next up previous
Next: Bibliography Up: Exact Real Computation in Previous: Vectors, matrices

Computation of the errors for the inverse of a nonsingular square matrix

Let $ A\in\mathbf{R}^{n\times n}$ be a nonsingular matrix with a known approximation $ (A_0, \delta_0)\in \mathbf{Q}^{n\times n}\times \mathbf{Q}_+$. We determine first the forward error:

\begin{displaymath}\begin{split}\Vert A^{-1}-A_0^{-1}\Vert&= \Vert A^{-1} A (A^{...
...delta_0 \Vert A^{-1}\Vert\cdot \Vert A_0^{-1}\Vert. \end{split}\end{displaymath} (1)

We have to find an upper bound for $ \Vert A^{-1}\Vert$, so by using inequality 1 we get

$\displaystyle \Vert A^{-1}\Vert \leq \Vert A_0^{-1}\Vert + \Vert A^{-1}-A_0^{-1...
...\leq \Vert
A_0^{-1}\Vert + \delta_0 \Vert A^{-1}\Vert\cdot \Vert A_0^{-1}\Vert
$

yielding

$\displaystyle \Vert A^{-1}\Vert\leq \frac{\Vert A_0^{-1}\Vert}{1-\delta_0\Vert A_0^{-1}\Vert},
$

whenever $ \delta_0\Vert A_0^{-1}\Vert<1$. Because $ A$ is nonsingular, $ \Vert A_0^{-1}\Vert$ converges to $ A^{-1}\in\mathbf{R}_+$ as $ \delta_0$ goes to zero, thus the previous condition can be fulfilled within finitely many iterative refinements of the approximation $ A_0$ of $ A$.

Assuming that $ (A_0, \delta_0)$ is an approximation with $ \delta_0\Vert A_0^{-1}\Vert<1$, for the forward error we get

$\displaystyle \Vert A^{-1}-A_0^{-1}\Vert \leq \frac{\delta_0 \Vert A_0^{-1}\Vert^2}{1-\delta_0\Vert
A_0^{-1}\Vert}.
$

In the backward error computation, given $ \varepsilon\in\mathbf{Q}_+$, we determine $ \delta_{\varepsilon}\in
\mathbf{Q}_+$ such that $ \Vert A-A_{\varepsilon}\Vert\leq
\delta_{\varepsilon}$ implies $ \Vert A^{-1}-A_{\varepsilon}^{-1}\Vert\leq
\varepsilon$. We apply inequality 1 for $ A$ and $ A_{\varepsilon}$:

$\displaystyle \Vert A^{-1}-A_{\varepsilon}^{-1}\Vert\leq \delta_{\varepsilon} \Vert A^{-1}\Vert\cdot \Vert
A_{\varepsilon}^{-1}\Vert,
$

and because $ \Vert A_{\varepsilon}^{-1}\Vert\leq \Vert A^{-1}\Vert+\varepsilon$, using the upper bound for $ \Vert A^{-1}\Vert$, we write:

$\displaystyle \Vert A^{-1}-A_{\varepsilon}^{-1}\Vert\leq \delta_{\varepsilon}
\...
...g(\frac{\Vert A_0^{-1}\Vert}{1-\delta_0 \Vert A_0^{-1}\Vert}+\varepsilon\Big).
$

If we choose $ \delta_{\varepsilon}$ such that the above product is less than $ \varepsilon$, we can compute an $ \varepsilon$-approximate for $ A^{-1}$ from $ A_{\varepsilon}$. For instance, we may set

$\displaystyle \delta_{\varepsilon}= \frac{\varepsilon(1-\delta_0\Vert A_0^{-1}\...
...rt^2+\varepsilon\Vert A_0^{-1}\Vert-\varepsilon\delta_0\Vert
A_0^{-1}\Vert^2}.
$


next up previous
Next: Bibliography Up: Exact Real Computation in Previous: Vectors, matrices