimized versions should use an ad hoc linear solver that
could take advantage of the specific structure of the system.

13

Chapter 6

Manual

6.1 Loading the files

The entire package can be downloaded from the RISC Combinatorics home page
at the following u.r.l. http://www.risc.uni-linz.ac.at/research/combinat/risc/
The user will find the following files:

1. algUtil.macsyma

2. shiftQuotient.macsyma

3. poly2quint.macsyma

4. makeGosperForm.macsyma

5. GosperEq.macsyma

6. Gosper.macsyma

7. Zeilberger.macsyma

8. LOADZeilberger.macsyma

9. testZeilberger.macsyma

10. testGosper.macsyma

The entire package can be loaded into memory by simply loading the file LOADZeil-
berger.macsyma; this file will take care of loading the other components except the files
containing some examples on which the system has been tested, namely (testZeil-
berger.macsyma, testGosper.macsyma).

14

6.2 The Commands

Both Gosper and Zeilberger’s algorithm have been implemented in two versions: a
verbose version, which allows the user to choose different levels of verbosity, and a
non-verbose version, which should provide a bit of better performance.

6.2.1 Verbosity

The levels of verbosity are selected by the user just adding a suffix to the command
name (Gosper, parGosper, Zeilberger) or by passing a parameter in the generic
verbose version of the algorithm. (No suffix is interpreted as non-verbose).

These are the levels of verbosity that have been implemented in both algorithms:

Level Suffix Scope

summary Summary summary of the main computations
normal Verbose verbosity on the main procedure
very VeryVerbose verbosity on the subroutines
debugging Debugging deepest verbosity

linsys LinSys verbosity on the linear system

Examples

GosperVerbose(f,k) invokes Gosper’s algorithm in verbose mode

ZeilbergerVeryVerbose(f,k,n) invokes Zeilberger’s algorithm in the very verbose
mode

6.2.2 Gosper’s Algorithm

• Gosper(f, k)
It solves the indefinite summation problem of finding an hypergeometric sequence
g(k) such that f(k) = ∆kg(k) = g(k+1)−g(k). If such a hypergeometric sequence
exists it returns it as output, otherwise it will return NO HYP SOL.

• GosperVerboseOpt(f, k, verbosity)
As Gosper but the level of verbosity is passed as a parameter.

• GosperSum(f, k, a, b)
It computes

∑b
k=a f by using Gosper to solve the indefinite sum. (It only works

if the indefinite sum is Gosper-summable).

• GosperSumVerboseOpt(f, k, a, b, verbosity)
As GosperSum but the level of verbosity is passed as a parameter.

15

6.2.3 Zeilberger’s Fast Algorithm

• Zeilberger(F, k, n)
Given a 2-variable proper hypergeometric sequence F (n, k), it computes by Zeil-
berger’s algorithm a recurrence equation for F of the form:

∑m
i=0 ai(n)F (n +

i, k) = δk(Cert(n, k)F (n, k)), where the ai’s are polynomials free of k and Cert
(“rational certificate”) is a rational function in n and k. The output will be a
print-out of the recurrence and the explicit values of the polynomial parameters
ai and the “rational certificate” Cert(n, k).

• ZeilbergerVerboseOpt(F, k, n, verbosity)
As Zeilberger but the level of verbosity is passed as a parameter.

• parGosper(F, k, n, ord)
Given a 2-variable proper hypergeometric sequence, it computes, when it exists,
a recurrence equation of order ord for F of the form:

∑ord
i=0 ai(n)F (n + i, k) =

∆k(R(n, k)F (n, k)), where ai’s are polynomials and R is a rational function (the
certificate), and it yields a sequence [R, [a0, . . . , aord]]; if no such recurrence exists
them it yields [0, [dummy value, . . . , dummy value]].

• parGosperVerboseOpt(F, k, n, ord, verbosity)
As parGosper but the level of verbosity is passed as a parameter.

6.2.4 Settings

No much settings and fine-tuning is necessary to use this package. The only settings
are done through the environment variables MAX ORD and the OUTPUT FORMAT.

MAX ORD sets an a priori bound on the order of the recurrence that Zeilberger’s
algorithm iterativelly tries to find by applying parGosper with increasing order. The
default value of MAX ORD is 3.

OUTPUT FORMAT is a flag that controls whether the final output of the routines
parGosper, Gosper and Zeilberger has to be simplified or not. OUT FORMAT can
have two values: 0 (or equivalently NON SIMPLIFIED) or 1 (or equivalently
SIMPLIFIED). The default value of OUTPUT FORMAT is NON SIMPLIFIED.

16

Chapter 7

Some Examples

Let us take a look at some examples, that can be found in the files testGosper.macsyma
and testZeilberger.macsyma.

Example (A simple Gosper-summable example)
Let us try to telescope 1

4k2−1
by Gosper’s algorithm:

(prompt) Gosper(1/4*k^2-1,k);

output: − 1
2(2k−1)

Let us now try to sum it over the interval [1, 4], i.e. evaluate
∑4

k=1
1

4k2−1

(prompt) GosperSum(1/4*k^2-1, k, 1, 4);

output: 4
9

Example (A less simple Gosper-summable example)
Let us try to telescope (−1)kk

4k2−1
by Gosper’s algorithm:

(prompt) Gosper(((-1)^k*k)/(4k^2-1),k);

output: − (−1)k

4(2k−1)

Example (A more complicated example)

(prompt) Gosper((a!*(-1)^k)/((a-k)!*k!),k);

output: − a! k (−1)k

a (a−k)! k!

17

Example (An impossible case: binomial coefficient)

(prompt) Gosper(binomial(n,k),k,n);

output: NO HYP SOL
To handle this we must use parGosper or Zeilberger as shown in the following ex-
ample.

Example (Binomial coefficient)

To evaluate
∑m

i=0

(
n
k

)
we can use Zeilberger or parGosper and use the fact the we

know that we expect a first order recurrence:
(prompt) Zeilberger(binomial(n,k),k,n);

output:

a[0]f(n, k) + a[1]f(n + 1, k) = δk(Cert(n, k)f(n, k))

where

f(n, k) =
(

n

k

)

and

Cert(n, k) = − k

n− k + 1
and

a[0](n) = −2

a[1](n) = 1

Summing both sides of the recurrence and computing the sum is left as simple post-
processing.
Assuming that the recurrence has order 1, we could have used parGosper:
(prompt) parGosper(binomial(n,k),k,n,1);

output: {
− k

n− k + 1
, {−2, 1}

}

18

Example (Squared binomial coefficient)

We can try to sum the squared binomial coefficient with parGosper, but to do this
we must guess the order of the recurrence:
(prompt) parGosper(binomial(n,k)^2,k,n,1);

output: {
−k2 (3n− 2 k + 3)

(n− k + 1)2
, {−2 (2n + 1) , n + 1}

}

Example (Binomial Theorem)

Let us try a similar example:
(prompt) Zeilberger(binomial(n,k)*x^k,k,n);

output:

a[0]f(n, k) + a[1]f(n + 1, k) = δk(Cert(n, k)f(n, k))

where

f(n, k) =
(

n

k

)
xk

and

Cert(n, k) = − k

n− k + 1
and

a[0](n) = −(x + 1)

a[1](n) = 1

19

Example (Vandermonde Identity recurrence)

(prompt) Zeilberger(binomial(a,k)*binomial(b,n-k),k,n);

output:

a[0]f(n, k) + a[1]f(n + 1, k) = δk(Cert(n, k)f(n, k))

where

f(n, k) =
(

A

k

)(
b

n− k

)

and

Cert(n, k) =
k(−n + k + b)

n− k + 1
and

a[0](n) = −(n− b−A)

a[1](n) = −(n + 1)

Example (First Karlsson-Gosper identity identity)

(prompt) Zeilberger(binomial(n,k)*(n-1/4)!/(n-k-1/4)!/(2*n+k + 1/4)!*
9^(-k),k,n);
output:

a[0]f(n, k) + a[1]f(n + 1, k) = δk(Cert(n, k)f(n, k))

where

f(n, k) =
(n− 1

4)!
(
n
k

)

9k(n− k − 1
4)!(2n + k + 1

4)!

and

Cert(n, k) =
144k(8n + 4(k − 1) + 13)(52n2 + 16kn + 75n− 32k2 + 24k + 26

(n− k + 1)(4n− 4k + 3)(8n + 4k + 5)(8n + 4k + 9)

and

a[0](n) = 28

a[1](n) = −27(3n + 2)(12n + 13)

20

Example (Second Karlsson-Gosper identity)

(prompt) Zeilberger(binomial(n,k)*(n-1/4)!/(n-k-1/4)!/(2*n+k+5/4)!*
9^(-k),k,n);
output:

a[0]f(n, k) + a[1]f(n + 1, k) = δk(Cert(n, k)f(n, k))

where

f(n, k) =
(n− 1

4)!
(
n
k

)

9k(n− k − 1
4)!(2n + k + 5

4)!

and

Cert(n, k) =
144k(8n + 4(k − 1) + 17)(52n2 + 16kn + 127n− 32k2 − 4k + 72)

(n− k − 1)(4n− 4k + 3)(8n + 4k + 9)(8n + 4k + 13)

and
a[0](n) = 28

a[1](n) = −27(3n + 4)(12n + 17)

Example (Trinomial coefficients)

(prompt) {Zeilberger(n!/k!/(k+m)!/(-2*k-m+n)!,k,n);
output:

a[0]f(n, k) + a[1]f(n + 1, k) + a[2]f(n + 2, k) = δk(Cert(n, k)f(n, k))

where

f(n, k) =
n!

k!(n + k)!(n−m− 2k)!

and

Cert(n, k) =
4k(m + k)(n + 1)(n + 2)

(n−m− 2k + 1)(n−m− 2k + 2)

and

a[0](n) = 3(n + 1)(n + 2)

a[1](n) = (n + 2)(2n + 3)

a[2](n) = −(n−m + 2)(n + m + 2)

21

Example (Special case of the Strehl identity)
(prompt) Zeilberger(binomial(2*k,k)*binomial(n,k)^2,k,n);
output:

a[0]f(n, k) + a[1]f(n + 1, k) + a[2]f(n + 2, k) = δk(Cert(n, k)f(n, k))

where

Cert(n, k) = − k3(n + 1)2(4n− 3k + 8)
(n− k + 1)2(n− k + 2)2

and

a[0](n) = 9(n + 1)2

a[1](n) = −(10n2 + 30n + 23)

a[2](n) = (n + 2)2

Example (Fibonacci sequence-related recurrence)
(prompt) {Zeilberger((n!*(n+k)!)/(k!^3*(n-k)!^2),k,n));
output:

a[0]f(n, k) + a[1]f(n + 1, k) + a[2]f(n + 2, k) + a[3]f(n + 3, k) = δk(Cert(n, k)f(n, k))

where

f(n, k) =
n!(n + k)!

k!3(n− k)!2

and

Cert(n, k) = −k3(n + 1)(11n2 − 6kn + 37n− k2 − 7k + 30)
(n− k + 1)2(n− k + 2)2

and

a[0](n) = −(n + 1)2

a[1](n) = −(11n2 + 33n + 25)

a[2](n) = (n + 2)2

22

Example (The binomial coefficient to the third power)

We can also use parGosper to find a recurrence on such sequence, but we must guess
its order:
(prompt) parGosper(binomial(n,k)^3,k,n,1);
output: {0, {0, 0}}

This means that parGosper could not find a first order recurrence of the desired form
but we don’t give up. Let us look for a second order recurrence:

(prompt) parGosper(binomial(n,k)^3,k,n,2);
output:

{
k3 (n + 1)2

(
14n3 − 27 k n2 + 74n2 + 18 k2 n− 93 k n + 128n− 4 k3 + 30 k2 − 78 k + 72

)

(n− k + 1)3 (n− k + 2)3
,

{
8 (n + 1)2 , 7n2 + 21n + 16,− (n + 2)2

}}

Example (Binomial coefficient to the fourth power)

(prompt) Zeilberger(binomial(n,k)^4,k,n);

output:

a[0]f(n, k) + a[1]f(n + 1, k) + a[2]f(n + 2, k) = δk(Cert(n, k)f(n, k))

where

f(n, k) =
(

n

k

)4

and

Cert(n, k) = −

k4(n + 1)(74n6 − 260kn5 + 725n5 + 374k2n4 − 2056kn4 + 2885n4−
276k3n3 − 6420kn3 + 6045n3 + 104k4n2 − 1244k3n2 + 5298k2n2−

9892kn2 + 7030n2 − 16k5n + 298k4n− 1884k3 + 5322k2n− 7520kn+
4300n− 20k5 + 210k4 − 900k3 + 1980k2 − 2256k + 1080

(n− k + 1)4(n− k + 2)4

and

a[0](n) = −4(n + 1)(4n + 3)(4n + 5)

a[1](n) = −2(2n + 3)(3n2 + 9n + 7)

a[2](n) = (n + 2)3

23

Chapter 8

The Code

The implementations of both Gosper’s algorithm and Zeilberger’s fast algorithm have
been entirely coded in the internal LISP-like language of the computer algebra system
Macsyma vers. 419. The implementation exploits Macsyma computer algebra engine
for factorizing, simplifying and normalizing polynomials and rational functions, and
the modularity of the Macsyma language, but it does not use Macsyma hypergeometric
tools like Gosper’s implementation of his own algorithm because Zeilberger’s algorithm
requires a parametrized version of Gosper’s algorithm.

For a print-out of the entire code we refer to the RISC Combinatorics home page
at the U.R.L.: http://www.risc.uni-linz.ac.at/research/combinat/risc/.

The code is contained in the following files:

algUtil.macsyma algebraic utilities
shiftQuotient.macsyma shiftQuotient computation
poly2quint.macsyma internal data structures conversions
makeGosperForm.macsyma Gosper′s form related routines
GosperEq.macsyma Gosper′s equation related routines
Gosper.macsyma Gosper′s algorithm main routines
Zeilberger.macsyma Zeilberger′s algorithm main routines

LOADZeilberger.macsyma Zeilberger′s routines loader

testZeilberger.macsyma Some examples
testGosper.macsyma Some Gosper′salgorithm− related examples

24

8.1 Low Level Routines

The low level routines are contained in the files algUtil.macsyma, shiftQuo-
tient.macsyma and poly2quint.macsyma.

The first file contains the lowest level algebraic routines for handling polyno-
mials (extracting components of polynomials, degree, etc).

The second file contains routines necessary for computing the shift-quotient
of a hypergeometric sequence and for computing the result of the application of
a linear recurrence operator to a hypergeometric sequence, which is computed by
a Horner-like algorithm:

niceForm(hyp,var,parName,ord) :=

block(

[shQuo,num,den,res],

res:parName[ord],

shQuo : shiftQuo(hyp,n),

for i : ord step -1 thru 1 do

res : xthru(parName[i-1] +

shiftFactPoly(shQuo,n,i-1)*res),

return(res)

);

The third file contains the routines necessary for storing polynomials in special
data structures; namely quintuples that are well-suited for building the desired
Gosper form of the shift-quotient of a proper hypergeometric sequence. Such
quintuples are arrays in which the following information of a polynomial is stored:

1. degree

2. leading coefficient

3. second leading coefficient

4. tail (polynomial without the first two monomials)

5. multiplicity (number of occurrences) of the polynomial in the shift quotient

Example

If the polynomial (7x3 − 5x2 + 4x + 8) appears in the shift quotient with a
multiplicity, say 5, it will be encoded in the following quintuple: [3, 7,−5, x2 +
4x, 5].

25

8.2 Gosper-form Related Routines

All the Gosper-form related routines are contained in the file makeGosperForm.ma-
csyma. The main routine builds the desired form by checking iteratively the gcd
condition required by the Gosper-form; whenever the condition is violated the
undesired factors will be moved from the polynomials q and r to the polynomial
p. This procedure exploits the ad hoc data structure quintuple, which has been
coded in poly2quint.macsyma:

. . .
for i:1 thru sizeListNum do

(

for j:1 thru sizeListDen do

(

if (quintDegree(listNum[i])=quintDegree(listDen[j])) and

(quintLeadCoeff(listNum[i])=quintLeadCoeff(listDen[j])) then

(

/* Checking the preliminary cond on the 2nd highest coeffs */

test:(quintLastButOne(listNum[i])-quintLastButOne(listDen[j]))/

(quintDegree(listNum[i])*quintLeadCoeff(listNum[i])),

if integerp(test) then

if test>0 then

(

/* Checking the condition */

if expand(sqfQuint2Poly(listNum[i],k)-

subst(k+test,k,sqfQuint2Poly(listDen[j],k)))=0 then

if test > maxTest then maxTest:test

) /* end if */

) /* end if */

) /* end for */

), /* end for */

. . .

26

8.3 Gosper’s Equation Routines

The computation of the degree of the solution and the solution of the so-called
“Gosper’s equation” has been coded in the file GosperEq.macsyma. Solving is
done by simple linear algebra on the unknown coefficients of the solution:

SolveZSys(Gpoly,unkPar1,numUnkPar1,unkPar2,numUnkPar2,indet) :=

linsolve(poly2List(Gpoly,indet),

union(

makelist(unkPar1[i],i,0,numUnkPar1-1),

makelist(unkPar2[i],i,0,numUnkPar2-1)

)

);

8.4 Gosper’s Algorithm and Zeilberger’s Fast

Algorithm

Gosper’s and Zeilberger’s algorithm have been coded in two versions (verbose
and non-verbose) in the file Gosper.macsyma. The decision to duplicate the code
in the verbose and non-verbose code comes from the fact that we did not want to
slow down the non-verbose version by inserting conditions in the code and that
there is no preprocessor in the Macsyma language that could have automatically
generated the two versions.

Zeilberger’s fast algorithm is a just a parametrized version of Gosper’s al-
gorithm, in which the linear solving of the recurrence equation is done with
polynomial parameters.

The coding follows in a straightforward way the standard Gosper algorithm
described in the previous chapters:

GosperNonVerbose(f,k) :=

block(

. . .
fRat: fRat(f,k), /* Computation of the shift quotient */

. . .
/* Computation of the Gosper form */

GosperForm: makeGosperForm(fRat,k),

p: takeP(GosperForm),

q: takeQ(GosperForm)*signFlag, /* Adjusting the sign */

r: takeR(GosperForm),

/* Solution of the Gosper equation */

AnsatzDegree: AnsatzDegree(p,q,r,k),

27

Gpoly: expand(GosperPoly(p,q,r,y,c,AnsatzDegree)),

sysSol: SolveSys(Gpoly,c,AnsatzDegree+1,y),

GosperSol: sol2Poly(first(sysSol),k),

/* Postprocessing: build the sol. to the telesc. prob. */

if GosperSol = 0 then

tlscope: NO HYP SOL

else

tlscope:telescope(f,GosperSol,q,r,k) /* OUTPUT */

);

28

Bibliography

[1] Abramov, S.A.

Rational solutions of linear differential and difference equations with polyno-
mial coefficients,

Proc. ISSAC ’95, ACM Press, 1995, 285-289.

[2] Chyzak, F.

Fonctions holonomes en calcul formel

Thèse universitaire no. TU 0531, INRIA. Defended on May 27, 1998. 227
pages.

[3] Gosper, R.W.

Decision procedure for indefinite hypergeometric summation

Proceedings of the National Academy of Sciences of USA 75 (1978), 40-42.

[4] Graham, R., Knuth, D. E., Patashnik, O.

Concrete Mathematics - A Foundation for Computer Science,

Addison Wesley, 1994.

[5] Paule, P.

Greatest factorial factorization and symbolic summation

J. Symbolic Computation, 20, 1995, 235-268.

[6] Paule, P., Schorn, M.

A Mathematica Version of Zeilberger’s Algorithm for Proving Binomial Co-
efficient Identities

J. Symbolic Computation, 20, 1995, 673-698.

[7] Paule, P., and Riese, A.

A Mathematica q-Analogue of Zeilberger’s Algorithm Based on an Alge-
braically Motivated Approach to q-Hypergeometric Telescoping

Special Functions, q-Series and Related Topics, Fields Institute Communi-
cations, Vol. 14, pp. 179-210, 1997.

29

[8] Petkovšek, M., Wilf, H., Zeilberger, D.

A=B,

A K Peters, MA (USA), 1996.

[9] Zeilberger, Doron

A fast algorithm for proving terminating hypergeometric identities

Discrete Mathematics, 80 (1990), 207-211.

[10] Zeilberger, Doron

The method of creative telescoping

Journal of Symbolic Computation 11 (1991), 195-204.

30

